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Abstract
The present paper deals with a new different generalization of the Mittag-Leffler
function through q-calculus. We then investigate its remarkable properties like
convergence, recurrence relation, integral representation, q-derivative formula,
q-Laplace transformation, and image formula under q-derivative operator. In addition
to this, we consider some specific cases to give the utilization of our main results.
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1 Introduction
The Swedish mathematician Gösta Mittag-Leffler discovered a special function in 1903
(see [12, 13]) defined as

Eη(u) =
∞∑

m=0

um

�(ηm + 1)m!
,

(
η, u ∈C;�(η) > 0

)
, (1.1)

where �(·) is a classical gamma function [17]. The special function defined in (1.1) is called
the Mittag-Leffler function.

For the very first time, in 1905, Wiman [21] firstly proposed the generalization of the
Mittag-Leffler Eη,κ (u) as follows:

Eη,κ (u) =
∞∑

m=0

um

�(ηm + κ)m!
,

(
η,κ ∈ C;�(η) > 0,�(κ) > 0

)
. (1.2)

Subsequently, the generalized form of series (1.1) and (1.2) was studied by Prabhakar
[16] in 1971:

Eσ
η,κ (u) =

∞∑

m=0

um(σ )m

�(ηm + κ)m!
,

(
η,κ ,σ ∈C;�(η) > 0,�(κ) > 0,�(σ ) > 0

)
, (1.3)

where (σ )m = �(σ+m)
�(σ ) denotes the Pochhammer symbol [17].
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The Mittag-Leffler function plays a vital role in the solution of fractional order differ-
ential and integral equations. It has recently become a subject of rich interest in the field
of fractional calculus and its applications. Nowadays some mathematicians consider the
classical Mittag-Leffler function as the queen function in fractional calculus. An enor-
mous amount of research in the theory of Mittag-Leffler functions has been published
in the literature. For a detailed account of the various generalizations, properties, and ap-
plications of the Mittag-Leffler function, readers may refer to the literature (see [3, 8–
10, 14, 15, 18, 20]).

The q-calculus is the q-extension of the ordinary calculus. The theory of q-calculus oper-
ators has been recently applied in the areas of ordinary fractional calculus, optimal control
problem, in finding solutions of the q-difference and q-integral equations, and q-transform
analysis.

In 2009, Mansoor [11] proposed a new form of q-analogue of the Mittag-Leffler function
given as

eη,κ (u; q) =
∞∑

m=0

um

�q(ηm + κ)
,

(|u| < (1 – q)–η
)
, (1.4)

where η > 0, κ ∈C.
For other analogues of the Mittag-Leffler functions on the quantum time scale by means

of the linear Caputo q-fractional initial value problems and of better imitation to the the-
ory of time scales, we refer the reader to Definition 10 and Remark 11 in [1]. For the Kilbas–
Saigo q-analogue of the Mittag-Leffler function, we refer to [2].

Recently, Sharma and Jain [19] introduced the following q-analogue of the generalized
Mittag-Leffler function:

Eσ
η,κ (u; q) =

∞∑

m=0

(qσ ; q)m

(q; q)m

um

�q(ηm + κ)
, (1.5)

(
η,κ ,σ ∈C;�(η) > 0,�(κ) > 0,�(σ ) > 0, |q| < 1

)
.

2 Prelude
In the theory of q-series (see [6]), for complex λ and 0 < q < 1, the q-shifted factorial is
defined as follows:

(λ; q)m =

⎧
⎨

⎩
1; m = 0,

(1 – λ)(1 – λq) · · · (1 – λqm–1); m ∈N,
(2.1)

which is equivalent to

(λ; q)m =
(λ; q)∞

(λqm; q)∞
(2.2)

and its extension naturally is

(λ; q)η =
(λ; q)∞

(λqη; q)∞
, η ∈C, (2.3)

where the principal value of qη is taken.
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For s, t ∈ R, the q-analogue of the exponent (s – t)m is

(s – t)(m) =

⎧
⎨

⎩
1; m = 0,
∏m–1

i=0 (s – tqi); m �= 0
(2.4)

and connected by the following relationship:

(s – t)(m) = sm(t/s; q)m (s �= 0).

Obviously, its expansion for τ ∈R is as follows:

(s – t)(m) = sm (t/s; q)∞
(qmt/s; q)∞

, (s; q)τ =
(s; q)∞

(sqτ ; q)∞
. (2.5)

Note that

(s – t)(τ ) = sτ (t/s; q)τ .

The q-analogue of binomial coefficient is defined for s, t > 0 as

(
s
t

)

q
=

[s]q!
[t]q![s – t]q!

=
(q; q)s

(q; q)t(q; q)s–t
=

(
s

s – t

)

q
. (2.6)

The definition can be generalized in the following way. For arbitrary complex τ , we have

(
τ

m

)

q
=

(q–τ ; q)m

(q; q)m
(–1)mqτm–(m

2) =
�q(τ + 1)

�q(m + 1)�q(τ – m + 1)
, (2.7)

where �q(u) is the q-gamma function.
The q-gamma and q-beta functions [6] are defined by

�q(u) =
(q; q)∞
(qu; q)∞

(1 – q)1–u (2.8)

for u ∈ R \ {0, –1, –2, –3, . . .}; |q| < 1.
Clearly,

�q(u + 1) = [u]q�q(u) (2.9)

and

Bq(η,κ) =
�q(η)�q(κ)
�q(η + κ)

=
∫ 1

0
uη–1 (qu; q)∞

(qκu; q)∞
dqu =

∫ 1

0
uη–1(uq; q)κ–1 dqu, (2.10)

(�(η),�(κ) > 0
)
.

Also, the q-difference operator and q-integration of a function f (u) defined on a subset
of C are given by [6] respectively:

Dqf (u) =
f (u) – f (uq)

u(1 – q)
(u �= 0, q �= 1), (Dqf )(0) = lim

u→0
(Dqf )(u) (2.11)
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and

∫ u

0
f (t) d(t; q) = u(1 – q)

∞∑

m=0

qmf
(
uqm)

. (2.12)

3 Generalized q-Mittag-Leffler function and its properties
In this section, we generalize definition (1.5) by introducing the following relation for
(qc, q)m:

(qc; q)m

(qσ ; q)m
=

Bq(σ + m, c – σ )
Bq(σ , c – σ )

. (3.1)

Now, we define the generalization of Mittag-Leffler function (1.5) using the above relation
as follows:

E(σ ;c)
η,κ (u; q) =

∞∑

m=0

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(qc; q)m

(q; q)m

um

�q(ηm + κ)
(3.2)

(�(c) > �(σ ) > 0, |q| < 1
)
,

where Bq(·) is the q-analogue of beta function.
We enumerate the relations as particular cases of q-analogue of the generalized Mittag-

Leffler function with other special functions as given below.
(i) On setting c = 1 in (3.2), we obtain

E(σ ;1)
η,κ (u; q) =

∞∑

m=0

(qσ ; q)m

(q; q)m

um

�q(ηm + κ)
= Eσ

η,κ (u; q), (3.3)

which is given by equation (1.5).
(ii) Again, on setting σ = 1 in (3.2), we obtain

E(1;c)
η,κ (u; q) =

∞∑

m=0

um

�q(ηm + κ)
= eη,κ (u; q), (3.4)

the function eη,κ (u; q) can be termed as q-analogue of the Mittag-Leffler function
defined in (1.4).

(iii) On setting η = κ = σ = 1, in (3.2), we obtain

E(1;c)
1,1 (u; q) =

∞∑

m=0

(qc; q)m

(q; q)m
um =

(qcu; q)∞
(q; q)∞

= 1φ0
(
qc; –; q, u

)
, (3.5)

where the function 1φ0(qc; –; q, u) = (1 – u)–c can be termed as q-binomial function.
(iv) On setting c = c + σ , in (3.2), we obtain q-analogue of the Mittag-Leffler function

Eσ
η,κ (u; q) defined in (1.5).

4 Convergence of E(σ ;c)
η,κ (u; q)

Theorem 4.1 The q-analogue of the generalized Mittag-Leffler function defined by the
summation formula (3.2) converges absolutely for |u| < (1 – q)–η provided that 0 < q < 1,
η > 0, �(c) > �(σ ), c,σ ∈ C.
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Proof Writing the summation formula (3.2) as E(σ ;c)
η,κ (u; q) =

∑∞
m=0 sm and by applying the

ratio formula, we find

lim
m→∞

∣∣∣∣
sm+1

sm

∣∣∣∣ =
∣∣∣∣
Bq(σ + m + 1, c – σ )

Bq(σ + m, c – σ )

∣∣∣∣

∣∣∣∣
(qc, q)m+1

(qc, q)m

∣∣∣∣

∣∣∣∣
(q, q)m

(q, q)m+1

∣∣∣∣

∣∣∣∣
�(ηm + κ)

�(ηm + η + κ)
u
∣∣∣∣

= lim
m→∞

∣∣∣∣
(qc+m, q)∞

(qc+m+1, q)∞
(qσ+m, q)∞

(qσ+m+1, q)∞
(qηm+κ , q)∞

(qηm+κ+η, q)∞
(qm+1, q)∞
(qm, q)∞

(1 – q)–ηu
∣∣∣∣

= lim
m→∞

∣∣∣∣
(
1 – qc+m)(

1 – qσ+m)(
1 – qηm+κ

)η (1 – q)–η

(1 – qm)
u
∣∣∣∣

=
∣∣(1 – q)–η

∣∣|u| for 0 < |q| < 1. (4.1)
�

5 Recurrence relations
Theorem 5.1 If η,κ ,σ ∈C, �(η) > 0, �(κ) > 0, �(σ ) > 0, and σ �= c, then

E(σ ;c)
η,κ (u; q) = E(σ+1;c+1)

η,κ (u; q) – uqcE(σ+1;c+1)
η,η+κ (u; q).

Proof Using definition (3.2), we obtain

E(σ ;c)
η,κ (u; q) =

∞∑

m=0

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(qc; q)m

(q; q)m

um

�q(ηm + κ)
,

=
1

�(κ)
+

∞∑

m=1

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(1 – qc)(qc+1; q)m–1

(q; q)m

um

�q(ηm + κ)
.

Since (1 – qc) = (1 – qc+m) – qc(1 – qm), the above equation reduces to

E(σ ;c)
η,κ (u; q) =

1
�(κ)

+
∞∑

m=1

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(1 – qc+m)(qc+1; q)m–1

(q; q)m

um

�q(ηm + κ)

– qc
∞∑

m=1

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(1 – qm)(qc+1; q)m–1

(q; q)m

um

�q(ηm + κ)
.

On replacing m with m + 1 in the second summation, it becomes

E(σ ;c)
η,κ (u; q) =

1
�(κ)

+
∞∑

m=1

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(qc+1; q)m

(q; q)m

um

�q(ηm + κ)

– qc
∞∑

m=1

Bq(σ + m + 1, c – σ )
Bq(σ , c – σ )

(qc+1; q)m

(q; q)m

um+1

�q(ηm + η + κ)
,

which leads to the required result (5.1). �

6 Some elementary properties of the generalized q-Mittag-Leffler function
We begin with the following theorem, which shows the integral representation of the gen-
eralized q-Mittag-Leffler function.
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Theorem 6.1 (Integral representation) For the generalized q-Mittag-Leffler function, we
have

E(σ ;c)
η,κ (u; q) =

1
Bq(σ , c – σ )

∫ 1

0
tσ–1 (tq; q)∞

(tqc–σ ; q)∞
E(c)

η,κ (tu; q) dqt, (6.1)

provided that η,κ ,σ ∈C, �(η) > 0, �(κ) > 0, �(σ ) > 0, and σ �= c.

Proof By the definition of q-analogue of beta function, we can rewrite equation (3.2) as
follows:

E(σ ;c)
η,κ (u; q) =

∞∑

m=0

{∫ 1

0
tσ+m–1 (tq; q)∞

(tqc–σ ; q)∞
dqt

}
1

Bq(σ , c – σ )

× (qc; q)m

�q(ηm + κ)
um

(q; q)m

=
1

Bq(σ , c – σ )

∞∑

m=0

{∫ 1

0
tσ–1 (tq; q)∞

(tqc–σ ; q)∞
dqt

(
(qc; q)m

(q; q)m

tum

�q(ηm + κ)

)}
,

which leads to the required result (6.1). �

Theorem 6.2 For η,κ ,σ ∈ C, �(η) > 0, �(κ) > 0, �(σ ) > 0, c �= σ , then for any m ∈ N, we
have

Dm
q
[
uκ–1E(σ ;c)

η,κ
(
λuη; q

)]
= uκ–m–1E(σ ;c)

η,κ–m
(
λuη; q

)
. (6.2)

Proof By considering the function

f (u) = uκ–1E(σ ;c)
η,κ

(
λuη; q

)
.

In view of (2.11) and using definition (3.2), we obtain

Dq
[
uκ–1E(σ ;c)

η,κ
(
λuη

)]
=

∞∑

m=0

Bq(σ + m + 1, c – σ )
Bq(σ , c – σ )

(qc; q)m

(q; q)m

× λm(1 – qηm+κ–1)
1 – q

uηm+κ–2

�q(ηm + κ)
.

Since, according to the functional equation (2.9), the right-hand side of the above ex-
pression can be written as

∞∑

m=0

Bq(σ + m + 1, c – σ )
Bq(σ , c – σ )

(qc; q)m

(q; q)m

λmuηm+κ–2

�q(ηm + κ – 1)
= uκ–2E(σ ;c)

η,κ–1
(
λuη; q

)
.

Conclusively, we obtain

Dq
[
uκ–1E(σ ;c)

η,κ
(
λuη; q

)]
= uκ–2E(σ ;c)

η,κ–1
(
λuη; q

)
.

Iterating the above result m – 1 times, we obtain the required result (6.2). �
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Theorem 6.3 Let ξ , ζ ,σ ,κ ∈C; �(ξ ),�(κ),�(σ ) > 0; ζ �= 0, –1, –2, . . . , then

∫ 1

0
uξ–1(1 – qu)(ζ–1)E(σ ;c)

η,κ
(
xuρ ; q

)
dqu

=
∞∑

m=0

Bq(σ + m, c – σ )(qc; q)m

Bq(σ , c – σ )(q; q)m

xm�q(ξ + ρm)�q(ξ )
�q(ηm + κ)�q(ξ + ζ + ρm)

. (6.3)

In particular,

∫ 1

0
uξ–1(1 – qu)(ζ–1)E(σ ;c)

η,κ
(
xuρ ; q

)
dqu = �q(ζ )E(σ ;c)

η,κ+ζ (x; q). (6.4)

Proof By using definition (3.2), the left-hand side of equation (6.3) can be written as

∫ 1

0
uξ–1(1 – qu)(ζ–1)

∞∑

m=0

Bq(σ + m, c – σ )(qc; q)m

Bq(σ , c – σ )(q; q)m

uρmxm

�q(ηm + κ)
dqu.

Interchanging the order of summation and integration and in view of equation (2.10),
we obtain the required result (6.3).

In equation (6.3) replacing η = ρ , ξ = κ , then in view of equation (3.2), we can clearly
obtain (6.4). �

Theorem 6.4 (q-Laplace transform) The q-analogue of the generalized Laplace transform
is defined as follows:

qLs
[
E(σ ;c)

η,κ
(
xuρ ; q

)]
=

1
s

∞∑

m=0

Bq(σ + m, c – σ )(qc; q)m

Bq(σ , c – σ )(q; q)m

�q(1 + ρm)
�q(ηm + κ)

(6.5)

×
(

(1 – q)ρx
sρ

)m

provided that κ ,σ , s ∈C; �(β),�(κ),�(s) > 0.

Proof The q-Laplace transform of a suitable function is given by means of the following
q-integral [7]:

qLs
{

f (u)
}

=
1

(1 – q)

∫ s–1

0
Eqsu

q f (u) dqu. (6.6)

The q-extension of the exponential function [6] is given by

Eu
q = 0φ0(–, –; q, –u) =

∞∑

m=0

q(m
2)um

(q; q)m
= (–u; q)∞ (6.7)

and

eu
q = 1φ0(0, –; q, –u) =

∞∑

m=0

um

(q; q)m
=

1
(u; q)∞

, |u| < 1. (6.8)
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By using the above q-exponential series and the q-integral equation (2.12), we can write
equation (6.6) as

qLs
{

f (u)
}

=
(q; q)∞

s

∞∑

j=0

qjf (s–1qj)
(q; q)j

. (6.9)

Using definition (3.2) and the definition of q-Laplace transform, we obtain

qLs
[
E(σ ;c)

η,κ
(
xuρ ; q

)]
=

(q; q)∞
s

∞∑

j=0

qj

(q; q)j

×
∞∑

m=0

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(qσ ; q)m

(q; q)m

[u(s–1qj)σ ]m

�q(ηm + κ)
.

On interchanging the order of summation and writing the j series as 1φ0, which can
be summed up as 1

(q1+ρm ;q)∞ , and after some simplifications, we obtain the required result
(6.5). �

7 Kober-type fractional q-calculus operators
Agarwal [4] established Kober-type fractional q-integral operator in the following manner:

(
Iν,μ

q f
)
(u) =

u–ν–μ

�q(u)

∫ u

0
(u – tq)μ–1tν f (t) dqt, (7.1)

where �(μ) > 0. Also, Garg et al. [5] introduced Kober fractional q-derivative operator
given by

(
Dν,μ

q f
)
(u) =

m∏

i=0

(
[ν + j]q + uqν+jDq

)(
Iν+μ,m–μ

q f
)
(u), (7.2)

where m = [�(μ)] + 1, m ∈N.
The image formulas of the power function um under the above operators [5] are given

as follows:

Iν,μ
q

{
um}

=
�q(ν + m + 1)

�q(ν + μ + m + 1)
um, (7.3)

Dν,μ
q

{
um}

=
�q(ν + μ + m + 1)

�q(ν + m + 1)
um. (7.4)

Theorem 7.1 The following assumption holds true:

Iν,μ
q

{
E(σ ;c)

η,κ (u; q)
}

=
∞∑

m=0

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(qc; q)m

(q; q)m

× �q(ν + m + 1)
�q(ν + μ + m + 1)

um

�q(ηm + κ)
, (7.5)

particularly,

Iν,μ
q E(ν+μ;1)

η,κ (u; q) =
�q(ν + 1)

�q(ν + μ + 1)
E(ν+1;1)

η,κ (u; q), (7.6)

provided that if η, c > 0, κ ,σ , u ∈C; �(κ),�(σ ) > 0.
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Proof The proof of (7.5) can easily be obtained by making use of definition (3.2) and result
(7.3).

Now, on setting σ = ν + μ in definition (3.2), we obtain result (7.6). �

Theorem 7.2 The following assumption holds true:

Dν,μ
q

{
E(σ ;c)

η,κ (u; q)
}

=
∞∑

m=0

Bq(σ + m, c – σ )
Bq(σ , c – σ )

(qc; q)m

(q; q)m

× �q(ν + μ + m + 1)
�q(ν + m + 1)

um

�q(ηm + κ)
, (7.7)

particularly,

Dν,μ
q E(ν+1;1)

η,κ (u; q) =
�q(ν + μ + 1)

�q(ν + 1)
Eν+μ

η,κ (u; q) (7.8)

provided that if η, c > 0, κ ,σ , u ∈C; �(κ),�(σ ) > 0.

Proof The proof of (7.7) can easily be obtained by making use of definition (3.2) and result
(7.4). Similarly, on setting σ = ν + 1 in definition (3.2), we obtain result (7.8). �
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