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Abstract
In this paper, a stabilized numerical method with high accuracy is proposed to solve
time-fractional singularly perturbed convection-diffusion equation with variable
coefficients. The tailored finite point method (TFPM) is adopted to discrete equation
in the spatial direction, while the time direction is discreted by the G-L approximation
and the L1 approximation. It can effectively eliminate non-physical oscillation or
excessive numerical dispersion caused by convection dominant. The stability of the
scheme is verified by theoretical analysis. Finally, one-dimensional and
two-dimensional numerical examples are presented to verify the efficiency of the
method.
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1 Introduction
Fractional calculus is a generalization of traditional integer-order calculus to noninteger
order (fractional order). The fractional integrals and derivatives are of nonlocal property
because they are quasi-differential operators. So, they provide valuable tools for describ-
ing the memory and genetic properties of different materials and processes, as well as
the dynamics of complex systems controlled by anomalous diffusion [1, 2]. The fractional
calculus has a long history of rapid development and widespread application [3–5], and
it is involved in nonlinear oscillating earthquakes [6], hydrodynamic models [7], con-
tinuous statistical mechanics [8], physical phenomena modeling [9], colored noise [10],
solid mechanics [11], economics [12], anomalous transport [13], bioengineering [14] and
many other aspects. Fractional partial differential equations (FPDEs) are characterized
by noninteger-order derivatives, so they can effectively describe the memory and genetic
properties of matter and play important roles in engineering, physics, fluid mechanics,
mathematical biology, electrochemistry, and other science. As part of the fractional dy-
namic equation, fractional convection-diffusion equation is a powerful tool to simulate
various anomalous diffusion phenomena. Time-fractional convection-diffusion equation
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can be utilized to simulate the time-related abnormal diffusion process. It is a general-
ization of the classical convection-diffusion equation by replacing the integer-order time
derivative with a fractional-order time derivative, which is widely used in oil reservoir
simulations, transport of mass and energy, dispersion of chemicals in reactors, etc. In re-
cent decades, scholars in different fields have pointed out and confirmed that fractional
model is more suitable than integer model to simulate the process of memory, genetic
heterogeneity, and the abnormal power transmission. Therefore, it is of theoretical and
practical significance to find the numerical solutions of FPDE. Several numerical meth-
ods have been introduced to solve FPDE, such as the finite difference method [15, 16], fi-
nite element method [17], variational iteration method [18, 19], operational method [20],
Sinc–Legendre collocation method [21], generalized differential transform method [22],
etc.

In the recent years, several numerical methods have been proposed for solving the time-
fractional convection-diffusion equation (TFCDE). Saadamandi et al. [21] used the Sinc–
Legendre collocation method for the solution of one-dimensional equation with homo-
geneous boundary conditions. Uddin and Haq [23] applied radial basis functions for the
numerical solution of equation with constant coefficients, and Mohammad and Jafar [24]
proposed a spectral method based on Gegenbauer collocation for solving this problem.
In [25], the mixed generalized Jacobi and Chebyshev collocation methods were used to
solve one-dimensional equations with variable coefficient. In addition, for a class of equa-
tions with variable coefficients, the third type of Chebyshev wavelet method was discussed
in [26], and Cui [27] derived a compact difference scheme to solve this problem numer-
ically. Furthermore, Wang et al. [28] proposed high-order exponential ADI format for
solving two-dimensional TFCDE. Deng [29] proposed numerical algorithm for the time-
fractional Fokker–Planck equation. Gorenflo [30] studied time-fractional diffusion equa-
tion using discrete random walk approach. There have been extensive works of high-order
accurate schemes for Caputo derivative [31–35]. Kumar et al.[36–46] gave several meth-
ods for models with fractional derivative. Agarwal [47–50] proposed some methods for
other kinds of equations with fractional derivative recently. Although the above numerical
methods have solved TFCDE with various conditions to some extent, few of them could
consider the effect of convection dominant, which means that the diffusion coefficient
ε is extremely small. When the equation is convection dominant, the use of traditional
numerical methods (central difference method or Galerkin method) will produce non-
physical shock or excessive numerical diffusion (upwind difference method). Therefore, it
is of significant importance in developing effective numerical method for the solution of
convection dominant problem.

In this paper, we use the tailored finite point method (TFPM) to solve the time-fractional
convection-dominant diffusion problem with variable coefficient, and we find that this al-
gorithm is very effective. TFPM is based on the local exponential basis function, which
was first proposed by Han et al. [51] for solving the Hemker problem numerically. In
many cases, TFPM can preserve the important local properties of the problem. Subse-
quently, Han et al. used TFPM to solve the second-order singularly perturbed elliptic
equation in [52]. In [53], TFPM was proposed for solving the parabolic problem. Han and
Huang applied the method to solving the fourth-order singular perturbation elliptic equa-
tion in [54]. Huang et al. [55, 56] used TFPM to solve the surface layer problem and the
first-order wave equation. Moreover, Tsai et al. [57] applied it to the numerical solution
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of one-dimensional Burgers’ equation. Motivated by the advantages of TFPM, we adopt
TFPM discrete in the spatial direction and use the G-L and L1 approximations of Ca-
puto derivative discrete in the time direction in this paper to solve one-dimensional and
two-dimensional time-fractional convection-dominated diffusion equations numerically.
The research shows that TFPM is an efficient method to solve the convection-dominated
problem.

The paper is organized as follows. In Sect. 2, we adopt TFPM for the steady problems,
and then we use the G-L approximation and L1 approximation for the time-fractional
derivative to give a highly efficient discrete scheme for one-dimensional time-fractional
convection-dominated diffusion equation. In Sect. 3, we solve two-dimensional time-
fractional convection-dominated diffusion equation numerically. In Sect. 4, we theoret-
ically analyze the stability of the method in this paper. Finally, numerical examples of one
dimension and two dimensions are given respectively in Sect. 5 to verify the high efficiency
of the proposed algorithm. This paper closes with a short summary in Sect. 6.

2 One-dimensional time fractional convection-dominated diffusion equation
Let us consider the following time-fractional convection-diffusion equation:

∂γ u(x, t)
∂tγ

– ε
∂2u(x, t)

∂x2 + p(x, t)
∂u(x, t)

∂x
= f (x, t), x ∈ I, t ∈ (0, T], (2.1)

where ε is the diffusion coefficient, 0 < ε � 1, p(x, t) �= 0 is a continuous function; f is
the source term; I = (L1, L2) is the calculation interval, ∂I is the boundary; the fractional
derivative ∂γ u(x,t)

∂tγ is the Caputo fractional derivative c
0Dγ

t u (0 < γ < 1) of the function u(x, t).
The derivative is c

0Dγ
t u = 1

�(1–γ )
∫ t

0
∂u(x,t)

∂τ
· 1

(t–τ )γ dτ .
Corresponding boundary conditions and initial conditions of equation (2.1) are:

u(L1, t) = μ1(t), u(L2, t) = μ2(t), (2.2)

u(x, 0) = υ(x). (2.3)

We assume that � = (L1, L2) × (0, T], and we take a uniform partition, i.e., let τ = T/NT
be the time step and h = (L2 – L1)/(NX + 1) be the mesh size for some positive integers
NT , NX ∈ N. Take

xj = L1 + jh (j = 0, 1, . . . , NX), tn = nτ (n = 0, 1, . . . , NT).

Then {Pn
j = (xj, tn), 0 ≤ j ≤ NX, 0 ≤ n ≤ NT} is the set of mesh points.

2.1 TFPM discretization for second-order derivative
We take the TFPM discrete scheme on the cell Ij (see Fig. 1)

uxx|x=xj = αj–1uj–1 + αjuj + αj+1uj+1, (2.4)

where αj–1, αj, αj+1 are satisfied with a relationship, as described below.

Figure 1 Stencil for constructing the second-order derivative
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Assume that u(x) can be linearly expressed by basis function on the stencil Ij, and let

V = span
{

e–x/ε , ex/ε}, (2.5)

with uj = u(xj, t), such that it holds for all u ∈ V on Ij. Thus we obtain

u(x)|Ij = c1je–(x–xj)/ε + c2je(x–xj)/ε . (2.6)

Taking (2.6) in αj–1uj–1 + αjuj + αj+1uj+1 = 0, we obtain

αj–1
[
c1je–h/ε + c2jeh/ε] + αj[c1j + c2j] + αj+1

[
c1jeh/ε + c2je–h/ε] = 0. (2.7)

Then we obtain
⎧
⎨

⎩

αj–1e–h/ε + αj + αj+1eh/ε = 0,

αj–1eh/ε + αj + αj+1e–h/ε = 0.
(2.8)

Solving the above linear system, we get

αj–1 = αj+1 = –
αj

eh/ε + e–h/ε . (2.9)

Then we obtain the TFPM scheme as follows:

uxx|x=xj = –
αj

eh/ε + e–h/ε uj–1 + αjuj –
αj

eh/ε + e–h/ε uj+1, (2.10)

where αj satisfies the discrete maximum principle.

2.2 TFPM for one-dimensional time-fractional convection-dominated diffusion
equation

2.2.1 TFPM based on G-L approximation
For equation (2.1), we apply the TFPM discrete in the spatial direction and adopt the G-L
approximation discrete in the temporal direction. First, we give the definition of shifted
G-L derivative as follows:

G
0 Dγ

t u(t) = τ–γ

n∑

k=0

w(γ )
k un–k

j , (2.11)

where w(γ )
k = (–1)j( γ

j ), j = 0, 1, 2, . . . . The discretization scheme of TFPM based on the G-L
approximation for equation (2.1) is

⎧
⎪⎪⎨

⎪⎪⎩

τ–γ
∑n

k=0 w(γ )
k un–k

j = εαj–1un
j–1 + εαjun

j + εαj+1un
j+1 + pn

j
un

j+1–un
j–1

2h + f n
j ,

u0
j = υ(x), 0 ≤ j ≤ NX,

un
0 = μ1(t), un

NX = μ2(t), 0 ≤ n ≤ NT .

(2.12)

Let un = (un
1, un

2, . . . , un
NX–1)T , then (2.12) can be rewritten in the following matrix form:

τ–γ

∞∑

k=0

w(γ )
k un–k

j = Aun + Fn, (2.13)
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where αj–1, αj, αj+1 are determined by (2.9), and

A = diag

(

εαj–1 –
pn

j

2h
, εαj, εαj+1 +

pn
j

2h

)

(NX–1)×(NX–1)
,

Fn =
(

f n
1 +

un
0

εαj–1
, . . . , f n

NX +
un

NX
εαj+1

)T

.

(2.14)

2.2.2 TFPM based on L1 approximation
For equation (2.1), we apply the TFPM discrete in the spatial direction and adopt the L1
approximation discrete in the temporal direction.

According to the definition of Caputo fractional derivative,

c
0Dγ

t u(t)|t=tn =
1

�(1 – γ )

∫ tn

0

u′(s)
(tn – s)γ

ds =
1

�(1 – γ )

n∑

k=1

∫ tk

tk–1

u′(s)
(tn – s)γ

ds. (2.15)

The linear interpolation of u(s) on the [tk–1, tk] interval is obtained.

L1,k(s) =
tk – s

τ
u(tk–1) +

s – tk–1

τ
u(tk), (2.16)

u(s) – L1,k(s) =
1
2

u′′(ξk)(s – tk–1)(s – tk), s ∈ [tk–1, tk], (2.17)

where

ξk = ξk(s) ∈ (tk–1, tk). (2.18)

L1,ku(s) approximate u(s) to get

u(s) ≈ tk – s
τ

u(tk–1) +
s – tk–1

τ
u(tk) (2.19)

⇒ u′(s) ≈ u(tk) – u(tk–1)
τ

.

And then

c
0Dγ

t u(t)|t=tn

≈ 1
�(1 – γ )

n∑

k=1

∫ tk

tk–1

u(tk) – u(tk–1)
τ

· 1
(tn – s)γ

ds

=
1

�(1 – γ )

n∑

k=1

u(tk) – u(tk–1)
τ

·
∫ tk

tk–1

1
(tn – s)γ

ds

=
1

�(1 – γ )

n∑

k=1

u(tk) – u(tk–1)
τ

· 1
1 – γ

(2.20)

· [(tn – tk–1)1–γ – (tn – tk)1–γ
]
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=
τ–γ

�(2 – γ )

n∑

k=1

a(γ )
n–k
[
u(tk) – u(tk–1)

]

=
τ–γ

�(2 – γ )

[

a(γ )
0 u(tn) –

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
u(tk) – a(γ )

n–1u(t0)

]

.

Then the discretization scheme of TFPM based on the L1 approximation for equation
(2.1) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τγ

�(2–γ ) [a(γ )
0 un

j –
∑n–1

k=1(a(γ )
n–k–1 – a(γ )

n–k)uk
j – a(γ )

n–1u0
j ]

= εαj–1un
j–1 + εαjun

j + εαj+1un
j+1 + pn

j
un

j+1–un
j–1

2h + f n
j ,

u0
j = υ(x), 0 ≤ j ≤ NX,

un
0 = μ1(t), un

NX = μ2(t), 0 ≤ n ≤ NT .

(2.21)

Rewrite (2.21) as the following matrix form:

τ γ

�(2 – γ )

[

a(γ )
0 un

j –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
uk

j – a(γ )
n–1u0

j

]

= Aun + Fn, (2.22)

where A, Fn are defined in (2.22) and αj–1, αj, αj+1 are determined by (2.9).

3 Two-dimensional time-fractional convection-dominated diffusion equation
Let us consider the following time-fractional convection-diffusion equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dγ

t u(x, y, t) – ε2�u + p(x, y, t)ux + q(x, y, t)uy

= f̂ (x, y, t), (x, y) ∈ �, t > 0,

u(x, y, 0) = μ0(t), (x, y) ∈ �,

u(x, y, t) = μ1(t), (x, y) ∈ ∂�, t > 0,

(3.1)

where ε is the diffusion coefficient. � is a bounded area, ∂� is a smooth boundary;
p(x, y, t) �= 0, q(x, y, t) �= 0 are continuous functions; f̂ is the source term.

Rewrite the above equation as follows:

c
0Dγ

t u(x, y, t) – ε2�u + p(x, y, t)ux + q(x, y, t)uy = f̄ + f = f̂ (x, y, t), (3.2)

where f̄ (x, y, t) is the source term for the time variable and f (x, y, t) is the source term for
the spatial variable.

We assume that � = [xL, xR] × [yL, yR], t ∈ (0, T], and we take a uniform partition, i.e., let
hx = hy = h be the mesh size and τ = �t be the time step, and

xi = ihx, yj = jhy, tn = nτ , 0 ≤ i ≤ NX, 0 ≤ j ≤ NY , 0 ≤ n ≤ NT . (3.3)

Then {Pk
i,j = (xi, yj, tn), 0 ≤ i ≤ NX, 0 ≤ j ≤ NY , 0 ≤ n ≤ NT} is the set of mesh points.
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Figure 2 The local mesh for spatial discrete

3.1 TFPM discretization in spatial direction
For equation (3.2), let

pn
i,j = p(xi, yj, tn), qn

i,j = q(xi, yj, tn), f n
i,j = f (xi, yj, tn). (3.4)

Then the equation corresponding to the spatial direction of equation (3.2) is

–ε2�u + pn
i,jux + qn

i,juy = f n
i,j . (3.5)

We now construct our tailored finite point scheme for (3.5) on cell �0 (see Fig. 2).
Let

u(x, y, t) = v(x, y, t)e
pn

i,jx+qn
i,jy

2ε2 +
pn

i,jx + qn
i,jy

pn2
i,j + qn2

i,j
f n
i,j . (3.6)

Substituting the above formula to (3.5), we can obtain the following equation:

–ε2�u + dn2
i,j u = 0, (3.7)

where dn2
i,j =

pn2
i,j +qn2

i,j
4ε2 .

Let μn
i,j =

dn
i,j
ε

, and let the base function space be as follows:

H4 =
{

v(x, y, t)|v = c1e–μn
i,jx + c2eμn

i,jx + c3e–μn
i,jy + c4eμn

i,jy,∀ci ∈ R
}

. (3.8)

We take the scheme as follows (see Fig. 2):

α1V1 + α2V2 + α3V3 + α4V4 + α0V0 = 0, (3.9)

where V0 = v(xi, yj, tn), V1 = v(xi+1, yj, tn), V2 = v(xi, yj+1, tn), V3 = v(xi–1, yj, tn), V4 =
v(xi, yj–1, tn). Due to αk ∈ R (k = 0, 1, 2, 3, 4), so that it holds for all v ∈ H4. Thus we ob-
tain

α1e–μn
i,jh + α2 + α3eμn

i,jh + α4 + α0 = 0, (3.10)

α1eμn
i,jh + α2 + α3e–μn

i,jh + α4 + α0 = 0, (3.11)

α1 + α2e–μn
i,jh + α3 + α4eμn

i,jh + α0 = 0, (3.12)

α1 + α2eμn
i,jh + α3 + α4e–μn

i,jh + α0 = 0. (3.13)

Solving the above linear system (3.10)–(3.13), we get

α1 = α2 = α3 = α4 =
–α0

eμn
i,jh + e–μn

i,jh + 2
=

–α0

4 cosh2(
μn

i,jh
2 )

. (3.14)
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Let

α0 =
eμn

i,jh + e–μn
i,jh + 2

eμn
i,jh + e–μn

i,jh – 2
=

cosh2(
μn

i,jh
2 )

sinh2(
μn

i,jh
2 )

. (3.15)

We can obtain

α1 = α2 = α3 = α4 = –
1

4 sinh2(
μn

i,jh
2 )

. (3.16)

Finally, we obtain the discrete scheme of equation (3.5) as follows:

un
i,j –

e–
pn

i,jh

2ε2 un
i+1,j + e–

qn
i,jh

2ε2 un
i,j+1 + e

pn
i,jh

2ε2 un
i–1,j + e

qn
i,jh

2ε2 un
i,j–1

4 cosh2(
un

i,jh
2 )

=
f n
i,jh

8 cosh2(
un

i,jh
2 )

(
e

pn
i,jh

2ε2 – e–
pn

i,jh

2ε2

pn2
i,j

+
e

qn
i,jh

2ε2 – e–
qn

i,jh

2ε2

qn2
i,j

)

.

(3.17)

3.2 TFPM for two-dimensional time-fractional convection-dominated diffusion
equation

For equation (3.1), the spatial direction is discreted by TFPM, and the time direction is
discreted by the G-L approximation of the Caputo fractional derivative and the L1 ap-
proximation, respectively.

3.2.1 TFPM based on G-L approximation
Combining equations (3.2) and (3.17), we can get the following GL-TFPM discrete scheme:

τ–γ

n∑

k=0

w(γ )
k un–k

i,j + un
i,j

–
e–

pn
i,jh

2ε2 un
i+1,j + e–

qn
i,jh

2ε2 un
i,j+1 + e

pn
i,jh

2ε2 un
i–1,j + e

qn
i,jh

2ε2 un
i,j–1

4 cosh2(
un

i,jh
2 )

=
f n
i,jh

8 cosh2(
un

i,jh
2 )

(
e

pn
i,jh

2ε2 – e–
pn

i,jh

2ε2

pn2
i,j

+
e

qn
i,jh

2ε2 – e–
qn

i,jh

2ε2

qn2
i,j

)

+ f̄ n
i,j = f̂ n

i,j ,

(3.18)

where μn
i,j =

dn
i,j
ε

, dn2
i,j =

pn2
i,j +qn2

i,j
4ε2 .
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3.2.2 TFPM based on L1 approximation
Combining equations (3.2) and (3.17), we can get the following L1-TFPM discrete scheme:

τ γ

�(2 – γ )

[

a(γ )
0 un

i,j –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
uk

i,j – a(γ )
n–1u0

i,j

]

+ un
i,j –

e–
pn

i,jh

2ε2 un
i+1,j + e–

qn
i,jh

2ε2 un
i,j+1 + e

pn
i,jh

2ε2 un
i–1,j + e

qn
i,jh

2ε2 un
i,j–1

4 cosh2(
un

i,jh
2 )

=
f n
i,jh

8 cosh2(
un

i,jh
2 )

(
e

pn
i,jh

2ε2 – e–
pn

i,jh

2ε2

pn2
i,j

+
e

qn
i,jh

2ε2 – e–
qn

i,jh

2ε2

qn2
i,j

)

+ f̄ n
i,j = f̂ n

i,j ,

(3.19)

where μn
i,j =

dn
i,j
ε

, dn2
i,j =

pn2
i,j +qn2

i,j
4ε2 .

4 Stability analysis
4.1 Stability analysis for one-dimensional time-fractional convection-dominated

diffusion equation
4.1.1 Stability analysis of TFPM based on G-L approximation
Theorem 1 Assume that {vn

j |0 ≤ j ≤ NX, 0 ≤ n ≤ NT} is the solution of the GL-TFPM
discrete scheme of (2.12) as vn

0 = 0, vn
NX = 0, 0 ≤ n ≤ NT . Then we have

∥
∥vn∥∥∞ ≤ 5

1 – γ

∥
∥v0∥∥∞ +

5
(1 – γ )2γ

tγ
n max

1≤m≤n

∥
∥f m∥∥∞, 1 ≤ n ≤ NT , (4.1)

where ‖f m‖∞ = max1≤j≤NX–1 |f m
j |.

Proof Rewrite equation (4.1) as follows:

(1 – αj)vn
j =

n∑

k=1

(
–w(γ )

k
)
vn–k

j +
(

αj–1 –
1

2h

)

vn
j–1 +

(

αj+1 +
1

2h

)

vn
j+1 + τ γ f n

j ,

1 ≤ j ≤ NX – 1, 1 ≤ n ≤ NT .

(4.2)

Assume that ‖vn‖∞ = |vn
jn |, where jn ∈ {1, 2, . . . , NX – 1}. Let j = jn in (4.2), and take the

absolute value in the above formula. Then the triangular inequality is used. We have

(1 – αj)
∥
∥vn∥∥∞ ≤

n∑

k=1

(
–w(γ )

k
)∥
∥vn–k∥∥∞ +

(
αj–1

∥
∥vn∥∥∞ + αj+1

∥
∥vn∥∥∞

)
+ τ γ

∥
∥f n∥∥∞.

Due to αj–1, αj, αj+1 being defined by (2.9), and applying the triangular inequality, we have

∥
∥vn∥∥∞ ≤

n∑

k=1

(
–w(γ )

k
)∥
∥vn–k∥∥∞ + τ γ

∥
∥f n∥∥∞, 1 ≤ n ≤ NT . (4.3)

Starting from formula (4.3), the mathematical induction method is used to prove (4.1). Let

An =
5

1 – γ

∥
∥v0∥∥∞ +

5
(1 – γ )2γ

nγ τ γ max
1≤m≤n

∥
∥f m∥∥∞, 1 ≤ n ≤ NT .
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From (4.3), when n = 1, we have

∥
∥v1∥∥∞ ≤ (

–w(γ )
1
)∥∥v0∥∥∞ + τ γ

∥
∥f 1∥∥∞ = γ

∥
∥v0∥∥∞ + τ γ

∥
∥f 1∥∥∞ ≤ A1.

That is, (4.1) is set up for k = 1. Assume that (4.1) is also set up for k = 1, 2, . . . , n – 1 (n ≥ 2),
then it can be obtained by (4.3)

∥
∥vn∥∥∞ ≤

n–1∑

k=1

(
–w(γ )

k
)∥
∥vn–k∥∥∞ +

(
–w(γ )

n
)∥
∥v0∥∥∞ + τ γ

∥
∥f n∥∥∞

≤
n–1∑

k=1

(
–w(γ )

k
)
An–k + γ

(
2

n + 1

)γ +1∥
∥v0∥∥∞ + τ γ

∥
∥f n∥∥∞

≤
n–1∑

k=1

(
–w(γ )

k
)
An + γ

(
2
n

)γ ∥
∥v0∥∥∞ + τ γ

∥
∥f n∥∥∞

≤
[ ∞∑

k=1

(
–w(γ )

k
)

–
∞∑

k=n

(
–w(γ )

k
)
]

An + γ

(
2
n

)γ ∥
∥v0∥∥∞ + τ γ

∥
∥f n∥∥∞

≤
[

1 –
1 – γ

5

(
2
n

)γ]

An + γ

(
2
n

)γ ∥
∥v0∥∥∞ + τ γ

∥
∥f n∥∥∞

≤ An –
1 – γ

5

(
2
n

)γ[

An –
5γ

1 – γ

∥
∥v0∥∥∞ –

5
1 – γ

(
n
2

)γ

τ γ
∥
∥f n∥∥∞

]

≤ An.

The above proof process is applied to ( 2
n+1 )γ +1 < ( 2

n )γ +1 ≤ ( 2
n )γ , (n ≥ 2). Therefore, it can

be concluded that (4.1) is also established for k = n. �

4.1.2 Stability analysis of TFPM based on L1 approximation
Theorem 2 Assume that {vn

j |0 ≤ j ≤ NX, 0 ≤ n ≤ NT} is the solution of L1-TFPM scheme
(2.21) as v0

j = υ(xj) = 0, 1 ≤ j ≤ NX – 1, vn
0 = 0, vn

NX = 0, 0 ≤ n ≤ NT .
Then we have

∥
∥vn∥∥∞ ≤ ∥

∥v0∥∥∞ + tγ
n �(1 – γ ) max

1≤m≤n

∥
∥f m∥∥∞, 1 ≤ n ≤ NT , (4.4)

where ‖f m‖∞ = max1≤j≤NX–1 |f m
j |.

Proof Rewrite equation (2.21) as follows:

a(γ )
0 vn

j =
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
vk

j + a(γ )
n–1v0

j + τ γ �(2 – γ )
(
αj–1vn

j–1 + αjvn
j + αj+1vn

j+1
)

+ τ γ �(2 – γ )pn
j

(
1

2h
vn

j+1 –
1

2h
vn

j–1

)

+ τ γ �(2 – γ )f n
j , 1 ≤ j ≤ NX – 1, 1 ≤ n ≤ NT .
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That is,

[
1 – τ γ �(2 – γ )αj

]
vn

j ≤
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
vk

j + a(γ )
n–1v0

j

+ τ γ �(2 – γ )
(

αj–1 –
1

2h
pn

j

)

vn
j–1

+ τ γ �(2 – γ )
(

αj–1 +
1

2h
pn

j

)

vn
j+1

+ τ γ �(2 – γ )f n
j , 1 ≤ j ≤ NX – 1, 1 ≤ n ≤ NT .

Assume that ‖vn‖∞ = |vn
jn |, where jn ∈ {1, 2, . . . , NX – 1}. Let j = jn, and take the absolute

value in the above formula. Then the triangular inequality is used. We have

[
1 – τ γ �(2 – γ )αj

]∥
∥vn∥∥∞

≤
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)∥
∥vk∥∥∞ + a(γ )

n–1
∥
∥v0∥∥∞

+ 2τ γ �(2 – γ )αj+1‖v‖∞

+ τ γ �(2 – γ )f n
j , 1 ≤ j ≤ NX – 1, 1 ≤ n ≤ NT .

Due to αj–1, αj, αj+1 being defined by (2.9), and applying the triangular inequality, we obtain

∥
∥vn∥∥∞ ≤

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)∥
∥vk∥∥∞

+ a(γ )
n–1

[
∥
∥v0∥∥∞ +

τ γ �(2 – γ )
a(γ )

n–1

∥
∥f n∥∥∞

]

, 1 ≤ n ≤ NT .

Notice that

τ γ �(2 – γ )
a(γ )

n–1

≤ τ γ �(2 – γ )
(1 – γ )n–γ

= (nτ )γ �(1 – γ ), (4.5)

then we have

∥
∥vn∥∥∞ ≤

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)∥
∥vk∥∥∞

+ a(γ )
n–1
(∥
∥v0∥∥∞ + tγ

n �(1 – γ )
∥
∥f n∥∥∞

)
, 1 ≤ n ≤ NT . (4.6)

We adopt the mathematical induction with equation (4.9) to prove the conclusion.
When n = 1, we obtain

a(γ )
0
∣
∣v1∣∣≤ ∣

∣v0∣∣ + τ γ �(1 – γ )
∣
∣f (t1)

∣
∣.
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It is easy to know that the conclusion is established for n = 1. Assume that it is established
for k = 1, 2, . . . , n – 1, then

∥
∥vn∥∥∞ ≤

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)[∥∥v0∥∥∞ + (kτ )γ �(1 – γ ) max

1≤m≤k

∥
∥f m∥∥∞

]

+ a(γ )
n–1
[∥∥v0∥∥∞ + tγ

n �(1 – γ )
∥
∥f n∥∥∞

]

≤
{ n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)

+ a(γ )
n–1

}
[∥
∥v0∥∥∞ + (nτ )γ �(1 – γ ) max

1≤m≤n

∥
∥f m∥∥∞

]
,

=
∥
∥v0∥∥∞ + tγ

n �(1 – γ ) max
1≤m≤n

∥
∥f m∥∥∞.

Therefore

∥
∥vn∥∥∞ ≤ ∥

∥v0∥∥∞ + tγ
n �(1 – γ ) max

1≤m≤n

∥
∥f m∥∥∞, 1 ≤ n ≤ NT .

That is, the conclusion is established for k = n. �

4.2 Stability analysis for two-dimensional time-fractional convection-dominated
diffusion equation

Let ω = {(i, j)|(xi, yj) ∈ �}, ∂ω = {(i, j)|(xi, yj) ∈ ∂�}, ω̄ = ω ∪ ∂ω, and define the mesh func-
tion as follows:

Vh =
{

u|u =
{

uij|(i, j) ∈ ω̄
}}

, u is the mesh function on �,

V ◦
h =

{
u|u ∈ Vh; if (i, j) ∈ ∂ω, then uij = 0

}
.

For mesh function v ∈ Vh, let κ = 1/2 cosh(
μn

ijh
2 ), and we introduce the following notation:

δxvi– 1
2 ,j = κ

(

cosh2
(

μn
ijh
2

)

vn
ij – e

pn
ijh

2ε2 vn
i–1,j

)

,

δxvi+ 1
2 ,j = κ

(

e–
pn

ijh

2ε2 vn
i+1,j – cosh2

(
μn

ijh
2

)

vn
ij

)

,

δyvi,j– 1
2

= κ

(

cosh2
(

μn
ijh
2

)

vn
ij – e

qn
ijh

2ε2 vn
i,j–1

)

,

δxvi,j+ 1
2

= κ

(

e–
qn

ijh

2ε2 vn
i,j+1 – cosh2

(
μn

ijh
2

)

vn
ij

)

,

δ2
x vi,j = κ(δxvi+ 1

2 ,j – δxvi– 1
2 ,j),

δ2
y vi,j = κ(δxvi,j+ 1

2
– δxvi,j– 1

2
),

δxδyvi– 1
2 ,j– 1

2
= κ(δyvi,j– 1

2
– δyvi–1,j– 1

2
),

δ2
xδ

2
y vi,j = κ2(δ2

y vi–1,j – 2δ2
y vi,j + δ2

y vi+1,j
)
.
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For the mesh function v ∈ V ◦
h , define that

(u, v) = 4 cosh2
(

μn
ijh
2

)NX–1∑

i=1

NY –1∑

j=1

uijvij, ‖u‖ =
√

(u, u),

(u, v)1,x = 4 cosh2
(

μn
ijh
2

)NX–1∑

i=1

NY –1∑

j=1

(δxui– 1
2 ,j)δxvi– 1

2 ,j, ‖δxu‖ =
√

(u, u)1,x,

(u, v)1,y = 4 cosh2
(

μn
ijh
2

)NX–1∑

i=1

NY –1∑

j=1

(δyui,j– 1
2

)δyvi,j– 1
2

, ‖δyu‖ =
√

(u, u)1,y,

(u, v)x,y = 4 cosh2
(

μn
ijh
2

)NX–1∑

i=1

NY –1∑

j=1

(δxδyui– 1
2 ,j– 1

2
)(δxδyui– 1

2 ,j– 1
2

),

‖δxδyu‖ =
√

(u, u)x,y,

‖∇hu‖ =
√

‖δxu‖2 + ‖δyu‖2, ‖u‖∞ = max
1≤i≤NX
1≤j≤NY

|uij|.

It is easy to verify, for any mesh function u, v ∈ V ◦
h , we have

(
–δ2

x u, v
)

:= 4 cosh2
(

μn
ijh
2

)NX–1∑

i=1

NY –1∑

j=1

(
–δ2

x ui,j
)
vi,j = (u, v)1,x, (4.7)

(
–δ2

y u, v
)

:= 4 cosh2
(

μn
ijh
2

)NX–1∑

i=1

NY –1∑

j=1

(
–δ2

y ui,j
)
vi,j = (u, v)1,y, (4.8)

(
δ2

xδ
2
y u, v

)
:= 4 cosh2

(
μn

ijh
2

)NX–1∑

i=1

NY –1∑

j=1

(
δ2

xδ
2
y ui,j

)
vi,j = (u, v)x,y. (4.9)

Lemma 1 ([58]) For any u ∈ V ◦
h ,let Lx = xR – xL, Ly = yR – yL, then

‖u‖2 ≤ 1
6

L2
x

+ 6
L2

y

‖∇hu‖2.

Here, ‖ · ‖ indicates the L2 norm.

4.2.1 Stability analysis of TFPM based on G-L approximation
Theorem 3 Assume that {vn

ij|(i, j) ∈ ω̄, 0 ≤ n ≤ NT} is the solution of GL-TFPM scheme
(3.18) or as below:

τ–γ

n∑

k=0

w(γ )
k vn–k

i,j = δ2
x vn

ij + δ2
y vn

ij + f̂ n
i,j , (i, j) ∈ ω, 1 ≤ n ≤ NT , (4.10)

v0
ij = μ0(xi, yj), (i, j) ∈ ω, (4.11)

vn
ij = 0, (i, j) ∈ ∂ω, 0 ≤ n ≤ NT . (4.12)
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Then we have

∥
∥vn∥∥2 ≤ 5

1 – γ

∥
∥v0∥∥2

+
L2

xL2
y

12(L2
x + L2

y)
5

(1 – γ )2γ
tγ
n max

1≤m≤n

∥
∥f m∥∥2, 1 ≤ n ≤ NT , (4.13)

where ‖f m‖2 = 4 cosh2(
μn

ijh
2 )
∑NX–1

i=1
∑NY –1

j=1 (f m
ij )2.

Proof We use the inner product simultaneously on both sides of equation (4.10). Noticing
(4.12) and applying (4.7)–(4.9), we can obtain

τ–γ

n∑

k=0

w(γ )
k
(
vn–k , vn) = –

(
vn, vn)

1,x –
(
vn, vn)

1,y +
(
f̂ n, vn)

= –
∥
∥∇hvn∥∥2 +

(
f̂ n, vn), 1 ≤ n ≤ NT .

(4.14)

By the Cauchy–Schwarz inequality, and noting Lemma 1, we have

(
f̂ n, vn) ≤ ∥

∥f̂ n∥∥
∥
∥vn∥∥

≤ 6
(

1
L2

x
+

1
L2

y

)∥
∥vn∥∥2 +

1
24(1/L2

x + 1/L2
y)
∥
∥f̂ n∥∥2

≤ ∥
∥∇hvn∥∥2 +

1
24(1/L2

x + 1/L2
y)
∥
∥f̂ n∥∥2, 1 ≤ n ≤ NT . (4.15)

Combining (4.15) and (4.14), we can get

τ–γ

n∑

k=0

w(γ )
k
(
vn–k , vn)≤ 1

24(1/L2
x + 1/L2

y)
∥
∥f̂ n∥∥2, 1 ≤ n ≤ NT .

Reorganizing the above formula and using the Cauchy–Schwarz inequality, we have

∥
∥vn∥∥2 ≤

n∑

k=1

(
–w(γ )

k
)(

vn–k , vn) +
L2

xL2
y

24(L2
x + L2

y)
τ γ
∥
∥f̂ n∥∥2

≤
n∑

k=1

(
–w(γ )

k
)
[

1
2
(∥
∥vn–k∥∥2 +

∥
∥vn∥∥2)

]

+
L2

xL2
y

24(L2
x + L2

y)
τ γ
∥
∥f̂ n∥∥2, 1 ≤ n ≤ NT .

Notice that
∑n

k=1(–w(γ )
k ) ≤ w(γ )

0 = 1, and multiply by 2 on both sides of the above formula,
then

∥
∥vn∥∥2 ≤

n∑

k=1

(
–w(γ )

k
)∥
∥vn–k∥∥2 +

L2
xL2

y

12(L2
x + L2

y)
τ γ
∥
∥f̂ n∥∥2, 1 ≤ n ≤ NT . (4.16)

From inequality (4.16), it is easy to verify (4.13) using the mathematical induction method
(similar to the induction process in Theorem 1, omitted here). �
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4.2.2 Stability analysis of TFPM based on L1 approximation
Theorem 4 Assume that {vn

ij|(i, j) ∈ ω̄, 0 ≤ n ≤ NT} is the solution of L1-TFPM discrete
scheme (3.19) or as below:

τ γ

�(2 – γ )

[

a(γ )
0 un

i,j –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
uk

i,j – a(γ )
n–1u0

i,j

]

= δ2
x vn

ij + δ2
y vn

ij + f̂ n
i,j , (i, j) ∈ ω, 1 ≤ n ≤ NT ,

(4.17)

where

v0
ij = μ0(xi, yj), (i, j) ∈ ω, (4.18)

and

vn
ij = 0, (i, j) ∈ ∂ω, 0 ≤ n ≤ NT . (4.19)

Then we have

∥
∥vn∥∥2 ≤ ∥

∥v0∥∥2 +
L2

xL2
x

12(L2
x + L2

y)
�(1 – γ )tγ

n max
1≤m≤n

∥
∥f m∥∥2, 1 ≤ n ≤ NT , (4.20)

where ‖f m‖2 = 4 cosh2(
μn

ijh
2 )
∑NX–1

i=1
∑NY –1

j=1 (f m
ij )2.

Proof Taking both sides of equation (4.17) with vn for the inner product (·, ·) simultane-
ously, we have

τ γ

�(2 – γ )

([

a(γ )
0 vn –

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)
vk – a(γ )

n–1v0

]

, vn

)

=
(
δ2

x vn, vn) +
(
δ2

y vn, vn) +
(
f̂ n, vn), 1 ≤ n ≤ NT . (4.21)

Noting (4.19) and applying (4.7)–(4.9), we can get

(
δ2

x vn, vn) +
(
δ2

y vn, vn) = –
(
vn, vn)

1,x –
(
vn, vn)

1,y = –
∥
∥∇hvn∥∥2. (4.22)

By the Cauchy–Schwarz inequality and noting Lemma 1, there are

(
f̂ n, vn) ≤ ∥

∥f̂ n∥∥
∥
∥vn∥∥

≤ 6
(
1/L2

x + 1/L2
y
)∥∥vn∥∥2 +

1
24(1/L2

x + 1/L2
y)
∥
∥f̂ n∥∥2

≤ ∥
∥∇hvn∥∥2 +

1
24(1/L2

x + 1/L2
y)
∥
∥f̂ n∥∥2, 1 ≤ n ≤ NT . (4.23)
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Substituting (4.22), (4.23) into (4.21) and then applying the Cauchy–Schwarz inequality,
we have

a(γ )
0
(
vn, vn) ≤

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)(

vk , vn) + a(γ )
n–1
(
v0, vn) +

τ γ �(2 – γ )
24(1/L2

x + 1/L2
y)
∥
∥f̂ n∥∥2

≤ 1
2

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k
)[(

vk , vk) +
(
vn, vn)]

+
1
2

a(γ )
n–1
[(

v0, v0) +
(
vn, vn)] +

τ γ �(2 – γ )
24(1/L2

x + 1/L2
y)
∥
∥f̂ n∥∥2.

Multiplying by 2 on both sides of the above formula, we get

a(γ )
0
(
vn, vn) ≤

n–1∑

k=1

(an–k–1 – an–k)
(
vk , vk) + an–1

(
v0, v0)

+
τ γ �(2 – γ )

12(1/L2
x + 1/L2

y)
∥
∥f̂ n∥∥2. (4.24)

Notice that

τ γ �(2 – γ )
a(γ )

n–1

≤ τ γ �(2 – γ )
(1 – γ )n–γ

= (nτ )γ �(1 – γ ).

Then we obtain

∥
∥vn∥∥2 ≤

n–1∑

k=1

(an–k–1 – an–k)
∥
∥vk∥∥2

+ a(γ )
n–1

[
∥
∥v0∥∥2 +

L2
xL2

y

12(L2
x + L2

y)
tγ
n �(1 – γ )

∥
∥f̂ n∥∥2

]

. (4.25)

From inequality (4.25), using the mathematical induction method (similar to the induction
process in Theorem 2) can lead to

∥
∥vn∥∥2 ≤ ∥

∥v0∥∥2 +
L2

xL2
y

12(L2
x + L2

y)
�(1 – γ )tγ

n max
1≤m≤n

∥
∥f̂ m∥∥2, 1 ≤ n ≤ NT . �

5 Numerical examples
Example 1 We consider the following one-dimensional time-fractional convection-
dominated diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

c
0Dγ

t u + p(x, t)ux – εuxx = f (x, t), 0 < x < 1, 0 < t < 1,

u(0, t) = μ1(t), u(1, t) = μ2(t), 0 < t < 1,

u(x, 0) = υ(x) = 0, 0 < x < 1,

(5.1)

where ε is a nonnegative small parameter, let ε = 10–5, p(x, t) = 1. The exact solution of the
equation is

u(x, t) = t2+γ
(
x +

(
ex/ε – 1

)
/
(
e1/ε – 1

))
.
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Here, the corresponding right term, the initial conditions, and the boundary conditions
can be obtained directly from the exact solution. Let the time step �t = 0.01.

There is the boundary layer on x = 1 near the exact solution of the equation. We adopt
the TFPM scheme based on G-L approximation (2.11) and the TFPM scheme based on L1
approximation (2.13) and use the classical difference scheme (DM) for numerical solution
of the equation.

In order to compare the advantages and disadvantages of the algorithm in our paper,
the difference scheme is calculated and the error is estimated by L2 norm. We use the
L1-TFPM discrete scheme for the equation. The results are shown in Table 3.

It can be seen from Figs. 3–5 that the method used in this paper can effectively eliminate
the numerical oscillations at the boundary layer. It can be also seen from Tables 1 and 2
that the algorithm has achieved a perfect error accuracy. The convergence rate of the L1-
TFPM method is presented in Table 3.

Example 2 Here we consider the following two-dimensional time-fractional convection-
dominated diffusion equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dγ

t u(x, y, t) – ε2�u + p(x, y, t)ux + q(x, y, t)uy

= f̂ (x, y, t), (x, y) ∈ �, t > 0,

u(x, y, 0) = μ0, (x, y) ∈ �, t > 0,

u(x, y, t) = μ1, (x, y) ∈ ∂�, t > 0,

(5.2)

where (x, y) ∈ � = [0, 1] × [0, 1]. Let ε2 = 3 × 10–3, p(x, y, t) = 1, q(x, y, t) = 1, the exact
solution of the equation is u(x, y, t) = t2+γ y(1 – y)(ex–1/ε2 + (x – 1)e–1/ε2 – x), and f̂ , μ0μ1 are
determined by the exact solution. Take the time step �t = 0.01.

Figure 3 Comparison of GL-TFPM and DM schemes
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Figure 4 L1-TFPM and the exact solution

Figure 5 The GL-TFPM scheme L2-norm error of γ = 0.2, h = 1/3

We employ the TFPM scheme based on G-L approximation (3.18) and the TFPM
scheme based on L1 approximation (3.19) and use the classical difference scheme (DM)
for numerical solution of the equation. Figures 6 and 7 show the three-dimensional figures
of the exact solution, numerical solution of the GL-TFPM and L1-TFPM, respectively. Ta-
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Table 1 The L2-norm error of GL-TFPM

GL-TFPM N γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.8

L2-norm 16 1.8741e–004 6.7410e–004 1.3695e–003 3.0370e–004
32 1.8671e–004 6.6632e–004 1.3575e–003 3.0239e–003
64 1.8294e–004 6.5091e–004 1.3270e–003 2.9375e–003
128 1.7628e–004 6.4179e–004 1.3228e–003 2.0456e–003

Table 2 Comparison of L2-norm error between the difference scheme and the method in the paper

N γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.8

L1-TFPM (L2-norm) 16 3.6293e–006 2.9616e–005 1.4826e–004 1.9736e–003
32 3.5706e–006 2.8942e–005 1.4615e–004 1.2638e–003
64 3.4309e–006 2.8541e–005 1.3479e–004 1.2415e–003
128 3.2558e–006 2.2658e–005 1.2900e–004 2.9737e–004

DM (L2-norm) 16 4.5172e–001 7.8411e–001 4.3837e–001 4.1023e–001
32 4.6780e–001 7.7903e–001 3.5481e–001 3.9876e–001
64 2.7585e–001 7.7663e–001 4.6309e–001 4.7101e–001
128 4.7989e–001 7.6865e–001 1.6723e–001 4.5263e–001

Table 3 The convergence order of the proposed method L1-TFPM as γ = 0.8

The number of nodes The computation error Convergence order

16 1.9736e–003
32 1.2638e–003 0.64
64 1.2415e–003 0.03
128 2.9737e–004 2.06

Figure 6 The exact solution and the solution of GL-TFPM of γ = 0.3, hx = hy = 1/16

ble 4 shows the error comparison between the GL-TFPM scheme and the DM scheme.
Table 4 shows the error of the L1-TFPM.

As can be seen from Figs. 6–7, TFPM can effectively eliminate numerical oscillations.
From Tables 4, 5 and 6, it can be also seen that the algorithm constructed in this paper is
feasible and the error precision is perfectly high.

6 Conclusion
In this paper, the tailored finite point method to solve the time-fractional convection-
dominant diffusion problem with variable coefficient is derived. And the stability based
on L1 approximation and G-L approximation is also analyzed. At the same time, the 1D
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Figure 7 The solution of L1-TFPM of γ = 0.3, hx = hy = 1/16

Table 4 The comparison of error between the difference scheme and GL-TFPM

Nx × Ny γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.8

GL-TFPM 11 × 11 2.2629e–003 3.4251e–003 4.2396e–003 9.3615e–003
21 × 21 1.0380e–003 3.3749e–003 6.1552e–003 9.3210e–003
31 × 31 9.8423e–004 3.1869e–003 5.9977e–003 9.0921e–003
51 × 51 7.6516e–004 1.0529e–003 4.0131e–003 7.6581e–003

DM 11 × 11 7.9724e–001 7.8411e–001 7.7611e–001 7.4650e–001
21 × 21 7.9207e–001 7.7903e–001 7.6215e–001 7.4036e–001
31 × 31 7.8944e–001 7.7663e–001 7.6186e–001 7.2850e–001
51 × 51 7.8073e–001 7.6865e–001 7.5929e–001 7.0866e–001

Table 5 The error of L1-TFPM in the paper

Nx × Ny γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.8

L1-TFPM 11 × 11 2.0811e–003 7.0324e–003 2.0845e–002 5.1065e–002
21 × 21 1.2307e–003 6.9693e–003 3.6682e–003 4.8705e–002
31 × 31 1.1760e–003 6.7579e–003 3.6122e–003 4.8311e–002
51 × 51 9.6585e–004 4.3210e–003 1.8219e–003 5.0135e–003

Table 6 The convergence order of the proposed method L1-TFPM as γ = 0.8

The number of nodes The computation error Convergence order

11 × 11 5.1065e–002
21 × 21 4.8705e–002 0.07
31 × 31 4.8311e–002 0.02
51 × 51 5.0135e–003 3.27

and 2D cases are also numerically simulated. We compare the errors between the proposed
method and the finite difference method. The numerical results show that the calculation
accuracy and convergence result of the proposed method exceed DM. Therefore the tai-
lored finite point method is an effective numerical method that can be used to solve the
time-fractional convection-dominant diffusion problem.
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