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Abstract
The novel coronavirus (SARS-CoV-2), or COVID-19, has emerged and spread at fast
speed globally; the disease has become an unprecedented threat to public health
worldwide. It is one of the greatest public health challenges in modern times, with no
proven cure or vaccine. In this paper, our focus is on a fractional order approach to
modeling and simulations of the novel COVID-19. We introduce a fractional type
susceptible–exposed–infected–recovered (SEIR) model to gain insight into the
ongoing pandemic. Our proposed model incorporates transmission rate, testing rates,
and transition rate (from asymptomatic to symptomatic population groups) for a
holistic study of the coronavirus disease. The impacts of these parameters on the
dynamics of the solution profiles for the disease are simulated and discussed in detail.
Furthermore, across all the different parameters, the effects of the fractional order
derivative are also simulated and discussed in detail. Various simulations carried out
enable us gain deep insights into the dynamics of the spread of COVID-19. The
simulation results confirm that fractional calculus is an appropriate tool in modeling
the spread of a complex infectious disease such as the novel COVID-19. In the
absence of vaccine and treatment, our analysis strongly supports the significance
reduction in the transmission rate as a valuable strategy to curb the spread of the
virus. Our results suggest that tracing and moving testing up has an important
benefit. It reduces the number of infected individuals in the general public and
thereby reduces the spread of the pandemic. Once the infected individuals are
identified and isolated, the interaction between susceptible and infected individuals
diminishes and transmission reduces. Furthermore, aggressive testing is also highly
recommended.

Keywords: COVID-19 pandemic; Transmission rate; Fractional calculus; Modeling;
Simulations

1 Introduction
Coronavirus, also known as COVID-19, has suddenly become a global pandemic that has
overtaken the world by surprise, has become “cancerous” cutting across economic, pol-
itics, and social issues. The virus is said to have originated from Wuhan, a city in Hubei
Province in China, estimated to occur around late December, 2019. What was thought
to last for a few weeks is now considered a situation that could stay around for months
or even years. COVID-19 has grown beyond the expectations of everyone. World Health
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Figure 1 Concentration of COVID-19 cases worldwide as on January 30, 2020

Organization (WHO) declared COVID-19 a public epidemic disease in January 30, 2020,
and in less than two months it was declared a pandemic with a great concern. Everyday
new things are being discovered synthetically and scientifically about COVID-19. Econ-
omy has been shut down and business owners are paying big prices. As on July 10, 2020,
based on the report from Johns Hopkins University & Medicine: Coronavirus Resources
Center, there are over 12.4 million COVID-19 cases worldwide with over 550,000 deaths.
According to CDC in the USA, the total number of cases in the USA is over 3.1 million
with over 134,000 deaths. There are more than 210 countries involved. This is definitely
an invisible enemy with no boundaries, and very urgent intervention is needed to under-
stand the disease. The maps shown in Figs. 1 and 2 display the quick emergence and rapid
spread of the COVID-19 with a very high level of severity.

The novel COVID-19 is an infectious disease that is caused by the severe acute res-
piratory syndrome virus 2 (SARS-CoV-2) belonging to the class of SARS. Though the
SARS coronavirus (SARS-CoV) outbreak that happened in 2003 was fatal to 9% of in-
fected individuals, it spread to only 26 countries and resulted in about 8000 cases [1].
The novel coronavirus outbreak, however, has become an unprecedented threat to public
health worldwide. Initially, scientists know very little about the virus and struggle to pro-
vide information that is of immediate help to the health care community globally. Many
things are unfolding about the disease. According to CDC, data has shown that the ma-
jority of infected patients with the COVID-19 virus have mild to moderate respiratory
illness and recover without any hospitalization. However, people over 65 years and those
having underlying medical problems, such as chronic lung disease, moderate to severe
asthma, diabetes, serious heart conditions, immunocompromised, severe obesity (BMI
40 and above), chronic kidney disease undergoing dialysis, liver disease, and cancer, are
more likely to develop serious illness and are categorized as high risk. The primary source
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Figure 2 Concentration of COVID-19 cases worldwide as on June 19, 2020

of transmitting the novel COVID-19 is through respiratory droplets. Recently, research
has shown that person to person contact by talking could spread the virus as well.

Strict guidelines, including social distancing, wearing of masks, staying at home, and lo-
cal and international border closure, have been put in place to slow the spread of the virus.
These pandemic restrictions have yielded positive results, reducing daily reported cases
in areas with strict compliance with the protective measures. However, these intervention
strategies have crippled the aviation industry, caused the shut-down of many companies,
and kicked many students out of the classroom. IMF anticipates a “large global contraction
in the first half of 2020,” and only the development of a vaccine or therapies can alleviate
the world economy. The fear of a second wave of the pandemic has been a nightmare in
the midst of countries easing restrictions or re-opening of economies.

Knowing the threat this virus poses and coupled with the fact that there is no medica-
tion or vaccination for its treatment, mathematical modeling of the spread of this virus will
be one of the ways to help in curtailing and stopping the disease from plaguing the world.
Mathematical and computational modeling of infectious diseases provides deeper mecha-
nistic insights into the transmission dynamics, mitigation strategies, and prediction of the
spread. Different models have been proposed for COVID-19 since the start of the pan-
demic, see [2–4]. Adeniyi et al. in [5] proposed and analyzed, using quantitative approach,
a nonlinear mathematical model called SQIRES model to investigate the effect of healthy
sanitation and awareness on the transmission dynamics of coronavirus disease (COVID-
19) prevalence. Real life data from China and Italy was fitted into their model with the
conclusion that good hygiene is very critical in controlling the deadly disease. Anastas-
sopouloua et al. [6] also used the susceptible–infected–recovered–dead (SIRD) model to
estimate the basic reproduction number, per day recovery, and infection rate for the data
from China. SEIR model has been proposed by many to handle infectious diseases related
to COVID-19, though the rate of infection is much lower compared to COVID-19. Oke et
al. in [7], Okedoye et al. in [8], and Gbadamosi et al. in [9] employed SEIR model to inves-
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tigate the mathematical and numerical solutions of infectious diseases models for malaria,
dengue, and HIV. These authors also employed the next generation operator method to
find the basic reproduction number R0. The current work is motivated by these papers.
However, integer order derivative in the classical models is not sufficient to capture the
complexity nature of the virus.

It has been rigorously proven both theoretically and experimentally that fractional cal-
culus works wonders when it comes to capturing intrinsic properties of a complex system
modeling infectious diseases such as the novel COVID-19. Fractional calculus, which is
a generalization of differentiation and integration of integer order, has been proposed to
overcome many of the restrictions associated with integer order derivatives. Beyond bio-
logical systems, noninteger order derivatives have been successfully used to model phys-
ical phenomena in medicine, physics, image processing, optimization, electrodynamics,
nanotechnology, biotechnology, engineering in general, and many more, see [10–19] and
the references therein. Though every model should seek to use fractional calculus when
introducing a new model, solving such a model is known to be very difficult and requires
strong numerical or analytical techniques. Some of the methods used in the literature are
homotopy perturbation method [20–22], Laplace analysis method [23], homotopy anal-
ysis method [24–28], Adomian decomposition method [29], differential transformation
method [30], perturbation-iteration algorithm [31], iterative Shehu transform method
[32], residual power series method [33–41], and q-homotopy analysis transform method
in [42–45].

In the current paper, we introduce SEIR model to gain insight into the ongoing pandemic
of COVID-19. The goal of this article is to propose, analyze, and simulate a compartmen-
tal COVID-19 model using fractional calculus. Our proposed model incorporates trans-
mission rate, testing rates, and transition rate (from asymptomatic to symptomatic) for a
holistic study of the infectious disease. The impacts of these parameters on the dynamics
of the solution profiles for the disease are simulated and discussed in detail. Furthermore,
across all the different parameters, the effects of the fractional order derivative are also
simulated and discussed in great detail. Various simulations carried out enable us gain
deep insights into the dynamics of the spread of COVID-19.

The rest of the paper is structured as follows: in Sect. 2, basic definitions and notations
used in this present investigation are presented. Our mathematical model is formulated
in Sect. 3, which accounts for the interaction between healthy individuals (susceptible)
and individuals who have been either exposed or infected by the disease. Analysis of our
model: existence and uniqueness of solutions, disease-free equilibrium, and basic repro-
duction number and sensitivity analysis are discussed in Sect. 4. The numerical simulation
of the proposed model is presented in Sect. 5. Finally, Sect. 6 is devoted to summary and
recommendations.

2 Preliminaries
In what follows, we provide general description of fractional calculus (integral and deriva-
tive). In addition, some useful notations and established results that are needed in subse-
quent sections are presented. For the purpose of our study, we adopt Caputo’s fractional
derivative which is most suitable for the proposed model.
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Definition 2.1 A real-valued function ϕ is said to be in the space Cζ , ζ ∈R, x > 0, if there
exists a real number p with p > ζ such that

ϕ(x) = xpf (x),

where f ∈ C[0,∞) and it is said to be in the space Cm
ζ iff l(m) ∈ Cζ , m ∈N.

Definition 2.2 The Riemann–Liouville (RL) fractional integral operator of order α ≥ 0 of
a function ϕ ∈ L1(a, b) is given as

Iαϕ(t) =
1

�(α)

∫ t

0

ϕ(ξ )
(t – ξ )1–α

dξ , t > 0,α > 0,

I0ϕ(t) = c(t).
(1)

The notation � is the well-known gamma function.

Definition 2.3 Fractional differential operator in the sense of Caputo is defined in general
for α > 0 and t > 0 as follows [46]:

Dαϕ(t) = In–αDnϕ(t) =

⎧⎨
⎩

1
�(n–α)

∫ t
0

ϕ(n)(ξ )
(t–ξ )α+1–n dξ , if n – 1 < α ≤ n ∈N,

dnϕ(t)
dtn , α = n ∈N.

(2)

Caputo fractional differential operator naturally attracts classical initial conditions (not
integral type initial conditions) that is suitable for our model.

Lemma 2.4 Let t ∈ (a, b]. Then

[
Iα

a (t – a)β
]
(t) =

�(β + 1)
�(β + α + 1)

(t – a)β+α , α ≥ 0,β > 0. (3)

For easy use, we denote Z(t) = (S(t), E(t), I1(t), I2(t), C(t), R(t)) and R
6
+ = {Z ∈R

6 : Z ≥ 0}.

Lemma 2.5 ([47]) For 0 < α ≤ 1, let ϕ(t) ∈ C[a, b] and Dαϕ(t) ∈ (a, b]. Then

ϕ(t) = ϕ(a) +
1

�(α)
Dαϕ(η)(t – a)α , 0 ≤ η ≤ t,∀t ∈ (a, b]. (4)

Lemma 2.5 is named the generalized mean value theorem.

3 Model formulation
We develop a compartmental model based on the development and epidemiological char-
acteristics of COVID-19. The population at time t is divided into susceptible, exposed,
asymptomatic, symptomatic, confirmed, and recovered classes. These sub-populations
are denoted by S(t), E(t), I1(t), I2(t), C(t), and R(t) respectively. There are some people in-
fected with COVID-19 and do not develop symptoms but are still able to pass the disease
to others, these individuals spread it silently. The CDC in [48] estimated that 35%–40% of
coronavirus patients do not have symptoms and about 40% of COVID-19 transmission oc-
curs before people feel sick. With these in mind, we assume that exposed, asymptomatic,
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Figure 3 Flow diagram of the model. f = βS(E + I1
+ I2)

and symptomatic individuals are able to transmit the disease to the general public. We
further assume that individuals who have been clinically tested and confirmed positive
for the COVID-19 disease are either under self-quarantine or hospitalized and are unable
to transmit the disease to the general public. The transmission rate is given by β and the
incubation period is given by 1/m. After the incubation period, individuals from E class
move to I2 at the rate (1 – w)m, where w is the fraction of individuals who are asymp-
tomatic patients. The dynamics explained in this subsection are displayed in Fig. 3, also
see Table 1 for the meaning of the remaining parameters. A fractional order model satis-
fying the above description is of the form

dαS
dtα

= –β(E + I1 + I2)S,

dαE
dtα

= β(E + I1 + I2)S – mE,

dαI1

dtα
= ωmE – (τ1 + ρ + θ2 + γ )I1,

dαI2

dtα
= (1 – ω)mE + ρI1 – (τ2 + θ2 + γ )I2,

dαC
dtα

= τ1I1 + τ2I2 – (θ1 + γ )C,

dαR
dtα

= θ2(I1 + I2) + θ1C,

(5)

and initial points are

S(0) = S0, E(0) = E0, I1(0) = I(1,0), I2(0) = I(2,0),

C(0) = C0, R(0) = R0,
(6)

where 0 < α ≤ 1 and dα

dtα is the Caputo fractional derivative of order α. All other parameters
are described in Table 1.

4 Model analysis
In this section, we establish the existence and uniqueness of solutions to our model in
Eqs. (5)–(6), set up the disease free equilibrium and an expression for the basic repro-
duction number of our model. We further carry out a sensitive analysis to help identify
parameters that need to be targeted for the design of control strategies.
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Table 1 Parameters of the disease model and their meanings

Parameter Range (Sources) Default value

β (transmission rate) 2.1011× 10–8–9.11× 10–8

[49, 50]
3.511× 10–8 day–1

1/m (inverse incubation period) 1/14–1/2 day–1 1/7 day–1

ω (fraction of infected individuals that do not show
symptoms)

0.35–0.4 [48] 0.37

τ1 (progression rate of asymptomatic individuals to
confirmed, depends on contact tracing and testing)

1/20–1/5 day–1 [50, 51] 1/15 day–1

τ2 (progression rate of symptomatic individuals to
confirmed, depends on contact tracing and testing)

1/5–1 day–1 [50, 51] 1/3 day–1

θ1 (recovery rate, confirmed) 0.11624 day–1 [49] 0.11624 day–1

θ2 (natural recovery rate) 0.13798 day–1 [49] 0.13798 day–1

γ (disease mortality rate) 1.7826× 10–5 [49, 50] 1.7826× 10–5

ρ (transition rate from asymptomatic to symptomatic) assumed 0.2
S(0) (initial value of the susceptible) [50] 11,081,000
E(0) (initial value of the expose) [50] 399
I1(0) (initial value asymptomatic) [50] 28
I2(0) (initial value of symptomatic) [50] 54
C(0) (initial value of confirmed) [50] 41
R(0) (initial value of recovered) [50] 12

4.1 Existence and uniqueness of solutions
The results on the existence and uniqueness of solutions to the system in Eqs. (5)–(6) are
considered. In addition, we show that the domain is positively invariant.

Lemma 4.1 For 0 < α ≤ 1, let w ∈ C[0, b] and Dαw ∈ (0, b]. Then
(i) the function w is nondecreasing if Dαw(t) ≥ 0, ∀t ∈ (0, b).

(ii) the function w is nonincreasing if Dαw(t) ≤ 0, ∀t ∈ [0, b].

Proof The proof is a direct consequence of Lemma 2.5. �

Theorem 4.2 The IVP for the generalized time-fractional COVID-19 model given in
Eqs. (5)–(6) has unique solution in R

6
+.

Proof By Remark 3.2 in [52] together with Lemma 4.1, the existence and uniqueness of
solution in (0,∞) are obtained. In addition, we obtain the following estimates, noting that
ω < 1:

dαS
dtα

∣∣∣∣
S=0

= 0,

dαE
dtα

∣∣∣∣
E=0

= β(I1 + I2)S ≥ 0,

dαI1

dtα

∣∣∣∣
I1=0

= ωmE ≥ 0,

dαI2

dtα

∣∣∣∣
I2=0

= (1 – ω)mE + ρI1 ≥ 0,

dαC
dtα

∣∣∣∣
C=0

= τ1I1 + τ2I2 ≥ 0,

dαR
dtα

∣∣∣∣
R=0

= θ2(I1 + I2) + θ1C ≥ 0
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on each hyperplane bounding the nonnegative orthant. Hence the domain R
6
+ is positively

invariant. This completes the proof. �

4.2 Disease-free equilibrium and basic reproduction number
In the absence of COVID-19, we have E = I1 = I2 = C = 0 and at equilibrium

S∗ = N∗ = S(0) and R∗ = 0. (7)

There exists a disease-free equilibrium of system Eq. (5) given by

ℵ0 =
(
S(0), 0, 0, 0, 0, 0

)
. (8)

Note that the point ℵ1 = (0, 0, 0, 0, 0, N(0)) is also a disease-free equilibrium. At this equi-
librium, there are no susceptible individuals and surviving infested individuals eventually
recover.

The basic reproductive number (R0) is defined in [53] as the average number of sec-
ondary infections that occur when one infected individual is introduced into a completely
susceptible population. It is one of the most significant thresholds when studying infec-
tious disease models; it quantifies the intensity of an outbreak of disease. It also plays an
important role in evaluating control strategies. Following the next generation operator
method and notation in [54–56], we compute R0 and explore the local stability of ℵ0. The
method is defined as the dominant eigenvalue (spectral radius) of the matrix FV –1, where
F and V –1 are matrices associated with the vector Fi (of new infections) and the vector Vi

(of the transfer of individuals between classes) respectively. Thus,

Fi =

⎡
⎢⎢⎢⎣

FE

FI1

FI2

FC

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

β(E + I1 + I2)S
0
0
0

⎤
⎥⎥⎥⎦

and

Vi =

⎡
⎢⎢⎢⎣

VE

VI1

VI2

VC

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

mE
–ωmE + (τ1 + ρ + θ2 + γ )I1

–(1 – ω)mE – ρI1 + (τ2 + θ2 + γ )I2

–τ1I1 – τ2I2 + (θ1 + γ )C

⎤
⎥⎥⎥⎦ .

Therefore

F =

⎡
⎢⎢⎢⎣

βS∗ βS∗ βS∗ 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦
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and

V =

⎡
⎢⎢⎢⎣

m 0 0 0
–ωm τ1 + ρ + θ2 + γ 0 0

–(1 – ω)m –ρ τ2 + θ2 + γ 0
0 –τ1 –τ2 θ1 + γ

⎤
⎥⎥⎥⎦ .

The basic reproduction number (R0) is given by

R0 = βS(0)
(

1
m

+
γ + θ2 + ρ + (1 – ω)τ1 + ωτ2

(γ + θ2 + ρ + τ1)(γ + θ2 + τ2)

)
. (9)

The results below follow from Theorem 2 in [55].

Theorem 4.3 The disease-free equilibrium of the model Eq. (5), given by ℵ0, is locally-
asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1.

The public health implication of Lemma 4.3 is that the infected population can be elim-
inated or controlled if R0 < 1.

Theorem 4.4 Let ρ = 0. Then the disease-free equilibrium (S(0), 0, 0, 0, 0, 0) of the system
in Eq. (6) is globally asymptotically stable if R0 < 1.

Proof Consider the Lyapunov function L = (S, E, I1, I2, C, R) : R6
+ defined as

L = BE + I1 + B1I2

for some constants B, B1 > 0 that will be determined later. The time derivative of L is

dαL
dtα

= B
dαE
dtα

+
dαI1

dtα
+ B1

dαI2

dtα

= B
[
β(E + I1 + I2)S – mE

]
+

[
ωmE – (τ1 + θ2 + γ )I1

]

+ B1
[
(1 – ω)mE – (τ2 + θ2 + γ )I2

]

≤ B
[
β(E + I1 + I2)S(0) – mE

]
+

[
ωmE – (τ1 + θ2 + γ )I1

]

+ B1
[
(1 – ω)mE – (τ2 + θ2 + γ )I2

]

= B
(
βES(0) – mE

)
+

(
ω + B1(1 – ω)

)
mE + Bβ(I1 + I2)S(0)

– (τ1 + θ2 + γ )I1 – B1(τ2 + θ2 + γ )I2

= Bm
(

βS(0)
m

– 1
)

E +
(
ω + B1(1 – ω)

)
mE + Bβ(I1 + I2)S(0)

– (τ1 + θ2 + γ )I1 – B1(τ2 + θ2 + γ )I2

= Bm
(

βS(0)
m

+ βS(0)
γ + θ2 + (1 – ω)τ1 + ωτ2

(γ + θ2 + τ1)(γ + θ2 + τ2)
– 1

)
E

– BβS(0)mE
γ + θ2 + (1 – ω)τ1 + ωτ2

(γ + θ2 + τ1)(γ + θ2 + τ2)

+
(
ω + B1(1 – ω)

)
mE + Bβ(I1 + I2)S(0) – (τ1 + θ2 + γ )I1 – B1(τ2 + θ2 + γ )I2
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= Bm(R0 – 1)E –
[

BβS(0)
γ + θ2 + (1 – ω)τ1 + ωτ2

(γ + θ2 + τ1)(γ + θ2 + τ2)
–

(
ω + B1(1 – ω)

)]
mE

+ Bβ(I1 + I2)S(0) – (τ1 + θ2 + γ )I1 – B1(τ2 + θ2 + γ )I2. (10)

Choose B = τ1+θ2+γ

βS(0) and B1 = τ1+θ2+γ

τ2+θ2+γ
so that Eq. (10) reduces to

dαL
dtα

≤ τ1 + θ2 + γ

βS(0)
m(R0 – 1)E +

(τ1 + θ2 + γ )
βS(0)

β(I1 + I2)S(0) – (τ1 + θ2 + γ )I1

–
(τ1 + θ2 + γ )
(τ2 + θ2 + γ )

(τ2 + θ2 + γ )I2

–
[

τ1 + θ2 + γ

βS(0)
βS(0)

γ + θ2 + (1 – ω)τ1 + ωτ2

(γ + θ2 + τ1)(γ + θ2 + τ2)

–
(

ω +
τ1 + θ2 + γ

τ2 + θ2 + γ
(1 – ω)

)]
mE

=
τ1 + θ2 + γ

βS(0)
m(R0 – 1)E

–
[

γ + θ2 + τ1 + ω(τ2 – τ1)
(γ + θ2 + τ2)

–
(

ω +
τ1 + θ2 + γ

τ2 + θ2 + γ
(1 – ω)

)]
mE

=
τ1 + θ2 + γ

βS(0)
m(R0 – 1)E < 0

if R0 < 1. Note that dαL
dtα = 0 if and only if E = 0. By the generalized LaSalle invariance

principle [57], all trajectories that start in R
6
+ approach ℵ0 as t → ∞. �

4.3 Sensitivity analysis
We carried out an uncertainty and sensitivity analysis using the Latin hypercube sam-
pling (LHS), a statistical scheme for generating a sample of likely parameter values from a
multidimensional distribution, and partial rank correlation coefficients (PRCCs), “a robust
sensitivity measure for nonlinear but monotonic relationships between input and output,
as long as little to no correlation exists between the inputs” [58–61], to identify model pa-
rameters that have most influence on the threshold R0 and the COVID-19 transmission.
Sensitivity analysis is useful and can help to identify parameters that need to be targeted
in designing control strategies. The index measures the relative change in R0 with respect
to the relative change in the parameters [62, 63]. The parameters considered in the PRCCs
analysis include transmission rates (β), transition rates(τ1, τ2, ρ , m, ω), recovery rates of
virus (θ1, θ2), and disease mortality rate (γ ). A parameter with large PRCC (greater than
+0.50 or less than –0.50) is assumed to be sensitive. Figure 4 shows the PRCCs of the
parameters with R0 as the response function.

From the results, R0 is more sensitive to τ2, m, and β in increasing order, among the
parameters considered in the determination of basic reproduction number. Parameters
τ2, m have a negative impact on R0, meaning that an increase in these parameters will
reduce R0, while β has a positive impact, and reducing the value of this parameter will
reduce R0.

The following can be inferred from the sensitive analysis:
1. Interventions that reduce the value of the transmission (contact) rate β could be

effective control measures to stop the spread of the coronavirus.
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Figure 4 Sensitivity analysis

Table 2 Assessing the basic reproduction number,R0

Parameter Baseline as in Table 1 Scenario 1 Scenario 2 Scenario 3

β 3.511× 10–8 74% reduction – 71% reduction
1/m 1/7 – – –
ω 0.37 – – –
τ1 1/15 – 100% increase 100% increase
τ2 1/3 – 100% increase 100% increase
θ1 0.11624 –
θ2 0.13798 – – –
γ 1.7826× 10–5 – – –
ρ 0.2 – – –
R0 3.7501 0.9750 3.4093 0.9887

2. An increase in the tracing and testing of individuals that have had contact with
infected persons could help in the fight against the virus, since this will increase the
progression rate τ2. They can then be quarantined or put in isolation so that they
will not affect other susceptible individuals.

It is well known that when the reproduction number R0 is below unity, then an out-
break will die out. Based on Eq. (9) and the parameter values in Table 1, R0 = 3.7501. This
estimated threshold is close to the lower bound of R0 estimated in [64]. We investigated
scenarios under which R0 captured in this study could fall below 1.

Based on Table 2, we have the following:
(i) In Scenario 1, the basic reproductive number dropping below unity is achievable if

there is at least 74% reduction in the baseline of the transmission parameter. This
could crush the spread of the pandemic. Thus, it is important to adhere to face
mask use, social distancing, washing hands protocols to contain the outbreak.

(ii) In Scenario 2, the result suggests that mass testing alone is not enough to curb the
spread. This shows that a 100% increase in both testing rates is not able to reduce
the reproduction number below unity.

(iii) For the case in Scenario 3, combination of at least 71% reduction in the baseline of
the transmission parameter and a 100% increase in both testing rates produces the
desirable reproduction number.
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5 Numerical solutions and analysis
We give a brief introduction of the idea behind the method employed to solve the proposed
COVID-19 model of fractional order type given in Eqs. (5)–(6). Also, many numerical
simulations are carried out to investigate the effects of various parameters including the
fractional order α and the sensitive parameters identified in the previous section.

5.1 Generalized form of Adams–Bashforth–Moulton algorithm
First, the Adams–Bashforth–Moulton method, also known as the predictor–corrector
method, is introduced for integer order differential equations. We refer the reader for
full detail analysis of the convergence, accuracy, and stability of the method in [65–67].
Consider an IVP fractional differential equation

Dα
t v(t) = f

(
t, v(t)

)

v(k)(0) = vk
0, k = 0, 1, 2, . . . , m – 1

(11)

with α > 0, m = 
α� and vk
0, k = 0, 1, 2, . . . , m – 1 are given real numbers. Clearly a function

v(t), continuous, is a solution of IVP Eq. (11) if and only if it solves the following Volterra
integral equation:

v(t) =

α�–1∑

k=0

tk

k!
vk

0 +
1

�(α)

∫ t

0
(t – σ )α–1g

(
σ ,φ(σ )

)
dσ . (12)

Next, a generalized form of Adams–Bashforth–Moulton method for fractional order
(see details in [66]) is introduced. The same technique used to derive one-step Adams-
Bashforth-Moulton method for integer order, α = 1, is employed to derive the generalized
case with the following basic assumptions:

(a) Uniform grid with tn = nh, n = 0, 1, 2, . . . , N , N ∈ N, h > 0 is the step size.
(b) We first compute the approximation vh(ti) ≈ v(ti), i = 1, 2, . . . , n, then find the

approximation vh(tn+1) using Eq. (12).
For the corrector, product trapezoidal quadrature formula is employed to compute the
integral in Eq. (12) with nodes ti, i = 0, 1, 2, . . . , n + 1. However, for the predictor, a product
rectangle rule is used. Combining these two, the scheme for the solution of fractional
order differential Eq. (11) called generalized Adams–Bashforth–Moulton method is given
as follows:

vh(tn+1) =

α�–1∑

k=0

tk
n+1
k!

vk
0

+
hα

�(α + 2)
g
(
tn+1, vp

h(tn+1)
)

+
hα

�(α + 2)

n∑
i=0

εi,n+1f
(
ti, vh(ti)

)
, (13)

vp
h(tn+1) =


α�–1∑
k=0

tk
n+1
k!

vk
0 +

1
�(α)

n∑
i=0

ωi,n+1f
(
ti, vh(ti)

)
, (14)
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where

εi,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = n + 1,

nα+1 – (n – α)(n + 1)α if i = 0,

(n + 2 – i)α+1 + (n – i)α+1 – 2(n + 1 – i)α+1 if 1 ≤ i ≤ n,

(15)

and

ωi,n+1 =
hα

α

[
(n + 1 – i)α – (n – i)α

]
. (16)

Some numerical analysis details and the MATLAB subroutine fde12 implementation of
the method above can be found in [68]. The subroutine is in our numerical simulation.

5.2 Numerical results and analysis
We present the numerical simulations of the proposed time-fractional order COVID-19
system to study the spread and containment strategies of the coronavirus infection. The
parameter values (both baseline and range) used for the simulations were taken from lit-
erature as given in Table 1, unless otherwise stated. It is of interest to see various intrin-
sic properties of the COVID-19 model that could be shown using fractional derivative
(0 < α < 1) in time, compared to classical order α = 1. First, we simulate with different val-
ues of fractional order α with fixed values of the model parameters (baseline values). Next,
we examine the effects of changing the sensitive parameters obtained in Sect. 4.3. It is im-
portant to further examine the impact of these key parameters on the solution profiles for
crucial decisions, given different values of fractional order as well.

5.2.1 Effect of time-fractional order on the time-line of the virus infection
Using the baseline values of the parameters, we simulate COVID-19 model proposed for
different values of fractional order α. The epidemic trajectories for the proposed fractional
order COVID-19 model are provided in Fig. 5 for different values of α. The effects of frac-

Figure 5 Solution profiles for the COVID-19 model with different α
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tional orders are distinctive; the solution curves for 0 < α < 1 show delay in the epidemic
peak and flatten faster, see Fig. 5 (a), (c), and (d). These observations are known to occur
in epidemic models with intervention [69]. The impacts of α is even more pronounced
for smaller orders; for example, compare α = 0.9 and α = 0.6 in Fig. 5 (c). While we ob-
serve significant reduction in the number of infected individuals for smaller fractional
orders, the number of susceptible individuals climb up as shown in Fig. 5 (f ). It should be
mentioned here that hospitalization will not be overwhelmed for the cases of α < 1 due
to flattening of the curve. This situation has been observed by Ecuador, Pakistan, United
Kingdom, and Chile as reported by John Hopkins University and Medicine on July 1, 2020.
However, countries like United States, Brazil, Mexico, and India have a similar trend as we
have for the case when α = 1. The peak rose very quickly and overwhelmed the hospital
facilities.

5.2.2 Transmission rate β

Transmission rate β is the focus here. We investigate the effects of the transmission rate
in the dynamics of the spread of COVID-19. Figures 6 to 9 show results for the effects of
different transmission rates to maneuver this virus down. Similar to the effects of fractional
order, a smaller transmission rate delays the peak significantly and reduces the number of
infected cases, as displayed in Fig. 6 (a), (c), and (d); Fig. 7 (a), (c), and (d); Fig. 8 (a), (c),
and (d), and Fig. 9 (a), (c), and (d). For example, in Fig. 6 (c), at a baseline β = 3.511e – 08
with α = 1, approximately 4.8 × 105 asymptomatic cases are observed. A 60% reduction
in the baseline produces less than 100, 000 cases (the black curve). The influence of the
transmission rate on the dynamics is robust for the other fractional orders, see Figs. 7 to
9. Reducing the transmission parameter leads to substantial decrease in infected cases.
These results are consistent with the results in Table 2 (Scenario 1), where a reduction of
the transmission rates by 74%, with other parameters fixed, keepsR0 less than 1. As at now,
there is no vaccine, non-pharmaceutical interventions are recommended for reducing the
rate of transmission and the spread of the SARS-CoV-2. It should be noted that there
is a significant reduction in infected cases, when controlling the transmission rate with

Figure 6 Solution profiles for the COVID-19 model with different β when α = 1
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Figure 7 Solution profiles for the COVID-19 model with different β when α = 0.9

Figure 8 Solution profiles for the COVID-19 model with different β when α = 0.8

lower fractional order α. Our results show that our proposed fractional model captures
characteristics of many countries by changing the value of α.

5.2.3 Progression rates τ1, τ2

Next, we vary the progression rate for symptomatic τ1 and asymptomatic τ2 parameters to
examine their influence on the dynamics of the COVID-19 system. The results are shown
in Figs. 10 and 11. We observe from the results above that increasing (decreasing) these
parameters by a given percentage always increases (decreases) the number of confirmed
positive coronavirus cases. The effects are also felt both in the asymptomatic and symp-
tomatic classes; increasing (decreasing) τ1 and τ2 decreases (increases) individuals in these
classes. For example, at time t = 50, increasing the baseline τ2 = 1/3 by 40% decreases the
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Figure 9 Solution profiles for the COVID-19 model with different β when α = 0.7

Figure 10 Solution profiles for the COVID-19 model with different τ1 across different fractional order α

infection in the symptomatic compartment from about 7.5 × 105 to 5.7 × 105 individuals.
It is important to point out that these parameters are associated with contact tracing and
testing of individuals. As we observed in Table 2 scenario 2, increasing only the progres-
sion rates through rigorous contact tracing and testing is not enough to curb the virus
since R0 is greater than one.

5.2.4 Transition rate, ρ : from asymptomatic to symptomatic
Lastly, we examine the epidemic dynamics for different transition rate from asymptomatic
to symptomatic ρ . Our focus here is on the potential for infectious individuals who do not
have symptoms to eventually develop symptoms.

It is clear from Fig. 12 that an increase in ρ increases the symptomatic population, irre-
spective of fractional order. This is essential as it enables us to identify and isolate infected
individuals from the general public and hence reducing the SARS-CoV-2 transmission.
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Figure 11 Solution profiles for the COVID-19 model with different τ2 across different fractional order α

6 Summary and recommendations
The emergence of the novel coronavirus (SARS-CoV-2) has become an unprecedented
threat to public health worldwide. It is now one of the greatest public health challenges in
modern times with no proven cure or vaccine [70]. Many research groups are focusing on
re-examining epidemic models to provide deeper mechanistic insights into the transmis-
sion dynamics and mitigation strategies of SARS-CoV-2. Here, we presented a COVID-19
model of fractional order type to explore the dynamics of the epidemic; and relied on the
generalized Adams–Bashforth–Moulton method (the predictor–corrector algorithm) for
fractional order to perform the numerical simulations. This method has been proven to
be efficient and accurate. We investigated the effects of fractional order α, keeping the
model parameters fixed. As illustrated in Figs. 5 to 11, a smaller fractional order reduces
the peak significantly and flattens the progression curve. Modeling with fractional order
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Figure 12 Solution profiles for the COVID-19 model with different ρ across different fractional order α

provides framework that captures some important and complex features of diseases such
as COVID-19.

Based on our studies from Figs. 5 to 11, we make the following recommendations:
1. Preventive measures, such as social distancing, use of face masks, and regular

washing of hands, are capable in reducing β and are highly encouraged. In the
absence of vaccine and treatment, these guidelines are optimal to contain the spread
of the virus.

2. Quarantining infected individuals could be an effective control measure against the
spread of coronavirus because it will reduce the value of transmission (contact) rate
β .

3. A perfect combination of intervention measures, such as contact tracing, testing, and
isolation of infected individuals, will help in the containment of the disease. Our
results suggest that tracing and moving testing up has an important benefit. It
reduces the number of infected individuals in the general public and thereby reduces
the spread of the pandemic. Once the infected individuals are identified and isolated,
the interaction between susceptible and infected individuals diminishes and
transmission reduces. Furthermore, aggressive testing is also highly recommended.

4. It should be emphasized that in modeling a complex infectious disease such as the
novel COVID-19, fractional order derivative is the appropriate temporal order. The
behavior and pattern of spread of the coronavirus are different from country to
country and city to city. It is therefore difficult (if not impossible) to model such a
dynamical infectious disease with temporal order equaling 1 for different regions.
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41. Senol, M., Ayşe, A.T.A.: Approximate solution of time-fractional KdV equations by residual power series method.
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20(1), 430–439 (2018)

42. Akinyemi, L.: A fractional analysis of Noyes–Field model for the nonlinear Belousov–Zhabotinsky reaction. Comput.
Appl. Math. 39, 1–34 (2020). https://doi.org/10.1007/s40314-020-01212-9

43. Akinyemi, L., Huseen, S.N.: A powerful approach to study the new modified coupled Korteweg–de Vries system.
Math. Comput. Simul. 177, 556–567 (2020). https://doi.org/10.1016/j.matcom.2020.05.021

44. Akinyemi, L., Iyiola, O.S.: A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations.
Adv. Differ. Equ. 2020(169), 1 (2020). https://doi.org/10.1186/s13662-020-0262

45. Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion
acoustic plasma waves. Math. Methods Appl. Sci. 40(15), 5642–5653 (2017)

46. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland
Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

47. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)
48. Centers for Disease Control. Coronavirus Disease. COVID-19 Pandemic Planning Scenarios. Retrieved 27 (2020)

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
49. Tang, B., Bragazzi, N.L., Li, Q., Tang, S., Xiao, Y., Wu, J.: An updated estimation of the risk of transmission of the novel

coronavirus (2019-nCov). Infect. Dis. Model. 5, 248–255 (2020)
50. Xinmiao, R., Liu, Y., Huidi, C., Meng, F.: Effect of delay in diagnosis on transmission of COVID-19. Math. Biosci. Eng. 17,

2725 (2020)
51. Liu, T., Hu, J.X., Kang, M., Lin, L., Zhong, H., Xiao, J., et al: Transmission dynamics of 2019 novel coronavirus

(2019-nCoV), bioRxiv (2020)
52. Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332,

709–726 (2007)
53. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton Univ. Press, Princeton (2008)
54. Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics,

Kindle edn. Princeton University Press, Princeton (2012)
55. Driessche, P.V., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental

models of disease transmission. Math. Biosci. 180, 29–48 (2002)
56. Heesterbeek, J.A.P.: A brief history of R0 and a recipe for its calculation. Acta Biotheor. 50, 189–204 (2002)
57. Suryanto, A., Darti, I., Panigoro, H.S., Kilicman, A.: A fractional-order predator-prey model with ratio-dependent

functional response and linear harvesting. Math. 7, 1100 (2019). https://doi.org/10.3390/math7111100
58. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity

analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)
59. Nkamba, L.N., Manga, T.T., Agouanet, F., Mann Manyombe, M.L.: Mathematical model to assess vaccination and

effective contact rate impact in the spread of tuberculosis. J. Biol. Dyn. 13(1), 26–42 (2019).
https://doi.org/10.1080/17513758.2018.1563218

60. Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV
model, as an example. Int. Stat. Rev. 2, 229–243 (1994)

61. Gumel, A.B., Lubuma, J.M.-S., Sharomi, O., Terefe, Y.A.: Mathematics of a sex-structured model for syphilis transmission
dynamics. Math. Methods Appl. Sci. 41(18), 8488–8513 (2018)

62. Nakul, C., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the
sensitivity analysis of a mathematical model. Bull. Math. Biol. 70, 1272–1296 (2008)

63. Okosun, K.O., Rachid, O., Marcus, N.: Optimal control strategies and cost-effectiveness analysis of a malaria model.
Biosystems 111, 83–101 (2013)

64. Sanche, S., Lin, Y., Xu, C., et al.: High contagiousness and rapid spread of severe acute respiratory syndrome
coronavirus 2. Emerg. Infect. Dis. 26(7), 1470–1477 (2020). https://doi.org/10.3201/eid2607.200282

65. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional
order. In: Heinzel, S., Plesser, T. (eds.) Forschung und Wissenschaftliches Rechnen 1998, pp. 57–71. Gessellschaft fur
Wissenschaftliche Datenverarbeitung, Gottingen (1999)

66. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential
equations. Nonlinear Dyn. 29, 3–22 (2002)

67. Garrappa, R.: On linear stability of predictor-corrector algorithms for fractional differential equations. Int. J. Comput.
Math. 87(10), 2281–2290 (2010)

https://doi.org/10.1002/mma.6484
https://doi.org/10.1007/s40314-020-01212-9
https://doi.org/10.1016/j.matcom.2020.05.021
https://doi.org/10.1186/s13662-020-0262
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://doi.org/10.3390/math7111100
https://doi.org/10.1080/17513758.2018.1563218
https://doi.org/10.3201/eid2607.200282


Owusu-Mensah et al. Advances in Difference Equations        (2020) 2020:683 Page 21 of 21

68. Garrappa, R.: Predictor-corrector PECE method for fractional differential equations, 2020.
(https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional
-differential-equations), MATLAB Central File Exchange. Retrieved May 14, 2020

69. Stutt, R.O.J.H., Retkute, R., Bradley, M., Gilligan, C.A., Colvin, J.: A modelling framework to assess the likely effectiveness
of facemasks in combination with “lock-down” in managing the COVID-19 pandemic. Proc. R. Soc. A 476, 20200376
(2020). https://doi.org/10.1098/rspa.2020.0376

70. Centers for Disease Control and Prevention (CDC), Coronavirus Disease 2019 (COVID-19), assessed on June 19, 2020.
https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/steps-when-sick.html

https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
https://doi.org/10.1098/rspa.2020.0376
https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/steps-when-sick.html

	A fractional order approach to modeling and simulations of the novel COVID-19
	Abstract
	Keywords

	Introduction
	Preliminaries
	Model formulation
	Model analysis
	Existence and uniqueness of solutions
	Disease-free equilibrium and basic reproduction number
	Sensitivity analysis

	Numerical solutions and analysis
	Generalized form of Adams-Bashforth-Moulton algorithm
	Numerical results and analysis
	Effect of time-fractional order on the time-line of the virus infection
	Transmission rate beta
	Progression rates tau1, tau2
	Transition rate, rho: from asymptomatic to symptomatic


	Summary and recommendations
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


