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Abstract
In this paper, we mainly investigate upper semicontinuity and regularity of attractors
for nonclassical diffusion equations with perturbed parameters ν and the nonlinear
term f satisfying the polynomial growth of arbitrary order p – 1 (p ≥ 2). We extend the
asymptotic a priori estimate method (see (Wang et al. in Appl. Math. Comput.
240:51–61, 2014)) to verify asymptotic compactness and upper semicontinuity of a
family of semigroups for autonomous dynamical systems (see Theorems 2.2 and 2.3).
By using the new operator decomposition method, we construct asymptotic
contractive function and obtain the upper semicontinuity for our problem, which
generalizes the results obtained in (Wang et al. in Appl. Math. Comput. 240:51–61,
2014). In particular, the regularity of global attractors is obtained, which extends and
improves some results in (Xie et al. in J. Funct. Spaces 2016:5340489, 2016; Xie et al. in
Nonlinear Anal. 31:23–37, 2016).
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1 Introduction
In this paper, we consider the following perturbed nonclassical diffusion equation:

ut – ν�ut – �u + f (u) = g in � × [0,∞). (1.1)

The problem is supplemented with the boundary condition

u(x, t)|∂� = 0 for all t ≥ 0 (1.2)

and the initial condition

u(x, t)|t=0 = u0(x), (1.3)

where � is a bounded smooth domain in R
n (n ≥ 3), ν ∈ [0, +∞) is a perturbed parameter,

and g ∈ L2(�) is a given external force term.
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The nonlinearity f ∈ C1 fulfills f (0) = 0 and satisfies the following arbitrary-order poly-
nomial growth condition:

γ1|s|p – β1 ≤ f (s)s ≤ γ2|s|p + β2, p ≥ 2, (1.4)

and the dissipative condition

f ′(s) ≥ –l, (1.5)

where γi, βi (i = 1, 2), and l are positive constants. Let F(s) =
∫ s

0 f (υ) dυ , then there exist
positive constants γ̃i, β̃i (i = 1, 2) such that

γ̃1|s|p – β̃1 ≤ F(s) ≤ γ̃2|s|p + β̃2. (1.6)

This equation appears as an extension of the usual diffusion equation in fluid mechan-
ics, solid mechanics, and heat conduction theory (see, e.g., [4–7]). Equation (1.1) with a
first-order time derivative appearing in the highest-order term is called pseudo-parabolic
or Sobolev–Galpern equation [8–10]. In [4], Aifantis proposed a general frame for estab-
lishing this equation for certain classes of materials such as polymer and high-viscosity
liquids.

Asymptotic behavior similar to Eq. (1.1) has been investigated in many documents dur-
ing the last years (see, e.g., [2, 3, 11–15] and the references therein).When ν = 0, Eq. (1.1)
can be simplified to a usual reaction-diffusion equation, so the dynamical behavior of this
equations has been investigated in many documents (see, e.g., [16–19] and the references
therein). When ν > 0, if the perturbation parameter ν is fixed, many researchers studied
the asymptotic behavior of the solutions under different conditions (see, e.g., [2, 3] and
the references therein). And the long-time behavior of solutions of Eq. (1.1) has been con-
sidered by some researchers (see, e.g., [20, 21] and the references therein).

Therefore, it is natural to examine the limiting behavior of solutions to Eq. (1.1) as ν → 0
(see, e.g., [20–24] and the references therein). For example, in [24], the authors studied
the existence of global attractors in D(A) (generated by strong solutions) and their upper
semicontinuity in H1

0 (�) for Eq. (1.1) with subcritical nonlinearity. In [22], upper semi-
continuity of pullback attractors in H1

0 (�) for Eq. (1.1) with subcritical nonlinearity was
considered. In [23], upper semicontinuity of attractors in H1(Rn) for Eq. (1.1) with sub-
critical nonlinearity was considered. In [20], upper semicontinuity of uniform attractors
for Eq. (1.1) was considered, and the nonlinearity satisfies critical exponential growth con-
ditions. In [21], upper semicontinuity of pullback attractors for Eq. (1.1) was considered,
and the nonlinearity satisfies critical exponential growth conditions. In [25], with memory
lacking instantaneous damping for Eq. (1.1) was considered, and the nonlinearity satisfies
critical exponential growth conditions.

In this paper, our main purpose is to consider upper semicontinuity of attractors for
Eq. (1.1) with the nonlinearity satisfying arbitrary-order polynomial growth condition,
which makes the Sobolev compact embedding no longer valid and brings more difficul-
ties for verifying the corresponding asymptotic compactness of the family of solutions
semigroup {Sν(t)}t≥0, ν ∈ [0, +∞). In the existing literature, many methods are not ap-
plicable to overcome these difficulties (see, e.g., [26–32]). In order to overcome the diffi-
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culty mentioned above, we introduce the asymptotic contractive function method to ver-
ify asymptotic compactness of a family of semigroups for autonomous dynamical systems
(see Theorem 2.2) by referring to the methods and ideas in [2, 3]. Then, by using the new
operator decomposition method, we obtain the corresponding asymptotic regularity of
the solutions for Eq. (1.1), which ensures the existence of asymptotic contractive function
for our problem, which generalizes the results obtained in [1].

For convenience, hereafter let |u| be the modular (or absolute value) of u and | · |p be
the norm of Lp(�) (p ≥ 1). Let V = H1

0 (�) and ‖ · ‖0 = |∇ · |2 be the norm of V . Denote
A = –� with domain D(A) = H2(�) ∩ H1

0 (�). C means any positive constant and Q(·) is
a monotonically increasing function on [0,∞), which may be different from line to line,
even in the same line. Let I ⊂ [0, +∞) be a bounded closed interval.

The main results of this paper are given in the following two theorems, which will be
proved in Sect. 2 and Sect. 3 respectively.

Theorem 1.1 (Global attractors) Let � ⊂ R
n be a bounded domain with smooth bound-

ary, ν ∈ I ⊂ [0, +∞), f satisfy (1.4)–(1.5), and g ∈ L2(�). Then the semigroup {Sν(t)}t≥0,
corresponding to (1.1)–(1.3), has a compact global attractor Aν in H1

0 (�) for each and ev-
ery ν . Moreover, for any ν (> 0) fixed,

Aν ⊂ D(A).

This theorem gives the existence and regularity of the family of global attractors.

Theorem 1.2 (Upper semicontinuity) Let � ⊂ R
n be a bounded domain with smooth

boundary, f satisfy (1.4)–(1.6), and g ∈ L2(�). Let {Aν} be the family of global attractors
given by Theorem 1.1, and then it satisfies, for every ν0 ≥ 0,

lim
ν→ν0

distH1
0
(Aν ,Aν0 ) = 0, (1.7)

where distH1
0

denotes the standard Hausdorff semidistance in H1
0 (�).

It is worth noting that Theorem 1.2 is also interesting in the nonautonomous case (i.e.,
g is dependent on t) (see, e.g., [1, 22, 24]). Obviously the results obtained herein are also
applicable to considering upper semicontinuity of global attractors for Eq. (1.1) with mem-
ory [3] or in unbounded domain [1, 2, 23]. Particularly, the nonlinearity f is assumed to
satisfy the polynomial growth of arbitrary order instead of critical nonlinearity (see, e.g.,
[20, 23]).

The plan of this paper is as follows. In Sect. 2, we recall some basic concepts and results
that are used later. In Sect. 3, by using the ideas in [23], we first verify the asymptotic
regularity of the solutions of Eq. (1.1) with (1.2)–(1.3). Then we prove the existence and
regularity of global attractors for Eq. (1.1). Finally, we obtain the upper semicontinuity of
global attractors for Eq. (1.1) on H1

0 (�).

2 Preliminaries
Definition 2.1 ([2]) Let X be a Banach space and B be a bounded subset of X, I be a
parameter interval. We call a function ϕ(·, ·, ·, ·) asymptotic contractive function on B2 × I2
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if there is a contractive function φ(·, ·, ·, ·) such that, for any ε > 0, any sequences {xn} ⊂ B,
and {νn} ⊂ I , there exist subsequences {xnk } ⊂ {xn} and {νnk } ⊂ {νn} satisfying

ϕ(xnk , xnl ,νnk ,νnl ) ≤ ε + φ(xnk , xnl ,νnk ,νnl )

and

lim
k→∞

lim
l→∞

φ(xnk , xnl ,νnk ,νnl ) = 0.

We denote the set of all asymptotic contractive functions on B2 × I2 by E(B, I).
In the following theorem, we present a new method(or technique) to verify the rela-

tive compactness of a two-parameter sequence for the family of semigroups generated by
evolutionary equations, which will be used in our later discussion.

Theorem 2.2 Let (X,‖ · ‖X) be a Banach space, B be a bounded subset of X, and I be a
parameter interval. Assume further that {Sν(t)}t≥0, ν ∈ I , is a family of semigroups on X
which satisfy the following conditions:

(i) {Sν(t)}t≥0, ν ∈ I , has a bounded uniformly (w.r.t. ν) absorbing set B0 in X ;
(ii) For any ε > 0 and x, y ∈ B0, ν1,ν2 ∈ I , there exist T = T(B0, ε) > 0 and ϕT ∈ E(B0, I)

such that

∥
∥Sν1 (T)x – Sν2 (T)y

∥
∥

X ≤ ε + ϕT (x, y,ν1,ν2).

Then the sequence {Sνn (tn)xn} is precompact in X for any {xn} ⊂ B, {νn} ⊂ I , and tn
n→∞–––––→∞,

where ϕT depends on T .

Proof Let {xn} ⊂ B ⊂ X, {νn} ⊂ I ⊂ [0, +∞), and tn → +∞ as n → ∞. By (i), for every
ν ∈ I , there is tN > 0 such that Sν(tN )x ∈ B0. For all tn > tN , ν ∈ I , and x ∈ B, it follows that

Sν(tn)x = Sν(tn – tN ) · Sν(tN )x = Sν(tn – tN )y = Sν
(
t′
n
)
y,

here y = Sν(tN )x ∈ B0, t′
n = tn – tN > 0, and ν ∈ I . Then we just need to consider this case as

{xn} ⊂ B0.
The following work is to prove the existence of a Cauchy subsequence of {Sνn (tn)xn} by

the diagonal method.
Taking εm > 0 with εm → 0 as m → ∞, for ε1, then there exist T1 = T1(ε1) and ϕT1 ∈

E(B0, I) such that

∥
∥Sν1 (T1)x – Sν2 (T1)y

∥
∥

X ≤ ε1 + ϕT1 (x, y,ν1,ν2) for any x, y ∈ B0,ν1,ν2 ∈ I. (2.1)

Since tn → +∞, for T1 fixed, we assume that tn � T1 is so large that Sνn (tn – T1)xn ∈ B0

for each n ≥ N and νn ∈ I .
Let yk = Sνk (tk – T1)xk , then we have

∥
∥Sνn (tn)xn – Sνm (tm)xm

∥
∥

X

=
∥
∥Sνn (T1) · Sνn (tn – T1)xn – Sνm (T1) · Sνm (tm – T1)xm

∥
∥

X
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=
∥
∥Sνn (T1)yn – Sνm (T1)ym

∥
∥

X

≤ ε1 + ϕT1 (yn, ym,νn,νm). (2.2)

Due to the definition of E(B0, I) and ϕT1 ∈ E(B0, I), we know that there exist a contractive
function φT1 and a subsequence {(y(1)

nk ,ν(1)
nk )} of {(yn,νn)} such that

ϕT1

(
y(1)

nk
, y(1)

nl
,ν(1)

nk
,ν(1)

nl

) ≤ ε1 + φT1

(
y(1)

nk
, y(1)

nl
,ν(1)

nk
,ν(1)

nl

)

and

lim
k→∞

lim
l→∞

φT1

(
y(1)

nk
, y(1)

nl
,ν(1)

nk
,ν(1)

nl

)
= 0. (2.3)

Combined with (2.2) and (2.3), we have

lim
k→∞

sup
p∈N

∥
∥Sν

(1)
nk+p

(
t(1)
nk+p

)
x(1)

nk+p
– Sν

(1)
nk

(
t(1)
nk

)
x(1)

nk

∥
∥

X

≤ lim
k→∞

sup
p∈N

lim sup
l→∞

∥
∥Sν

(1)
nk+p

(
t(1)
nk+p

)
x(1)

nk+p
– Sν

(1)
nl

(
t(1)
nl

, τ
)
x(1)

nl

∥
∥

X

+ lim sup
k→∞

lim sup
l→∞

∥
∥Sν

(1)
nk

(
t(1)
nk

)
x(1)

nk
– Sν

(1)
nl

(
t(1)
nl

)
x(1)

nl

∥
∥

X

≤ ε1 + lim
k→∞

sup
p∈N

lim
l→∞

ϕT1

(
y(1)

nk+p
, y(1)

nl
,ν(1)

nk+p
,ν(1)

nl

)

+ ε1 + lim
k→∞

lim
l→∞

ϕT1

(
y(1)

nk
, y(1)

nl
,ν(1)

nk
,ν(1)

nl

)

≤ 5ε1. (2.4)

Therefore, there exists N1 such that

∥
∥Sν

(1)
nk

(
t(1)
nk

)
x(1)

nk
– Sν

(1)
nl

(
t(1)
nl

)
x(1)

nl

∥
∥

X ≤ 6ε1 for all k, l ≥ N1. (2.5)

By induction, for each m ≥ 1, there exists a subsequence {Sν
(m+1)
nk (t(m+1)

nk )x(m+1)
nk } of

{Sν
(m)
nk (t(m)

nk )x(m)
nk } and certain Nm+1 such that, for all k, l ≥ Nm+1,

∥
∥Sν

(m+1)
nk

(
t(m+1)
nk

)
x(m+1)

nk
– Sν

(m+1)
nl

(
t(m+1)
nl

)
x(m+1)

nl

∥
∥

X ≤ 6εm+1 (2.6)

holds. Next, we consider the diagonal subsequence {Sν
(k)
nk (t(k)

nk )x(k)
nk }. Since for each m ∈ N,

{Sν
(k)
nk (t(k)

nk )x(k)
nk } is a subsequence of {Sν

(m)
nk (t(m)

nk )x(m)
nk }, then

∥
∥Sν

(k)
nk

(
t(k)
nk

)
x(k)

nk
– Sν

(l)
nl

(
t(l)
nl

)
x(l)

nl

∥
∥

X ≤ 6εm for all k, l ≥ max{m, Nm}, (2.7)

which, combined with εm → 0 as m → ∞, implies that {Sν
(k)
nk (t(k)

nk )x(k)
nk } is a Cauchy sequence

in X. This shows that {Sνn (tn)xn} is precompact in X. Then the proof is complete. �

For more details of the standard theory of global attractors, we recommend the readers
to refer to [33]. Now, we present the following theorem to verify upper semicontinuity of
global attractors in autonomous dynamical systems.
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Theorem 2.3 ([20]) Let X, Y be two Banach spaces with X ↪→ Y and I ⊂ [0, +∞) be a
bounded closed interval. Assume that, for any ν ∈ I , the family of semigroups {Sν(t)}t≥0

possesses a bounded uniformly (w.r.t. ν) absorbing set B0 in X. If the following assumptions
hold true:

(1) {Sν(t)}t≥0 has a global attractor Aν in X for every ν ∈ I ;
(2) For any ε > 0, x, y ∈ B0, ν1,ν2 ∈ I , there exist T = T(B0, ε) > 0 and ϕT ∈ E(B0, I) such

that

∥
∥Sν1 (T)x – Sν2 (T)y

∥
∥

X ≤ ε + ϕT (x, y,ν1,ν2);

(3) For any t ≥ 0, any sequences {νn} ⊂ I and {xn} ⊂ X with νn
n→∞–––––→ν0 and xn

n→∞–––––→x0 in X ,

Sνn (t)xn → Sν0 (t)x0, in Y .

Then

lim
ν→ν0

distX(Aν ,Aν0 ) = 0.

Lemma 2.4 ([33]) Let X ⊂⊂ H ⊂ Y be Banach spaces with X reflexive. Suppose that un is
a sequence which is uniformly bounded in L2(0, T ; X) and dun/dt is uniformly bounded in
Lp(0, T ; Y ) for some p > 1. Then there exists a subsequence of un that converges strongly in
L2(0, T ; H).

3 Global attractors in H1
0(�)

3.1 A priori estimates
We start with the following general existence and uniqueness of solutions for the nonclas-
sical diffusion equations which can be obtained by the Galerkin approximation methods
(see [33] for more details), here we only formulate the results.

Lemma 3.1 Provided that f satisfies (1.4)–(1.5). Then, for any initial data u0 ∈ V and any
T > 0, there exists a unique solution u(t) for problem (1.1)–(1.3). Moreover, we have the
following Lipschitz continuity: For any ui

0 ∈ V , denote by ui(t) (i = 1, 2) the corresponding
solutions of Eq. (1.1), then for all 0 ≤ t ≤ T

∣
∣u1(t) – u2(t)

∣
∣2
2 + ν

∥
∥u1(t) – u2(t)

∥
∥2

0 ≤ Ceκ(T–τ )(∥∥u1
0 – u2

0
∥
∥2

0

)
, (3.1)

where κ > 0 is a constant.

By Lemma 3.1, we can define a semigroup Sν(t) in V as follows:

Sν(t) : R+ → V ,

t → u(t) = Sν(t)u0,

and {Sν(t)}t≥0 is a continuous semigroup on V .
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Lemma 3.2 ([2]) Let (1.4)–(1.5) hold, B be any bounded subset in V . Then there exist pos-
itive constants α and k0, which are independent of ν , such that

|u|22 + ν‖u‖2
0 ≤ Q

(‖u0‖0
)
e–αt + k0 (3.2)

and
∫ t+1

t

(∥∥u(s)
∥
∥2

0 +
∣
∣u(s)

∣
∣p
p

)
ds ≤ Q

(‖u0‖0
)
e–αt + k0 (3.3)

hold for any u0 ∈ B and t ≥ 0.

Lemma 3.3 Let (1.4)–(1.5) hold, then there exists positive ρ0, which depends on ‖g‖2 and
does not rely on ν , such that for any bounded subset B ⊂ V , there is T0 = T0(‖B‖V ) such
that

∥
∥Sν(t)u0

∥
∥2

0 +
∣
∣Sν(t)u0

∣
∣p
p ≤ ρ0 for all t ≥ T0 and all u0 ∈ B. (3.4)

Proof Multiplying (1.1) by ut + u and then integrating over �, we obtain that

d
dt

(
1
2
|u|22 +

1 + ν

2
‖u‖2

0 +
∫

�

F(u) –
∫

�

gu
)

+ |ut|22 + ν‖ut‖2
0 + ‖u‖2

0

= –
〈
f (u), u

〉
+ 〈g, u〉. (3.5)

Observe that

〈
f (u), u

〉
=

∫

�

f (u)u ≥ γ1|u|pp – β1 mes(�). (3.6)

Using the Hölder inequality, we have

〈g, u〉 ≤ 1√
λ1

|g|2‖u‖0 ≤ 1
2λ1

|g|22 +
1
2
‖u‖2

0, (3.7)

where λ1 is the first eigenvalue of –� on H1
0 (�).

Let

E(t) =
1
2
|u|22 +

1 + ν

2
‖u‖2

0 +
∫

�

F(u) –
∫

�

gu.

Combining with (3.6) and (3.7), then (3.5) can be reformulated as follows:

d
dt

E(t) +
1
2
‖u‖2

0 + γ1|u|pp +
1
2
|ut|22 +

ν

2
‖ut‖2

0

≤ β1 mes(�) +
1

2λ1
|g|22. (3.8)

By (1.6), we obtain that

E(t) ≤ |u|22 +
1 + ν

2
‖u‖2

0 + γ̃2|u|pp + β̃2 mes(�) +
1
2
|g|22

≤ α0
(|u|22 + ‖u‖2

0 + |u|pp
)

+ β̃2 mes(�) +
1
2
|g|22, (3.9)
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where α0 = max{1, 1+ν
2 , γ̃2} ≥ 1, and

E(t) ≥ 1
4
|u|22 +

1 + ν

2
‖u‖2

0 + γ̃1|u|pp – β̃1 mes(�) – |g|22
≥ β0

(|u|22 + ‖u‖2
0 + |u|pp

)
– β̃1 mes(�) – |g|22, (3.10)

where β0 = min{ 1
4 , γ̃1} is independent of ν .

According to (3.9), we get

d
dt

E(t) + α1E(t) ≤ C
(
1 + |g|22

)
, (3.11)

where α1 = λ1 min{ 1
2 ,γ1}

α0(1+λ1) .
By Lemma 3.2, for any 0 < δ < 1, there is t� ∈ (0, δ) such that

∣
∣u

(
t�

)∣
∣2
2 +

∥
∥u

(
t�

)∥
∥2

0 +
∣
∣u

(
t�

)∣
∣p
p ≤ Q

(‖u0‖0
)

+ k0. (3.12)

Applying Gronwall’s lemma to (3.11), we obtain that

E(t + δ) ≤ e–α1(t+δ–t�)E
(
t�

)
+ C

(
1 + |g|22

)
(3.13)

holds for any t > 0.
Thanks to (3.9) and (3.10), we estimate that

∣
∣u(t + δ)

∣
∣2
2 +

∥
∥u(t + δ)

∥
∥2

0 +
∣
∣u(t + δ)

∣
∣p
p

≤ Q
(‖u0‖0

)
e–α0t +

α0

β0
k0 + C

(
1 + |g|22

)
. (3.14)

Setting

ρ0 =
2α0

β0
k0 + 2C

(
1 + |g|22

)
, T0 = 1 +

1
α0

ln
2Q(‖u0‖0)

ρ0
,

we get

∣
∣u(t)

∣
∣2
2 +

∥
∥u(t)

∥
∥2

0 +
∣
∣u(t)

∣
∣p
p ≤ ρ0 (3.15)

for all t ≥ T0. The proof is complete. �

Combining with (3.1) and taking δ → 0 for (3.14), we know that, for any ν ∈ I , Sν maps
the bounded set of V into a bounded set for all t ≥ 0, and there is the following corollary.

Corollary 3.4 Let (1.4)–(1.5) hold, then for any bounded (in V) subset B and any u0 ∈ B,
the following estimate

∣
∣u(t)

∣
∣2
2 +

∥
∥u(t)

∥
∥2

0 +
∣
∣u(t)

∣
∣p
p ≤ Q

(‖u0‖0
)
e–α0t +

1
2
ρ0

holds for any t > 0.
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Lemma 3.5 (Bounded uniformly absorbing set) Let (1.4)–(1.5) hold and g ∈ L2(�). There
exists a bounded uniformly (w.r.t. ν ∈ I) absorbing set B0 ⊂ V for the semigroup {Sν(t)|ν ∈
[0, +∞)}t≥0 associated with Eq. (1.1), that is, for any bounded subset B ⊂ V and ν ∈ I , there
exists T0 = T0(B) ≥ 0 such that

⋃

ν≥0

Sν(t)B ⊂ B0

holds for all t ≥ T0.

For brevity, later in this article, let B0 be the bounded uniformly (w.r.t. ν) absorbing set
obtained in Lemma 3.3, i.e.,

B0 =
{

u ∈ V : |u|22 + ‖u‖2
0 + |u|pp ≤ ρ0

}
. (3.16)

Lemma 3.6 Let (1.4)–(1.5) hold and B be any bounded subset B ⊂ V . There is a positive
constant K0; for any u0 ∈ B, the following estimate

∫ +∞

0

(∣∣ut(s)
∣
∣2
2 + ν

∥
∥ut(s)

∥
∥2

0

)
ds ≤K0

holds for any t ≥ 0.

Proof Multiplying (1.1) by ut and integrating over �, we have

d
dt

(
1
2
‖u‖2

0 +
∫

�

F(u) +
∫

�

gu
)

+ |ut|22 + ν‖ut‖2
0 = 0. (3.17)

Set

H(t) =
1
2
∥
∥u(t)

∥
∥2

0 +
∫

�

F
(
u(t)

)
+

∫

�

gu(t).

For any t ≥ 0, we integrate (3.17) to t from 0 to t, then we have

H(t) +
∫ t

0

[∣∣ut(s)
∣
∣2
2 + ν

∥
∥ut(s)

∥
∥2

0

]
ds = H(0). (3.18)

According to Lemma 3.5, Corollary 3.4, and (3.9)–(3.10), we know that H(0) is bounded
and H(t) ≥ –β̃1 mes(�) – |g|2|u(t)|2, then there exists a positive constant K0 independent
of ν such that the conclusion is true. �

Lemma 3.7 There is a positive constant K1; for any t > 0, the following estimate

∣
∣ut(t)

∣
∣2
2 + ν

∥
∥ut(t)

∥
∥2

0 +
∫ +∞

0

∥
∥ut(s)

∥
∥2

0 ds ≤K1

holds.
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Proof Differentiating about t for Eq. (1.1), we obtain

utt – �ut – ν�utt + f ′(u)ut = 0. (3.19)

Multiplying (3.19) by ut and then integrating over � leads to

d
dt

(|ut|22 + ν‖ut‖2
0
)

+ ‖ut‖2
0 ≤ l|ut|22. (3.20)

By Lemma 3.6, for any 0 < δ < 1, there is s� ∈ (0, δ) such that

∣
∣ut

(
s�

)∣
∣2
2 + ν

∥
∥ut

(
s�

)∥
∥2

0 ≤K0. (3.21)

Now, we integrate (3.20) about t from s� to t + δ (t > 0), we obtain

∣
∣ut(t + δ)

∣
∣2
2 + ν

∥
∥ut(t + δ)

∥
∥2

0 ≤ ∣
∣ut

(
s�

)∣∣2
2 + ν

∥
∥ut

(
s�

)∥∥2
0 + l

∫ t

0

∣
∣ut(s)

∣
∣2
2 ds.

Combine with Lemma 3.6 and Corollary 3.4, and let δ → 0, then for any t > 0 it follows
that

∣
∣ut(t)

∣
∣2
2 + ν

∥
∥ut(t)

∥
∥2

2 ≤K0 + l
(
Q

(‖u0‖0
)

+ ρ0
)
. (3.22)

Integrate (3.20) about t from s to t again, and let t → ∞, s → 0+, it gets

∫ +∞

0

∥
∥ut(s)

∥
∥2

0 ds ≤K0 + l
(
Q

(‖u0‖0
)

+ ρ0
)
. (3.23)

Setting

K1 = 2K0 + 3l
(
Q

(‖u0‖0
)

+ ρ0
)

gives that

∣
∣ut(t)

∣
∣2
2 + ν

∥
∥ut(t)

∥
∥2

0 +
∫ +∞

0

∥
∥ut(s)

∥
∥2

0 ds ≤K1

holds for any t > 0. �

3.2 The asymptotic regularity
In the following, we prove the asymptotic regularity of solutions for system (1.1) with
initial-boundary conditions(1.2)–(1.3) in V by using a new decomposition method (or
technique).

In order to obtain the asymptotic regularity estimates later, we decompose the solution
Sν(t)u0 = u(t) into the following sum:

Sν(t)u0 = Sν
1(t)u0 + Kν(t)u0, (3.24)
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where Sν
1(t)u0 = v(t) and Kν(t)u0 = ω(t) are solutions of the following equations respec-

tively:

⎧
⎨

⎩

vt – �v – ν�vt + f (u) – f (ω) + μv = 0,

v(0) = u0, v|∂� = 0,
(3.25)

and
⎧
⎨

⎩

ωt – �ω – ν�ωt + f (ω) + μω = g + μu,

ω(0) = 0, ω|∂� = 0,
(3.26)

where the constant μ ≥ 2l and l are from (1.5).

Remark 3.8 It is easy to verify the existence and uniqueness of the decomposition (3.24)
corresponding to (3.25) and (3.26).

In fact, u is the unique solution of Eq. (1.1) with (1.2)–(1.3), thus g +μu ∈ L2(�) is known.
The existence and uniqueness of solutions ω corresponding to Eq. (3.26) can be obtained
by the Galerkin approximation method (see [33]). By the superposition principle of so-
lutions of partial differential equations, the existence and uniqueness of solutions v for
Eq. (3.25) can be proved.

We use a priori estimate to get the asymptotic regularity of solutions for Eq. (1.1) with
(1.2)–(1.3), which are the basis of our analysis. The proof is similar to [2], but the estimate
about ‖v‖0 is not mentioned, only ν‖v‖0.

Lemma 3.9 Let f satisfy (1.4)–(1.6) and B0 be the bounded absorbing set (see Lemma 3.5).
Assume that Kν(t)u0 = ω(t) is the solutions of (3.26) with u0 ∈ B0. Then there exists a posi-
tive constant ρ1 which depends only on |g|2 but does not rely on ν such that

∥
∥ω(t)

∥
∥2

0 + ν
∥
∥ω(t)

∥
∥2

1 ≤ ρ1

and

∫ t+1

t

∥
∥ω(s)

∥
∥2

1 ds ≤ ρ1

hold for all t > 0.

Proof Multiplying (3.26) by –�ω(t) and integrating in �, we have

d
dt

(‖ω‖2
0 + ν‖ω‖2

1
)

+ (μ – l)‖ω‖2
0 + ‖ω‖2

1 ≤ μ2

μ – l
‖u‖2

0 + |g|22. (3.27)

Let α2 = min{μ – l, 1
ν
} as ν > 0, or else α2 = μ – l, then we can rewrite (3.27) as follows:

d
dt

(‖ω‖2
0 + ν‖ω‖2

1
)

+ α2
(‖ω‖2

0 + ν‖ω‖2
1
) ≤ μ2

μ – l
‖u‖2

0 + |g|22.
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Applying Gronwall’s inequality and Corollary 3.4, we obtain

∥
∥ω(t)

∥
∥2

0 + ν
∥
∥ω(t)

∥
∥2

1 ≤ 1
α2

(

|g|22 +
μ2

μ – l
Q(ρ0)

)

, (3.28)

where the initial data (ω(0) = 0) is used.
Now integrating (3.27) between t and t + 1, we get

∫ t+1

t

∥
∥ω(s)

∥
∥2

1 ds ≤ μ2

μ – l

∫ t+1

t

∥
∥u(s)

∥
∥2

0 ds + |g|22 +
∥
∥ω(t)

∥
∥2

0 + ν
∥
∥ω(t)

∥
∥2

1. (3.29)

Set

ρ1 =
1 + α2

α2

(

|g|22 +
μ2

μ – l
Q(ρ0)

)

.

From (3.28) and (3.29) it follows that

∥
∥ω(t)

∥
∥2

0 + ν
∥
∥ω(t)

∥
∥2

1 ≤ ρ1 (3.30)

and

∫ t+1

t

∥
∥ω(s)

∥
∥2

1 ds ≤ ρ1

hold for all t > 0. �

Corollary 3.10 There is a positive constant K2, the following estimate

∣
∣ωt(t)

∣
∣2
2 + ν

∥
∥ωt(t)

∥
∥2

0 +
∫ +∞

0

∥
∥ωt(s)

∥
∥2

0 ds ≤K2

holds for all t > 0.

Lemma 3.11 Let f satisfy (1.4)–(1.5) and B be any bounded set of V . Assume that Sν
1(t)u0 =

v(t) is the solutions of (3.25) with the initial data v(0) = u0 ∈ B. Then

lim
t→∞

(∣
∣v(t)

∣
∣2
2 +

∥
∥v(t)

∥
∥2

0

)
= 0 (3.31)

holds for any ν ∈ I .

Proof Multiplying (3.25) by v(t) and integrating in �, we have

d
dt

(|v|22 + ν‖v‖2
0
)

+ 2‖v‖2
0 + 2(μ – l)|v|22 ≤ 0. (3.32)

Recall

α3 =

⎧
⎨

⎩

1
ν

, ν ≥ 1
μ–l ,

μ – l, ν < 1
μ–l .
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Rewrite (3.32) as follows:

d
dt

(|v|22 + ν‖v‖2
0
)

+ α3
(|v|22 + ν‖v‖2

0
) ≤ 0.

Applying Gronwall’s inequality, we obtain

∣
∣v(t)

∣
∣2
2 + ν

∥
∥v(t)

∥
∥2

0 ≤ Q
(‖u0‖0

)
e–α3t . (3.33)

Now, integrating (3.32) between 0 and ∞, we get

∫ ∞

0

∥
∥v(s)

∥
∥2

0 ds ≤ 2
(|u0|22 + ν‖u0‖2

0
)
. (3.34)

Furthermore, ‖v(t)‖2
0 ≤ 2(‖u‖2

0 + ‖ω‖2
0) is boundary for any t ≥ 0. Hence, it follows that

lim
t→∞

∥
∥v(t)

∥
∥2

0 = 0,

and by combining with (3.33) we get

lim
t→∞

(∣∣v(t)
∣
∣2
2 +

∥
∥v(t)

∥
∥2

0

)
= 0

holds for all ν ∈ I . �

Proof of Theorem 1.1 Let ui(t) = Sν(t)ui
0 (i = 1, 2) be the solutions to Eq. (1.1) with the

parameters ν and the initial data ui
0(x) ∈ B (i = 1, 2) respectively. By (3.24),

ui(t) = Sν(t)ui
0 = Sν

1(t)ui
0 + Kν(t)ui

0 = vi(t) + ωi(t).

We get

∥
∥Sν(t)u1

0 – Sν(t)u2
0
∥
∥2

0 ≤ 2
(∥∥v1(t) – v2(t)

∥
∥2

0 +
∥
∥ω1(t) – ω2(t)

∥
∥2

0

)

and

lim
t→∞

∥
∥v1(t) – v2(t)

∥
∥2

0 = 0.

For any ν ∈ I , we have

d
dt

∥
∥ω1(t) – ω2(t)

∥
∥2

0 = 2
∫

�

∇(
ω1(t) – ω2(t)

) · ∇(
∂tω1(t) – ∂tω2(t)

)

≤ ∥
∥ω1(t) – ω2(t)

∥
∥

0

∥
∥∂tω1(t) – ∂tω2(t)

∥
∥

0. (3.35)

Now, integrating (3.35) for t from s to T (0 < s < T ), we have that

∥
∥ω1(T) – ω2(T)

∥
∥2

0

≤ ∥
∥ω1(s) – ω2(s)

∥
∥2

0 +
∫ T

s

∥
∥ω1(t) – ω2(t)

∥
∥

0

∥
∥∂tω1(t) – ∂tω2(t)

∥
∥

0 dt
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≤ ∥
∥ω1(s) – ω2(s)

∥
∥2

0 +
[∫ T

0

∥
∥ω1(t) – ω2(t)

∥
∥2

0 dt
] 1

2

×
[∫ T

0

∥
∥∂tω1(t) – ∂tω2(t)

∥
∥2

0 dt
] 1

2
. (3.36)

Combining with Lemma 3.9 and Corollary 3.10, integrating (3.36) over s ∈ (0, T], and di-
viding T by two sides of inequality, we obtain

∥
∥ω1(T) – ω2(T)

∥
∥2

0 ≤ CT

∫ T

0

∥
∥ω1(t) – ω2(t)

∥
∥2

0 dt +
K2

T

= CT

∫ T

0

∥
∥Kν(t)u1

0 – Kν(t)u2
0
∥
∥2

0 dt +
K2

T

= ϕT
(
u1

0, u2
0,ν,ν

)
, (3.37)

where CT = T/4 + 1/T .
Combining with Lemma 3.9 and Corollary 3.10, applying Lemma 2.4, then for any ν ∈ I

fixed, the sequence {Kν(tn)un
0}∞n=1 is relatively compact in L2(0, T ; H1

0 (�)). Then the semi-
group {Sν(t)}t≥0 is asymptotically compact in H1

0 (�). Then, obviously, by Theorem 2.2 and
letting νn = ν for any n ∈N, we obtain the global attractor Aν , which is invariant, compact
in H1

0 (�), and attracts every bounded subset of H1
0 (�). Furthermore, by Lemma 3.9,

Aν ⊂ D(A)

holds for any ν > 0. The proof is complete. �

4 Upper semicontinuity in H1
0(�)

Lemma 4.1 Let f satisfy (1.4)–(1.5) and B0 be the bounded uniformly absorbing set of the
semigroup {Sν(t)}t≥0 in V (from Lemma 3.5). Assume that {νn}∞n=0 ⊂ I with νn

n→∞–––––→ν0 and
xn

n→∞–––––→x0 in V . Then we get

Sνn (t)xn
n→∞–––––→Sν0 (t)x0 in L2(�)

holds for all t > 0 and ν0 ∈ I .

Proof Let un(t), u0(t) be the solutions to Eq. (1.1) with the parameters ν = νn, ν = ν0 and
the initial data xn, x0 ∈ V (n = 1, 2, . . .) respectively, that is,

un(t) = Sνn (t)xn and u0(t) = Sν0 x0.

Setting ωn(t) = un(t) – u0(t), then ωn(t) satisfies the following equations:

ωnt – �ωn – ν0�ωnt + f
(
un) – f

(
u0) = (νn – ν0)�un

t . (4.1)

The problem is supplemented with the boundary condition

ωn(x, t)|∂� = 0 for all t ≥ 0
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and the initial condition

ωn|t=0 = xn – x0.

Multiplying (4.1) by ωn, integrating in �, and arranging, we have

d
dt

(|ωn|22 + ν0‖ωn‖2
0
)

+ ‖ωn‖2
0 ≤ 2l

(|ωn|22 + νn‖ωn‖2
0
)

+ |νn – ν0|2
∥
∥un

t
∥
∥2

0. (4.2)

Using Gronwall’s lemma and Lemma 3.7, it follows that

∣
∣Sνn (t)xn – Sν0 (t)x0

∣
∣2
2 ≤ CK1 e2lt(‖xn – x0‖2

0 + |νn – ν0|2
)
.

Let n → ∞, we get the desired result immediately. The proof is complete. �

Lemma 4.2 Under the assumptions of Lemma 4.1, let B0 be the bounded uniformly absorb-
ing set of the family of semigroups {Sν(t)}t≥0 in V (which is from Lemma 3.5). Then, for any
{νn}∞n=1 ⊂ [0, +∞), {tn}∞n=1 ⊂ [0, +∞), {un

0}∞n=1 ⊂ B0, the sequence {Sνn (tn)un
0}∞n=1 is relatively

compact in V .

Proof Let ui(t) = Sνi (t)ui
0 (i = 1, 2) be the solutions to Eq. (1.1) with the parameters ν = νi

and the initial data ui
0(x) ∈ B0 (i = 1, 2) respectively. By (3.24), ui(t) = Sνi (t)ui

0 = Sνi
1 (t)ui

0 +
Kνi (t)ui

0 = vi(t) + ωi(t) (i = 1, 2), we get

∥
∥Sν1 (t)u1

0 – Sν2 (t)u2
0
∥
∥2

0 ≤ 2
(‖v1 – v2‖2

0 + ‖ω1 – ω2‖2
0
)

(4.3)

and

lim
t→∞

∥
∥vi(t)

∥
∥2

0 = 0. (4.4)

Then, for any ε > 0, there is T0, for any t ≥ T0 it follows that

∥
∥vi(t)

∥
∥2

0 ≤ ε/2 and
K2

4t
≤ ε. (4.5)

Setting θ = ω1(t) – ω2(t), then it follows that

d
dt

∥
∥θ (t)

∥
∥2

0 =
d
dt

∫

�

∇θ (t) · ∇θ (t) = 2
∫

�

∇θ · ∇θt ≤ ∥
∥θ (t)

∥
∥

0

∥
∥θt(t)

∥
∥

0. (4.6)

Now integrating (4.6) between s and T (T0 < s < T ), we obtain

∥
∥θ (T)

∥
∥2

0 ≤ ∥
∥θ (s)

∥
∥2

0 +
∫ T

s

∥
∥θ (t)

∥
∥

0

∥
∥θt(t)

∥
∥

0 dt

≤ ∥
∥θ (s)

∥
∥2

0 +
[∫ T

0

∥
∥θ (t)

∥
∥2

0 dt
] 1

2
[∫ T

0

∥
∥θt(t)

∥
∥2

0 dt
] 1

2
. (4.7)



Xie et al. Advances in Difference Equations         (2021) 2021:75 Page 16 of 17

Integrating (4.7) over s ∈ [0, T] and dividing T by two sides of inequality, then

∥
∥θ (T)

∥
∥2

0 ≤ 1
T

∫ T

0

∥
∥θ (s)

∥
∥2

0 ds +
[∫ T

0

∥
∥θ (t)

∥
∥2

0 dt
] 1

2
[∫ T

0

∥
∥θt(t)

∥
∥2

0 dt
] 1

2

≤
[∫ T

0

∥
∥θ (t)

∥
∥2

0 dt
] 1

2
[

1
T

(∫ T

0

∥
∥θ (t)

∥
∥2

0 dt
) 1

2
+

(∫ T

0

∥
∥θt(t)

∥
∥2

0 dt
) 1

2
]

≤ (T + 1/T)
∫ T

0

∥
∥ω1(t) – ω2(t)

∥
∥2

0 dt +
K2

4T
(4.8)

and

∫ T

0

∥
∥ω1(t) – ω2(t)

∥
∥2

0 dt

≤ 2
∫ T

0

(∥∥Kν1 (t)u1
0 – Kν1 (t)u2

0
∥
∥2

0 +
∥
∥Kν1 (t)u2

0 – Kν2 (t)u2
0
∥
∥2

0

)
dt

≤ 2
∫ T

0

∥
∥Kν1 (t)u1

0 – Kν1 (t)u2
0
∥
∥2

0 dt + |ν1 – ν2|
∫ T

0

(∥
∥ω1t(t)

∥
∥2

0 +
∥
∥u1t(t)

∥
∥2

0

)
dt.

Then

∥
∥ω1(T) – ω2(T)

∥
∥2

0 ≤ ε + φT
(
u1

0, u2
0,ν1,ν2

)
. (4.9)

Now we verify that φT (u1
0, u2

0,ν1,ν2) is a contractive function on B0 × B0. Let {νn}∞n=1 ⊂
I and {un

0}∞n=1 ⊂ B0 be fixed, combining with Lemma 3.9, Corollary 3.10, and apply-
ing Lemma 2.4, then for any νk fixed, the sequence {Kνk un

0}∞n=1 is relatively compact in
L2(0, T ; H1

0 (�)). In light of I ⊂ R
+ being a bounded closed set, then {νn}∞n=1 is also rel-

atively compact. From Theorem 2.2, the sequence {Kνn un
0}∞n=1 is relatively compact on

L2([0, T]; H1
0 (�)). The proof is finished. �

Proof of Theorem 1.2 From Theorem 1.1, Lemma 4.1, and Lemma 4.2, we know that the
conditions of Theorem 2.3 are all satisfied. The proof is complete. �
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