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Abstract
This paper deals with the derivation of some new dynamic Hilbert-type inequalities in
time scale nabla calculus. In proving the results, the basic idea is to use some
algebraic inequalities, Hölder’s inequality, and Jensen’s time scale inequality. This
generalization allows us not only to unify all the related results that exist in the
literature on an arbitrary time scale, but also to obtain new outcomes that are
analytical to the results of the delta time scale calculation.
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1 Introduction
In recent years, Hilbert’s dual-series inequality and its integral form [1, pp. 253–254] have
been granted significant attention by many scholars (for example, see [2–10]). In partic-
ular, B. G. Pachpatte [11] established a new inequality close to that of Hilbert as follows.
Let k, r ≥ 1, As =

∑s
m=1 am ≥ 0 and Bϑ =

∑ϑ
n=1 bn ≥ 0. Then

p∑
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q∑

ϑ=1

Ak
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) 1
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, (1)

where

C(k, r, p, q) =
1
2

kr
√

pq.

In the same article [11], Pachpatte demonstrated the integral version of (1) as follows. Let
k, r ≥ 1, �(s) =

∫ s
0 ω1(ξ ) dξ ≥ 0 and �(ϑ) =

∫ ϑ

0 ω2(ν) dν ≥ 0, for s, ξ ∈ (0, x) and ϑ ,ν ∈ (0, y).
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Then
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where

C∗(k, r, x, y) =
1
2

kr
√

xy.

In [12], Young-Ho Kim gave some generalizations of (1) and (2) by introducing a parameter
γ > 0 as follows. Let k, r ≥ 1, As =

∑s
m=1 am ≥ 0 and Bϑ =

∑ϑ
n=1 bn ≥ 0. Then

p∑

s=1

q∑

ϑ=1

Ak
s Br

ϑ
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1
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where

D(k, r,γ , p, q) =
(

1
2

) 1
γ

kr
√

pq.

The integral version of (3) is established in the next consequence. Let k, r ≥ 1, γ > 0, �(s) =
∫ s

0 ω1(ξ ) dξ ≥ 0, and �(ϑ) =
∫ ϑ

0 ω2(ν) dν ≥ 0, for s, ξ ∈ (0, x) and ϑ , ν ∈ (0, y). Then

∫ x

0
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1
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2
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where

D∗(k, r,γ , x, y) =
(

1
2

) 1
γ

kr
√

xy.

Another refinement of inequalities (1) and (2) has been made by Yang [13] as follows.
Let k, r ≥ 1 and λ,μ > 1 be constants such that 1/λ + 1/μ = 1, As =

∑s
m=1 am ≥ 0, and

Bϑ =
∑ϑ

n=1 bn ≥ 0. Then
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where

E(k, r,λ,μ, p, q) =
kr

λ + μ
p

λ–1
λ q

μ–1
μ .

The integral version of (5) is established in the next consequence. Let k, r ≥ 1 and λ,μ > 1
be constants such that 1/λ + 1/μ = 1, �(s) =

∫ s
0 ω1(ξ ) dξ ≥ 0, and �(ϑ) =

∫ ϑ

0 ω2(ν) dν ≥ 0,
for s, ξ ∈ (0, x) and ϑ ,ν ∈ (0, y). Then

∫ x

0

∫ y

0

�k(s)�r(ϑ)

μs
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λμ + λϑ
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0
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λ
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)μ dϑ

) 1
μ

, (6)

where

E∗(k, r,λ,μ, x, y) =
kr

λ + μ
x

λ–1
λ y

μ–1
μ .

After construction of time scale calculus, dynamic inequalities have become the focus of
interest, and classical inequalities have been established for any time scale T. We can refer
two surveys [14, 15] and a monograph [16] for exhibition of these results.

In [17] the researchers concluded some generalizations of inequalities (1) and (2) for
time scale delta calculus. Specifically, they proved that if s,ϑ ,ϑ0 ∈ T, ω1(s) ∈
Crd([ϑ0, x)T,R+), ω2(ϑ) ∈ Crd([ϑ0, y)T,R+), k, r ≥ 1 and λ,μ > 1 are constants such that
1/λ + 1/μ = 1, then for s ∈ [ϑ0, x)T and ϑ ∈ [ϑ0, y)T, one has

∫ x
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∫ y

ϑ0
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1
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1
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, (7)

where �(s) =
∫ s
ϑ0

ω1(ξ )
ξ , �(ϑ) =
∫ ϑ

ϑ0
ω2(ξ )
ξ , and

G(k, r,λ,μ, x, y) =
kr
λμ

(x – ϑ0)
λ–1
λ (y – ϑ0)

μ–1
μ . (8)

Another refinement of (7) for time scale delta calculus has been made by Rezk et al. [18]
as follows. Let s,ϑ ,ϑ0 ∈ T, ω1(s) ∈ Crd([ϑ0, x)T,R+), ω2(ϑ) ∈ Crd([ϑ0, y)T,R+), k, r ≥ 1 and
λ,μ > 1 be constants such that 1/λ + 1/μ = 1, then for s ∈ [ϑ0,ρ)T and ϑ ∈ [ϑ0, τ )T, one
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has
∫ x
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∫ y
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where �(s) =
∫ s
ϑ0

ω1(ξ )
ξ , �(ϑ) =
∫ ϑ

ϑ0
ω2(ξ )
ξ , and

G∗(k, r,λ,μ, x, y) =
kr

λ + μ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ . (10)

For developing of Hilbert’s inequalities for time scale delta calculus, we refer the reader to
the articles [19–29]. Although there are many results for time scale calculus in the sense
of delta derivative, there is not much done for the nabla derivative. Therefore the ma-
jor contribution of this article is to extend Hilbert-type inequalities for the nabla time
scale calculus and to unify them for an arbitrary time scale. The main theorems are
inspired from the paper [18] which presents the corresponding results for time scale
delta calculus. By obtaining their nabla versions, we can show the generalizations of
these inequalities for different types of time scales T, such as real numbers and inte-
gers.

The structure of this paper can be listed as follows. Section 2 presents the fundamental
concepts of the time scale calculus in terms of delta and nabla derivatives. Section 3 is
devoted to main results, which are to generalize inequalities (5) and (6) for the nabla time
scale calculus and so, to obtain nabla calculus versions of (9) and several inequalities of
Hilbert’s type in [18].

2 Preliminaries
In this section, the fundamental theories of the time scale delta and nabla calculi will be
presented. Time scale calculus whose detailed information can be found in [30, 31] has
been invented in order to unify continuous and discrete analysis.

A nonempty closed subset of R is named a time scale and is denoted by T. For ϑ ∈ T,
if inf∅ = supT and sup∅ = infT, then the forward jump operator σ : T → T and the back-
ward jump operator ρ : T → T are defined as σ (ϑ) = inf(ϑ ,∞)T and ρ(ϑ) = sup(–∞,ϑ)T,
respectively. From the above two concepts, it can be mentioned that a point ϑ ∈ T

with infT < ϑ < supT is named right-scattered if σ (ϑ) > ϑ , right-dense if σ (ϑ) = ϑ , left-
scattered if ρ(ϑ) < ϑ and left-dense if ρ(ϑ) = ϑ .

The 
-derivative of ψ : T → R at ϑ ∈ T
k = T/(ρ(supT), supT] denoted by ψ
(ϑ) is the

number enjoying the property that for all ε > 0 there is a neighborhood U of ϑ ∈ T
k such

that

∣
∣ψ

(
σ (ϑ)

)
– ψ(s) – ψ
(ϑ)

(
σ (ϑ) – s

)∣
∣ ≤ ε

∣
∣σ (ϑ) – s

∣
∣, for all s ∈ U .

The ∇-derivative of ψ : T → R at ϑ ∈ Tk = T/[infT,σ (infT)) denoted by ψ∇ (ξ ) is the
number enjoying the property that for all ε > 0 there is a neighborhood V of ϑ ∈ Tk such
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that

∣
∣ψ(ϑ) – ψ

(
ρ(s)

)
– ψ∇ (ϑ)

(
ϑ – ρ(s)

)∣
∣ ≤ ε

∣
∣s – ρ(ϑ)

∣
∣, for all s ∈ V .

A function ψ : T → R is rd-continuous if it is continuous at each right-dense point in
T and lim

s→ϑ–
ψ(s) exists as a finite number for all left-dense points in T. The set Crd(T,R)

represents the class of real, rd-continuous functions defined on T. If ψ ∈ Crd(T,R), then
there exists a function �(ϑ) such that �
(ϑ) = ψ(ϑ) and the delta integral of ψ is defined
by

∫ x

x0

ψ(ϑ)
ϑ = �(x) – �(x0).

A function ψ : T → R is ld-continuous if it is continuous at each left-dense point in T

and lim
s→ϑ+

ψ(s) exists as a finite number for all right-dense points in T. The set Cld(T,R)
represents the class of real, ld-continuous functions defined on T. If ψ ∈ Cld(T,R), then
there exists a function �(ϑ) such that �∇ (ϑ) = ψ(ϑ) and the nabla integral of ψ is defined
by

∫ x

x0

ψ(ϑ)∇ϑ = �(x) – �(x0).

In the following, we display some basic lemmas and algebraic inequalities that play a key
role in proving the major findings of this paper.

Lemma 2.1 (Nabla Hölder’s Inequality [32]) Let x0, x ∈ T. For ξ ,ψ ∈ Cld([x0, x]T,R), we
have

∫ x

x0

ξ (ϑ)ψ(ϑ)∇ϑ ≤
(∫ x

x0

ξλ(ϑ)∇ϑ

) 1
λ
(∫ x

x0

ψμ(ϑ)∇ϑ

) 1
μ

, (11)

where λ,μ > 1 with 1/λ + 1/μ = 1.

Lemma 2.2 (Nabla Jensen’s Inequality [33, Theorem 3.4]) Let x0, x ∈ T and
m, n ∈ R. Assume that ξ ∈ Cld([x0, x]T, (m, n)) and ψ ∈ Cld([x0, x]T,R) are nonnegative
with

∫ x
x0

ξ (η)
η > 0. If � ∈ C((m, n),R) is a convex function, then

�

(∫ x
x0

ξ (η)ψ(η)∇η
∫ x

x0
ξ (η)∇η

)

≤
∫ x

x0
ξ (η)�(ψ(η))∇η
∫ x

x0
ξ (η)∇η

. (12)

Lemma 2.3 (The power rule for nabla derivative [33, Lemma 3.1]) Let x0, x ∈ T, ψ ∈
Cld([x0, x]T,R) be a nonnegative function, and γ ≥ 1 a real constant. Then

(∫ x

x0

ψ(ξ )∇ξ

)γ

≤ γ

∫ x

x0

ψ(v)
(∫ v

a
ψ(ξ )∇ξ

)γ –1

∇v. (13)
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Lemma 2.4 (Young’s inequality [34]) Let δ > 0, �q > 0 and
∑n

q=1 �q = ϒn. Then

{ n∏

q=1

s�q
q

} 1
ϒn

≤
{

1
ϒn

n∑

q=1

�qsδ
q

} 1
δ

. (14)

Lemma 2.5 ([33, Lemma 3.2]) Let s, ϑ , ϑ0 ∈ T with s,ϑ ≥ ϑ0 and ψ ∈ Cld([a, b]T,R). Then

∫ s

ϑ0

(∫ ϑ

ϑ0

ψ(ξ )∇ξ

)

∇ϑ =
∫ s

ϑ0

(∫ s

ρ(ξ )
ψ(ξ )∇s

)

∇ξ =
∫ s

ϑ0

(
s – ρ(ξ )

)
ψ(ξ )∇ξ . (15)

3 Key results
In this section, we focus on obtaining the corresponding outcomes for the nabla time scale
calculation in [18]. We must assume that all functions found in the theorem statements
are nonnegative, ld-continuous, ∇-differentiable, and locally nabla integrable.

Theorem 3.1 Let s,ϑ ,ϑ0 ∈ T and ω1 ∈ Cld([ϑ0, x]T,R+), ω2 ∈ Cld([ϑ0, y]T,R+). Define

�(s) =
∫ s

ϑ0

ω1(ξ )∇ξ and �(ϑ) =
∫ ϑ

ϑ0

ω2(ξ )∇ξ . (16)

Then for s ∈ [ϑ0, x]T and ϑ ∈ [ϑ0, y]T, we have

∫ x

ϑ0

∫ y

ϑ0

�k(s)�r(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ H(k, r,λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
�k–1(s)ω1(s)

)λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�r–1(ϑ)ω2(ϑ)

)μ∇ϑ

) 1
μ

, (17)

where

H(k, r,λ,μ, x, y) =
kr

λ + μ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ .

Proof By using (13), we obtain

�k(s) ≤ k
∫ s

ϑ0

�k–1(ξ )ω1(ξ )∇ξ (18)

and

�r(ϑ) ≤ r
∫ ϑ

ϑ0

�r–1(ξ )ω2(ξ )∇ξ . (19)

Then, we have

�k(s)�r(ϑ) ≤ kr
(∫ s

ϑ0

�k–1(ξ )ω1(ξ )∇ξ

)(∫ ϑ

ϑ0

�r–1(ξ )ω2(ξ )∇ξ

)

. (20)
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Applying (11) to
∫ s
ϑ0

�k–1(ξ )ω1(ξ )∇ξ with indices λ and λ/(λ – 1), we find that

∫ s

ϑ0

�k–1(ξ )ω1(ξ )∇ξ ≤ (s – ϑ0)
λ–1
λ

(∫ s

ϑ0

(
�k–1(ξ )ω1(ξ )

)λ∇ξ

) 1
λ

, (21)

while doing the same to the integral
∫ ϑ

ϑ0
�r–1(ξ )ω2(ξ )∇ξ with indices μ and μ/(μ – 1), we

find that

∫ ϑ

ϑ0

�r–1(ξ )ω2(ξ )∇ξ ≤ (ϑ – ϑ0)
μ–1
μ

(∫ ϑ

ϑ0

(
�r–1(ξ )ω2(ξ )

)μ∇ξ

) 1
μ

. (22)

From (20), (21), and (22), we get

�k(s)�r(ϑ) ≤ kr(s – ϑ0)
λ–1
λ (ϑ – ϑ0)

μ–1
μ

(∫ s

ϑ0

(
�k–1(ξ )ω1(ξ )

)λ∇ξ

) 1
λ

×
(∫ ϑ

ϑ0

(
�r–1(ξ )ω2(ξ )

)μ∇ξ

) 1
μ

. (23)

Using inequality (14), we note

(
s�1

1 s�2
2

) δ
�1+�2 ≤ 1

�1 + �2

(
�1sδ

1 + �2sδ
2
)
. (24)

Now, by setting s1 = (s – ϑ0)λ–1, s2 = (ϑ – ϑ0)μ–1, �1 = 1/λ, �1 = 1/μ, and δ = �1 + �2 in
(24), we get

(s – ϑ0)
λ–1
λ (ϑ – ϑ0)

μ–1
μ ≤ λμ

λ + μ

(
(s – ϑ0)

(λ–1)(λ+μ)
λμ

λ
+

(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

μ

)

. (25)

Substituting (25) into (23) yields

�k(s)�r(ϑ) ≤ krλμ

λ + μ

(
(s – ϑ0)

(λ–1)(λ+μ)
λμ

λ
+

(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

μ

)

×
(∫ s

ϑ0

(
�k–1(ξ )ω1(ξ )

)λ∇ξ

) 1
λ
(∫ ϑ

ϑ0

(
�r–1(ξ )ω2(ξ )

)μ∇ξ

) 1
μ

. (26)

Dividing both sides of (26) by μ(s – ϑ0)[(λ–1)(λ+μ)]/λμ + λ(ϑ – ϑ0)[(μ–1)(λ+μ)]/λμ, we obtain

�k(s)�r(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

≤ kr
λ + μ

(∫ s

ϑ0

(
�k–1(ξ )ω1(ξ )

)λ∇ξ

) 1
λ

×
(∫ ϑ

ϑ0

(
�r–1(ξ )ω2(ξ )

)μ∇ξ

) 1
μ

. (27)
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Integrating both sides of (27) and using (11) again, we get

∫ x

ϑ0

∫ y

ϑ0

�k(s)�r(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ kr
λ + μ

(x – ϑ0)
λ–1
λ (y – ϑ0)

μ–1
μ

×
(∫ x

ϑ0

(∫ s

ϑ0

(
�k–1(ξ )ω1(ξ )

)λ∇ξ

)

∇s
) 1

λ

×
(∫ y

ϑ0

(∫ ϑ

ϑ0

(
�r–1(ξ )ω2(ξ )

)μ∇ξ

)

∇ϑ

) 1
μ

. (28)

Applying Lemma 2.5 on (28), we conclude that

∫ x

ϑ0

∫ y

ϑ0

�k(s)�r(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ kr
λ + μ

(x – ϑ0)
λ–1
λ (y – ϑ0)

μ–1
μ

(∫ x

ϑ0

(
x – ρ(s)

)(
�k–1(s)ω1(s)

)λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�r–1(ϑ)ω2(ϑ)

)μ∇ϑ

) 1
μ

= H(k, r,λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
�k–1(s)ω1(s)

)λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�r–1(ϑ)ω2(ϑ)

)μ∇ϑ

) 1
μ

,

that is, (17) is true. �

Remark 3.2 By setting 1/λ + 1/μ = 1 in (24), we obtain

(
s�1

1 s�2
2

) ≤ 1
�1 + �2

(
�1s�1+�2

1 + �2s�1+�2
2

)
. (29)

Hence, by applying (29) on the right-hand side of (17) in Theorem 3.1, we get

∫ x

ϑ0

∫ y

ϑ0

�k(s)�r(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ λμkr
(λ + μ)2 (x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ

×
{

1
λ

(∫ x

ϑ0

(
x – ρ(s)

)(
�k–1(s)ω1(s)

)λ∇s
) λ+μ

λμ

+
1
μ

(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�r–1(ϑ)ω2(ϑ)

)μ∇ϑ

) λ+μ
λμ

}

.
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Corollary 3.1 If we take 1/λ + 1/μ = 1 in (17), then

∫ x

ϑ0

∫ y

ϑ0

�k(s)�r(ϑ)
μ(s – ϑ0)λ–1 + λ(ϑ – ϑ0)μ–1 ∇s∇ϑ

≤ H∗(k, r,λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
�k–1(s)ω1(s)

)λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�r–1(ϑ)ω2(ϑ)

)μ∇ϑ

) 1
μ

, (30)

where

H∗(k, r,λ,μ, x, y) =
kr
λμ

(x – ϑ0)
λ–1
λ (y – ϑ0)

μ–1
μ .

Remark 3.3 As a particular case of Corollary 3.1, if λ = μ = 2, then we have

∫ x

ϑ0

∫ y

ϑ0

�k(s)�r(ϑ)
s + ϑ – 2ϑ0

∇s∇ϑ

≤ 1
2

kr
(

(x – ϑ0)
∫ x

ϑ0

(
x – ρ(s)

)(
�k–1(s)ω1(s)

)2∇s
) 1

2

×
(

(y – ϑ0)
∫ y

ϑ0

(
y – ρ(ϑ)

)(
�r–1(ϑ)ω2(ϑ)

)2∇ϑ

) 1
2

, (31)

which is [33, Theorem 3.3].

Remark 3.4 Clearly, for T = Z or T = R, and ϑ0 = 0, together with ρ(u) = u – 1 or ρ(u) = u,
(17) reduces to (5) or (6), respectively.

Remark 3.5 In Theorem 3.1, if we take k = r = 1, then we have

∫ x

ϑ0

∫ y

ϑ0

�(s)�(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ H∗∗(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
ω1(s)

)λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
ω2(ϑ)

)μ∇ϑ

) 1
μ

, (32)

where

H∗∗(λ,μ, x, y) =
1

λ + μ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ .

For λ = μ = 2, this is Anderson’s result [33, Remark 4].

In what follows, we give a further generalization of (32) obtained in Remark 3.5. Before
giving our results, we presume that there are � and � which are real-valued, nonnegative,
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convex and submultiplicative functions defined on [0,∞). A function ψ is submultiplica-
tive if ψ(sϑ) ≤ ψ(s)ψ(ϑ) for s,ϑ ≥ 0.

Theorem 3.6 Let s,ϑ ,ϑ0 ∈ T and �(s), �(ϑ) be as in Theorem 3.1 and let k(ξ ), l(ξ ) be two
positive functions defined for ξ ∈ [ϑ0, x]T and ξ ∈ [ϑ0, y]T. Suppose that

K(s) =
∫ s

ϑ0

k(ξ )∇ξ and L(ϑ) =
∫ ϑ

ϑ0

l(ξ )∇ξ . (33)

Then for s ∈ [ϑ0, x]T and ϑ ∈ [ϑ0, y]T, we have

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ M(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)
(

k(s)�
(

ω1(s)
k(s)

))λ

∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)
(

l(ϑ)�
(

ω2(ϑ)
l(ϑ)

))μ

∇ϑ

) 1
μ

, (34)

where

M(λ,μ, x, y) =
1

λ + μ

(∫ x

ϑ0

(
�(K(s))

K(s)

) λ
λ–1 ∇s

) λ–1
λ

×
(∫ y

ϑ0

(
�(L(ϑ))

L(ϑ)

) μ
μ–1 ∇ϑ

)μ–1
μ

.

Proof Using Jensen’s inequality (12) and the properties of �, we obtain

�
(
�(s)

)
= �

(K(s)
∫ s
ϑ0

k(ξ ) ω1(ξ )
k(ξ ) ∇ξ

∫ s
ϑ0

k(ξ )∇ξ

)

≤ �
(
K(s)

)
�

(∫ s
ϑ0

k(ξ ) ω1(ξ )
k(ξ ) ∇ξ

∫ s
ϑ0

k(ξ )∇ξ

)

≤ �(K(s))
K(s)

∫ s

ϑ0

k(ξ )�
(

ω1(ξ )
k(ξ )

)

∇ξ . (35)

Further, by (11), we find that

�
(
�(s)

) ≤ �(K(s))
K(s)

(s – ϑ0)
λ–1
λ

(∫ s

ϑ0

(

k(ξ )�
(

ω1(ξ )
k(ξ )

))λ

∇ξ

) 1
λ

. (36)

Analogously,

�
(
�(ϑ)

) ≤ �(L(ϑ))
L(ϑ)

(ϑ – ϑ0)
μ–1
μ

(∫ ϑ

ϑ0

(

l(ξ )�
(

ω2(ξ )
l(ξ )

))μ

∇ξ

) 1
μ

. (37)



Rezk et al. Advances in Difference Equations        (2020) 2020:619 Page 11 of 21

By multiplying (36) and (37), we get

�
(
�(s)

)
�

(
�(ϑ)

)

≤ (s – ϑ0)
λ–1
λ (ϑ – ϑ0)

μ–1
μ

(
�(K(s))

K(s)

(∫ s

ϑ0

(

k(ξ )�
(

ω1(ξ )
k(ξ )

))λ

∇ξ

) 1
λ
)

×
(

�(L(ϑ))
L(ϑ)

(∫ ϑ

ϑ0

(

l(ξ )�
(

ω2(ξ )
l(ξ )

))μ

∇ξ

) 1
μ
)

. (38)

Applying (24) on the term (s – ϑ0)(λ–1)/λ × (ϑ – ϑ0)(μ–1)/μ gives

�
(
�(s)

)
�

(
�(ϑ)

)

≤ λμ

λ + μ

(
(s – ϑ0)

(λ–1)(λ+μ)
λμ

λ
+

(t – ϑ0)
(μ–1)(λ+μ)

λμ

μ

)

×
(

�(K(s))
K(s)

(∫ s

ϑ0

(

k(ξ )�
(

ω1(ξ )
k(ξ )

))λ

∇ξ

) 1
λ
)

×
(

�(L(ϑ))
L(ϑ)

(∫ ϑ

ϑ0

(

l(ξ )�
(

ω2(ξ )
l(ξ )

))μ

∇ξ

) 1
μ
)

. (39)

From (39), we observe that

�(�(s))�(�(ϑ))

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

≤ 1
λ + μ

(
�(K(s))

K(s)

(∫ s

ϑ0

(

k(ξ )�
(

ω1(ξ )
k(ξ )

))λ

∇ξ

) 1
λ
)

×
(

�(L(ϑ))
L(ϑ)

(∫ ϑ

ϑ0

(

l(ξ )�
(

ω2(ξ )
l(ξ )

))μ

∇ξ

) 1
μ
)

. (40)

Integrating both sides of (40) and using (11) again with indices λ, λ/(λ–1) and μ, μ/(μ–1),
we find that

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ 1
λ + μ

(∫ x

ϑ0

(
�(K(s))

K(s)

) λ
λ–1 ∇s

) λ–1
λ

(∫ x

ϑ0

∫ s

ϑ0

(

k(ξ )�
(

ω1(ξ )
k(ξ )

))λ

∇ξ∇s
) 1

λ

×
(∫ y

ϑ0

(
�(L(ϑ))

L(ϑ)

) μ
μ–1 ∇ϑ

)μ–1
μ

(∫ y

ϑ0

∫ ϑ

ϑ0

(

l(ξ )�
(

ω2(ξ )
l(ξ )

))μ

∇ξ∇ϑ

) 1
μ

. (41)

Applying Lemma 2.5 to (41), we get

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ 1
λ + μ

(∫ x

ϑ0

(
�(K(s))

K(s)

) λ
λ–1 ∇s

) λ–1
λ

(∫ y

ϑ0

(
�(L(ϑ))

L(ϑ)

) μ
μ–1 ∇ϑ

)μ–1
μ
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×
(∫ x

ϑ0

(
x – ρ(s)

)
(

k(s)�
(

ω1(s)
k(s)

))λ

∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)
(

l(ϑ)�
(

ω2(ϑ)
l(ϑ)

))μ

∇ϑ

) 1
μ

= M(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)
(

k(s)�
(

ω1(s)
k(s)

))λ

∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)
(

l(ϑ)�
(

ω2(ϑ)
l(ϑ)

))μ

∇ϑ

) 1
μ

,

which is (34). �

Corollary 3.2 If we take 1/λ + 1/μ = 1 in (34), then we get

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))
μ(s – ϑ0)λ–1 + λ(ϑ – ϑ0)μ–1 ∇s∇ϑ

≤ M∗(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)
(

k(s)�
(

ω1(s)
k(s)

))λ

∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)
(

l(ϑ)�
(

ω2(ϑ)
l(ϑ)

))μ

∇ϑ

) 1
μ

, (42)

where

M∗(λ,μ, x, y) =
1

λμ

(∫ x

ϑ0

(
�(K(s))

K(s)

) λ
λ–1 ∇s

) λ–1
λ

×
(∫ y

ϑ0

(
�(L(ϑ))

L(ϑ)

) μ
μ–1 ∇ϑ

)μ–1
μ

.

Remark 3.7 As a particular case of Corollary 3.2, if λ = μ = 2, then we get

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))
s + ϑ – 2ϑ0

∇s∇ϑ

≤ M∗∗(x, y)
(∫ x

ϑ0

(
x – ρ(s)

)
(

k(s)�
(

ω1(s)
k(s)

))2

∇s
) 1

2

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)
(

l(ϑ)�
(

ω2(ϑ)
l(ϑ)

))2

∇ϑ

) 1
2

, (43)

where

M∗∗(x, y) =
1
2

(∫ x

ϑ0

(
�(K(s))

K(s)

)2

∇s
) 1

2
(∫ y

ϑ0

(
�(L(ϑ))

L(ϑ)

)2

∇ϑ

) 1
2

,

which is [33, Theorem 3.5].
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Remark 3.8 As a particular case of Theorem 3.6 if T = Z, ϑ0 = 0, then ρ(u) = u – 1 and (34)
reduces to

p∑

s=1

q∑

ϑ=1

�(�s)�(�ϑ )

μs
(λ–1)(λ+μ)

λμ + λϑ
(μ–1)(λ+μ)

λμ

≤ M0(λ,μ, p, q)

( p∑

s=1

(p – s + 1)
(

ks�

(
ωs

ks

))λ
) 1

λ

×
( q∑

ϑ=1

(q – ϑ + 1)
(

lϑ�

(
ωϑ

lϑ

))μ
) 1

μ

, (44)

where

M0(λ,μ, p, q) =
1

λ + μ

( p∑

s=1

(
�(Ks)

Ks

) λ
λ–1

) λ–1
λ

( q∑

ϑ=1

(
�(Lϑ )

Lϑ

) μ
μ–1

)μ–1
μ

,

which is [13, Theorem 2.2].

Remark 3.9 As a particular case of Theorem 3.6 if T = R, t0 = 0, then ρ(u) = u and (34)
reduces to

∫ x

0

∫ y

0

�(�(s))�(�(ϑ))

μs
(λ–1)(λ+μ)

λμ + λϑ
(μ–1)(λ+μ)

λμ

ds dt

≤ M∗
0(λ,μ, x, y)

(∫ x

0
(x – s)

(

k(s)�
(

ω1(s)
k(s)

))λ

ds
) 1

λ

×
(∫ y

0
(y – ϑ)

(

l(ϑ)�
(

ω2(ϑ)
l(ϑ)

))μ

dϑ

) 1
μ

. (45)

where

M∗
0(λ,μ, x, y) =

1
λ + μ

(∫ x

0

(
�(K(s))

K(s)

) λ
λ–1

ds
) λ–1

λ

×
(∫ y

0

(
�(L(ϑ))

L(ϑ)

) μ
μ–1

dϑ

)μ–1
μ

,

which is [13, Theorem 3.2].

Our next outcome deals with a further generalization of the inequality in (34).

Theorem 3.10 Let s,ϑ ,ϑ0 ∈ T, and ω1, ω2 be as in Theorem 3.1. Define

�(s) =
1

s – ϑ0

∫ s

ϑ0

ω1(ξ )∇ξ and �(ϑ) =
1

ϑ – ϑ0

∫ ϑ

ϑ0

ω2(ξ )∇ξ . (46)
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Then for s ∈ [ϑ0, x]T and ϑ ∈ [ϑ0, y]T, we have

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))(s – ϑ0)(ϑ – ϑ0)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ N(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

, (47)

where

N(λ,μ, x, y) =
1

λ + μ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ .

Proof Based on the assumptions and the inequality of Jensen (12), we can see that

�
(
�(s)

)
= �

(
1

s – ϑ0

∫ s

ϑ0

ω1(ξ )∇ξ

)

≤ 1
s – ϑ0

∫ s

ϑ0

�
(
ω1(ξ )

)∇ξ . (48)

By applying (11) to (48) with indices λ, λ/(λ – 1), we have

�
(
�(s)

) ≤ 1
s – ϑ0

(s – ϑ0)
λ–1
λ

(∫ s

ϑ0

(
�

(
ω1(ξ )

))λ∇ξ

) 1
λ

. (49)

This implies that

�
(
�(s)

)
(s – ϑ0) ≤ (s – ϑ0)

λ–1
λ

(∫ s

ϑ0

(
�

(
ω1(ξ )

))λ∇ξ

) 1
λ

. (50)

Analogously,

�
(
�(ϑ)

)
(ϑ – ϑ0) ≤ (ϑ – ϑ0)

μ–1
μ

(∫ t

ϑ0

(
�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (51)

From (50) and (51), we get

�
(
�(s)

)
�

(
�(ϑ)

)
(s – ϑ0)(ϑ – ϑ0)

≤ (s – ϑ0)
λ–1
λ (ϑ – ϑ0)

μ–1
μ

(∫ s

ϑ0

(
�

(
ω1(ξ )

))λ∇ξ

) 1
λ

×
(∫ t

ϑ0

(
�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (52)
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Applying (24) to the term (s – ϑ0)(λ–1)/λ × (ϑ – ϑ0)(μ–1)/μ gives

�
(
�(s)

)
�

(
�(ϑ)

)
(s – ϑ0)(ϑ – ϑ0)

≤ λμ

λ + μ

(
(s – ϑ0)

(λ–1)(λ+μ)
λμ

λ
+

(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

μ

)

×
(∫ s

ϑ0

(
�

(
ω1(ξ )

))λ∇ξ

) 1
λ
(∫ t

ϑ0

(
�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (53)

From (53), we have

�(�(s))�(�(ϑ))(s – ϑ0)(ϑ – ϑ0)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

≤ 1
λ + μ

(∫ s

ϑ0

(
�

(
ω1(ξ )

))λ∇ξ

) 1
λ
(∫ t

ϑ0

(
�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (54)

Integrating both sides of (54) and using (11) again with indices λ, λ/(λ–1) and μ, μ/(μ–1),
we get

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))(s – ϑ0)(ϑ – ϑ0)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ 1
λ + μ

(x – ϑ0)
λ–1
λ (y – ϑ0)

μ–1
μ

(∫ x

ϑ0

(∫ s

ϑ0

(
�

(
ω1(ξ )

))λ∇ξ

)

∇s
) 1

λ

×
(∫ y

ϑ0

(∫ ϑ

ϑ0

(
�

(
ω2(ξ )

))μ∇ξ

)

∇ϑ

) 1
μ

. (55)

Applying Lemma 2.5 to (55), we find that

∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))(s – ϑ0)(ϑ – ϑ0)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ 1
λ + μ

(x – ϑ0)
λ–1
λ (y – ϑ0)

μ–1
μ

×
(∫ x

ϑ0

(
x – ρ(s)

)(
�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

= N(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

,

which is (47). �
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Corollary 3.3 If we take 1/λ + 1/μ = 1 in (47), then we get
∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))(s – ϑ0)(ϑ – ϑ0)
μ(s – ϑ0)λ–1 + λ(ϑ – ϑ0)μ–1 ∇s∇ϑ

≤ N∗(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

, (56)

where

N∗(λ,μ, x, y) =
1

λμ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ .

Remark 3.11 As a particular case of Corollary 3.3, if λ = μ = 2, then we get
∫ x

ϑ0

∫ y

ϑ0

�(�(s))�(�(ϑ))(s – ϑ0)(ϑ – ϑ0)
s + ϑ – 2ϑ0

∇s∇ϑ

≤ 1
2

(

(x – ϑ0)
∫ x

ϑ0

(
x – ρ(s)

)(
�

(
ω1(s)

))2∇s
) 1

2

×
(

(y – ϑ0)
∫ y

ϑ0

(
y – ρ(ϑ)

)(
�

(
ω2(ϑ)

))2∇ϑ

) 1
2

, (57)

which is [33, Theorem 3.6].

Remark 3.12 As a particular case of Theorem 3.10, if T = Z, ϑ0 = 0, then ρ(u) = u – 1 and
(47) reduces to

p∑

s=1

q∑

ϑ=1

�(�s)�(�ϑ )sϑ

μs
(λ–1)(λ+μ)

λμ + λϑ
(μ–1)(λ+μ)

λμ

≤ N0(λ,μ, p, q)

( p∑

s=1

(p – s + 1)
(
�(ωs)

)λ

) 1
λ
( q∑

ϑ=1

(q – ϑ + 1)
(
�(ωϑ )

)μ

) 1
μ

, (58)

where

N0(λ,μ, p, q) =
1

λ + μ
p

λ–1
λ q

μ–1
μ ,

which is [13, Theorem 2.3].

Remark 3.13 As a particular state of Theorem 3.10, if T = R, t0 = 0, then ρ(u) = u and (47)
reduces to

∫ x

0

∫ y

0

�(�(s))�(�(ϑ))sϑ

μs
(λ–1)(λ+μ)

λμ + λϑ
(μ–1)(λ+μ)

λμ

ds dϑ

≤ N∗
0 (λ,μ, x, y)

(∫ x

0
(x – s)

(
�

(
ω1(s)

))λ ds
) 1

λ

×
(∫ y

0
(y – ϑ)

(
�

(
ω2(ϑ)

))μ dϑ

) 1
μ

, (59)



Rezk et al. Advances in Difference Equations        (2020) 2020:619 Page 17 of 21

where

N∗
0 (λ,μ, x, y) =

1
λ + μ

x
λ–1
λ y

μ–1
μ ,

which is [13, Theorem 3.3].

Theorem 3.14 Let s,ϑ ,ϑ0 ∈ T and ω1, ω2, k, l, H , L be as in Theorem 3.6. Define

�(s) =
1

K(s)

∫ s

ϑ0

k(ξ )ω1(ξ )∇ξ and �(ϑ) =
1

L(ϑ)

∫ ϑ

ϑ0

l(ξ )ω2(ξ )∇ξ . (60)

Then for s ∈ [ϑ0, y]T and ϑ ∈ [ϑ0, x]T, we get

∫ x

ϑ0

∫ y

ϑ0

K(s)L(ϑ)�(�(s))�(�(ϑ))

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ W (λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
k(s)�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
l(ϑ)�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

, (61)

where

W (λ,μ, x, y) =
1

λ + μ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ .

Proof Based on the assumptions and the inequality of Jensen (12), we find that

�
(
�(s)

)
= �

(
1

K(s)

∫ s

ϑ0

k(ξ )ω1(ξ )∇ξ

)

≤ 1
K(s)

∫ s

ϑ0

k(ξ )�
(
ω1(ξ )

)∇ξ . (62)

By applying (11) to (62) with indices λ, λ/(λ – 1), we have

�
(
�(s)

) ≤ 1
K(s)

(s – ϑ0)
λ–1
λ

(∫ s

ϑ0

(
k(ξ )�

(
ω1(ξ )

))λ∇ξ

) 1
λ

. (63)

From (63), we get

�
(
�(s)

)
K(s) ≤ (s – ϑ0)

λ–1
λ

(∫ s

ϑ0

(
k(ξ )�

(
ω1(ξ )

))λ∇ξ

) 1
λ

. (64)

Similarly, we also obtain

�(�(ϑ)L(ϑ) ≤ (ϑ – ϑ0)
μ–1
μ

(∫ ϑ

ϑ0

(
l(ξ )�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (65)
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From (64) and (65), we find that

K(s)L(ϑ)�
(
�(s)

)
�(�(ϑ)

≤ (s – ϑ0)
λ–1
λ (ϑ – ϑ0)

μ–1
μ

(∫ s

ϑ0

(
k(ξ )�

(
ω1(ξ )

))λ∇ξ

) 1
λ

×
(∫ ϑ

ϑ0

(
l(ξ )�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (66)

Applying (24) to the term (s – ϑ0)(λ–1)/λ × (ϑ – ϑ0)(μ–1)/μ gives

K(s)L(ϑ)�
(
�(s)

)
�(�(ϑ)

≤ λμ

λ + μ

(
(s – ϑ0)

(λ–1)(λ+μ)
λμ

λ
+

(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

μ

)

×
(∫ s

ϑ0

(
k(ξ )�

(
ω1(ξ )

))λ∇ξ

) 1
λ
(∫ ϑ

ϑ0

(
l(ξ )�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (67)

This implies that

K(s)L(ϑ)�(�(s))�(�(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

≤ 1
λ + μ

(∫ s

ϑ0

(
k(ξ )�

(
ω1(ξ )

))λ∇ξ

) 1
λ
(∫ ϑ

ϑ0

(
l(ξ )�

(
ω2(ξ )

))μ∇ξ

) 1
μ

. (68)

Integrating both sides of (68) and using (11) again with indices λ, λ/(λ–1) and μ, μ/(μ–1),
we get

∫ x

ϑ0

∫ y

ϑ0

K(s)L(ϑ)�(�(s))�(�(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ 1
λ + μ

(s – ϑ0)
λ–1
λ (ϑ – ϑ0)

μ–1
μ

(∫ x

ϑ0

(∫ s

ϑ0

(
k(ξ )�

(
ω1(ξ )

))λ∇ξ

)

∇s
) 1

λ

×
(∫ y

ϑ0

(∫ ϑ

ϑ0

(
l(ξ )�

(
ω2(ξ )

))μ∇ξ

)

∇ϑ

) 1
μ

. (69)

Applying Lemma 2.5 to (69), we find that

∫ x

ϑ0

∫ y

ϑ0

K(s)L(ϑ)�(�(s))�(�(ϑ)

μ(s – ϑ0)
(λ–1)(λ+μ)

λμ + λ(ϑ – ϑ0)
(μ–1)(λ+μ)

λμ

∇s∇ϑ

≤ W (λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
k(s)�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
l(ϑ)�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

,

which is (61). �
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Corollary 3.4 If we take 1/λ + 1/μ = 1 in (61), then
∫ x

ϑ0

∫ y

ϑ0

K(s)L(ϑ)�(�(s))�(�(ϑ)
μ(s – ϑ0)λ–1 + λ(ϑ – ϑ0)μ–1 ∇s∇ϑ

≤ W ∗(λ,μ, x, y)
(∫ x

ϑ0

(
x – ρ(s)

)(
k(s)�

(
ω1(s)

))λ∇s
) 1

λ

×
(∫ y

ϑ0

(
y – ρ(ϑ)

)(
l(ϑ)�

(
ω2(ϑ)

))μ∇ϑ

) 1
μ

, (70)

where

W ∗(λ,μ, x, y) =
1

λμ
(x – ϑ0)

λ–1
λ (y – ϑ0)

μ–1
μ .

Remark 3.15 As a particular case of Corollary 3.4, if λ = μ = 2, then we get
∫ x

ϑ0

∫ y

ϑ0

K(s)L(ϑ)�(�(s))�(�(ϑ)
s + ϑ – 2ϑ0

∇s∇ϑ

≤ 1
2

(

(x – ϑ0)
∫ x

ϑ0

(
x – ρ(s)

)(
k(s)�

(
ω1(s)

))2∇s
) 1

2

×
(

(y – ϑ0)
∫ y

ϑ0

(
y – ρ(ϑ)

)(
l(ϑ)�

(
ω2(ϑ)

))2∇ϑ

) 1
2

, (71)

which is [33, Theorem 3.7].

Remark 3.16 As a particular case of Theorem 3.14, if T = Z, ϑ0 = 0, then ρ(u) = u – 1 and
(61) reduces to

p∑

s=1

q∑

ϑ=1

KsLϑ�(�s)�(�ϑ )

μs
(λ–1)(λ+μ)

λμ + λϑ
(μ–1)(λ+μ)

λμ

≤ W0(λ,μ, p, q)

( p∑

s=1

(p – s + 1)
(
ks�(ωs)

)λ

) 1
λ

×
( q∑

ϑ=1

(q – ϑ + 1)
(
lϑ�(ωϑ )

)μ

) 1
μ

, (72)

where

W0(λ,μ, p, q) =
1

λ + μ
p

λ–1
λ q

μ–1
μ ,

which is [13, Theorem 2.4].

Remark 3.17 As a particular case of Theorem 3.14, if T = R, t0 = 0, then ρ(u) = u and (61)
reduces to

∫ x

0

∫ y

0

K(s)L(ϑ)�(�(s))�(�(ϑ))

μs
(λ–1)(λ+μ)

λμ + λϑ
(μ–1)(λ+μ)

λμ

ds dϑ

≤ W ∗
0 (λ,μ, x, y)

(∫ x

0
(x – s)

(
k(s)�

(
ω1(s)

))λ ds
) 1

λ

×
(∫ y

0
(y – ϑ)

(
l(ϑ)�

(
ω2(ϑ)

))μ dϑ

) 1
μ

, (73)
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where

W ∗
0 (λ,μ, x, y) =

1
λ + μ

x
λ–1
λ y

μ–1
μ ,

which is [13, Theorem 3.4].

Remark 3.18 Clearly, Theorems 3.1, 3.6, 3.10, and 3.14 present the corresponding results
of Theorems 6, 9, 12, and 15 in [18], respectively, for time scale delta calculus. Likewise,
Corollaries 3.1, 3.2, 3.3, and 3.4 display the corresponding results of Theorems 3.1, 3.2,
3.3, and 3.4 in [17], respectively, for delta time scale calculus.
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