
Chu et al. Advances in Difference Equations        (2020) 2020:594 
https://doi.org/10.1186/s13662-020-03059-0

R E S E A R C H Open Access

Generalizations of Hermite–Hadamard like
inequalities involving χκ-Hilfer fractional
integrals
Yu-Ming Chu1, Muhammad Uzair Awan2* , Sadia Talib2, Muhammad Aslam Noor3 and
Khalida Inayat Noor3

*Correspondence:
awan.uzair@gmail.com
2Department of Mathematics,
Government College University,
Faisalabad, Pakistan
Full list of author information is
available at the end of the article

Abstract
The main objective of this paper is to obtain a new κ-fractional analogue of
Hermite–Hadamard’s inequality using the class of s-convex functions and χκ -Hilfer
fractional integrals. In order to obtain other main results of the paper we derive two
new fractional integral identities using the definitions of χκ -Hilfer fractional integrals.
For the validity of these identities we also take some particular examples. Using these
identities we then obtain some more new variants of Hermite–Hadamard’s inequality
using s-convex functions.
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1 Introduction
Theory of convexity has played significant role in the development of theory of inequali-
ties. Many famous results known in theory of inequalities are direct consequences of the
applications of convex functions. In this regard Hermite–Hadamard’s inequality which
can be viewed as necessary and sufficient condition for a function to be convex is one of
the most studied result. In recent years it has been observed that a number of new general-
izations of classical Hermite–Hadamard’s inequality have been obtained in the literature.
Dragomir and Pearce [3] has written a very informative monograph on some recent de-
velopments and applications of Hermite–Hadamard’s inequality.

Sarikaya et al. [16] utilized the concepts of fractional calculus and obtained frac-
tional analogues of Hermite–Hadamard’s inequality. This particular article has opened
a new venue of research and consequently several new fractional analogues of Hermite–
Hadamard’s inequality have been obtained using different approaches. Since the birth of
fractional calculus this subject has received special attention by the mathematicians and
resultantly the classical concepts of fractional calculus have been extended and general-
ized in different directions according to the need of problem. This motivated inequalities
experts and as a result they used new generalized concepts of fractional calculus in ob-
taining novel generalized fractional analogues of classical inequalities.
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The main motivation of this paper is to derive some new fractional analogues of
Hermite–Hadamard’s inequality using χκ -Hilfer fractional integrals via s-convex func-
tions of Breckner type. In order to obtain the main results of the paper we first derive
new fractional integral identities. To check the validity of these new identities we take
some particular examples. We hope that the ideas and techniques of this paper will in-
spire interested readers working in this field.

Before we proceed, let us recall some previously known concepts and results which will
be used during the study of this paper.

Riemann–Liouville fractional integrals are defined as follows.

Definition 1.1 ([8]) Let � ∈ L1[a, b]. Then Riemann–Liouville integrals Jα
a+� and Jα

b–� of
order α > 0 with a ≥ 0 are defined by

Jα
a+�(x) =

1
�(α)

∫ x

a
(x – λ)α–1�(λ) dλ, x > a,

and

Jα
b–�(x) =

1
�(α)

∫ b

x
(λ – x)α–1�(λ) dλ, x < b,

where

�(α) =
∫ ∞

0
e–xxα–1 dx,

is the well-known Gamma function.

Mubeen and Habibullah [10] were the first to define the notion of κ-fractional integrals.
Sarikaya et al. [15] introduced the κ-analogue of Riemann–Liouville fractional integrals
and discussed some of its basic properties. They defined this concept in the following way:
To be more precise let � be piecewise continuous on I∗ = (0,∞) and integrable on any fi-
nite subinterval of I = [0,∞]. Then, for λ > 0, we consider κ-Riemann–Liouville fractional
integral of � of order α

kJα
a �(x) =

1
κ�κ (α)

∫ x

a
(x – λ)

α
κ –1�(λ) dλ, x > a,κ > 0.

If κ → 1, then κ-Riemann–Liouville fractional integrals reduces to classical Riemann–
Liouville fractional integral.

Another important generalization of Riemann–Liouville fractional integrals the gener-
alized R–L integrals with respect to another function χ (in the Hilfer sense [5]).

Definition 1.2 ([8]) Let (a, b) (–∞ ≤ a < b ≤ ∞) be a finite interval of the real line R and
α > 0. Also let χ (x) be an increasing and positive monotone function on (a, b], having a
continuous derivative χ ′(x) on (a, b). The left and right-sided χ -fractional integrals in the
Hilfer sense of a function � with respect to another function χ on [a, b] are defined as

Iα;χ
a+ �(x) =

1
�(α)

∫ x

a
χ ′(λ)

(
χ (x) – χ (λ)

)α–1
�(λ) dλ,
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Iα;χ
b– �(x) =

1
�(α)

∫ b

x
χ ′(λ)

(
χ (λ) – χ (x)

)α–1
�(λ) dλ,

respectively; �(·) is the gamma function.

Liu et al. [9] and Zhao et al. [20] obtained some interesting results pertaining to
Hermite–Hadamard’s inequality involving χκ -Riemann–Liouville fractional integrals.

Recently Awan et al. [1] introduced the notion of χκ -Hilfer fractional integrals and ob-
tained some new variants of Hermite–Hadamard’s inequality.

Definition 1.3 ([1]) Let (a, b) (–∞ ≤ a < b ≤ ∞) be a finite interval of the real line R and
α > 0. Also let χ (x) be an increasing and positive monotone function on (a, b], having a
continuous derivative χ ′(x) on (a, b). The left- and right-sided χκ -fractional integrals in
the Hilfer sense of a function � with respect to another function χκ on [a, b] and κ > 0 are
defined as

κ Iα;χ
a+ �(x) =

1
κ�κ (α)

∫ x

a
χ ′(λ)

(
χ (x) – χ (λ)

) α
κ –1

�(λ) dλ,

κ Iα;χ
b– �(x) =

1
κ�κ (α)

∫ b

x
χ ′(λ)

(
χ (λ) – χ (x)

) α
κ –1

�(λ) dλ,

respectively;

�κ (x) =
∫ ∞

0
λx–1e– λκ

κ dλ, 	(x) > 0,

is the κ-analogue of the gamma function.

By taking κ → 1, Definition 1.3 reduces to Definition 1.2. This shows that χκ -fractional
integrals in the Hilfer sense is the significant generalization of χ -fractional integrals in the
Hilfer sense.

The κ-analogues of beta function and incomplete beta function are, respectively, defined
as

Bκ (x, y) =
1
κ

∫ 1

0
λ

x
κ –1(1 – λ)

x
κ –1 dλ

and

Bκ (z; x, y) =
1
κ

∫ z

0
λ

x
κ –1(1 – λ)

b
y –1 dλ.

For some more interesting details and applications about some special functions and their
generalizations, see [4, 6, 7, 11–14, 17–19].

Proposition 1.4 Let ai, bi > 0 for i = 1, 2, . . . , n, then

n∑
i=1

(ai + bi)r ≤
n∑

i=1

ar
i +

n∑
i=1

br
i (1.1)

for 0 < r < 1.
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We now define the class of s-convex functions of Breckner type.

Definition 1.5 ([2]) Let s ∈ (0, 1]. A function � : I ⊂ R+ → R+ is said to be an s-convex
function, if

�
(
λx1 + (1 – λ)x2

) ≤ λs�(x1) + (1 – λ)s�(x2), ∀x1, x2 ∈ I,λ ∈ [0, 1].

2 Main results
We now discuss our main results. The first result is the fractional analogue of Hermite–
Hadamard’s inequality using s-convexity property of the functions involving χκ -Hilfer
fractional integrals.

Theorem 2.1 Let 0 ≤ a1 < a2 and � : [a1, a2] → R be a positive function and � ∈
L1[a1, a2], Also suppose that � is an s-convex function on [a1, a2], χ (x) is an increasing
and positive monotone function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2)
and α ∈ (0, 1), then, for κ > 0, we have

2s–1�

(
a1 + a2

2

)

≤ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

≤
[

3α

α + ks
–

α

(α + sk)2 α+sk
κ

]
�(a1) + �(a2)

2
.

Proof Let x1, x2 ∈ [a1, a2] and using the s-convexity of �, we have

�

(
x1 + x2

2

)
≤ �(x1)

2s +
�(x2)

2s .

Let x1 = λa1 + (1 – λ)a2 and x2 = (1 – λ)a1 + λa2, we have

2s�

(
a1 + a2

2

)
≤ �

(
λa1 + (1 – λ)a2

)
+ �

(
(1 – λ)a1 + λa2

)
.

Multiplying both sides by λ
α
κ –1 and then integrating, we have

2sκ

α
�

(
a1 + a2

2

)
≤

∫ 1

0
λ

α
κ –1�

(
λa1 + (1 – λ)a2

)
dλ +

∫ 1

0
λ

α
κ –1�

(
(1 – λ)a1 + λa2

)
dλ.

Now

�κ (α + κ)
2(a2 – a1) α

κ

[
κ
Iα:χ
χ–1(a1)+ (� ◦ χ )

(
χ–1(a2)

)
+κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
�κ (α + κ)

2(a2 – a1) α
κ

1
κ�κ (α)

[∫ χ–1(a2)

χ–1(a1)

(
a2 – χ (v)

) α
κ (� ◦ χ )(v)χ ′(v) dv

+
∫ χ–1(a2)

χ–1(a1)

(
χ (v) – a1

) α
κ (� ◦ χ )(v)χ ′(v) dv

]
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=
α

2κ

[∫ 1

0
λ

α
κ –1�

(
λa1 + (1 – λ)a2

)
dλ +

∫ 1

0
λ

α
κ –1�

(
(1 – λ)a1 + λa2

)
dλ

]

≥ 2s–1�

(
a1 + a2

2

)
.

To prove the right-hand side, we use the fact that � is an s-convex function, then

�
(
λa1 + (1 – λ)a2

) ≤ λs�(a1) + (1 – λ)s�(a2)

and

�
(
(1 – λ)a1 + λa2

) ≤ (1 – λ)s�(a1) + λs�(a2).

Now

�
(
λa1 + (1 – λ)a2

)
+ �

(
(1 – λ)a1 + λa2

) ≤ (
λs + (1 – λ)s)(�(a1) + �(a2)

)
.

Multiplying both sides by λ
α
κ –1 and then integrating with respect to λ on [0, 1], we obtain

∫ 1

0
λ

α
κ –1�

(
λa1 + (1 – λ)a2

)
dλ +

∫ 1

0
λ

α
κ –1�

(
(1 – λ)a1 + λa2

)
dλ

≤
[

3κ

α + ks
–

κ

(α + sk)2 α+sk
κ

][
�(a1) + �(a2)

]
.

This implies

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

≤
[

3α

α + ks
–

α

(α + sk)2 α+sk
κ

]
�(a1) + �(a2)

2
.

The proof is complete. �

We now prove two new fractional integral identities which will be used as auxiliary re-
sults in the development of our next results.

Lemma 2.2 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2). Also
suppose that � ∈ L[a1, a2], then, for κ > 0, we have

�(a1) + �(a2)
2

–
�κ (α + κ)

2(a2 – a1) α
κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
a2 – a1

2

∫ 1

0

[
(1 – λ)

α
κ – λ

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ.

Proof From [1], we have

�(a1) + �(a2)
2

–
�κ (α + κ)

2(a2 – a1) α
κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
1

2(a2 – a1) α
κ

∫ χ–1(a2)

χ–1(a1)

[(
χ (v) – a1

) α
κ –

(
a2 – χ (v)

) α
κ
](

�′ ◦ χ
)
(v)χ ′(v) dv
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=
1
2

∫ χ–1(a2)

χ–1(a1)

[(
χ (v) – a1

a2 – a1

) α
κ

–
(

a2 – χ (v)
a2 – a1

) α
κ
](

�′ ◦ χ
)
(v)χ ′(v) dv

=
a2 – a1

2

∫ 1

0

[
(1 – λ)

α
κ – λ

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ.

This completes the proof. �

Example 2.3 Let a1 = 2, a2 = 3, α = 1
2 , κ = 2, �(x) = x2, χ (x) = x. Then all the assumptions

in Lemma 2.2 are satisfied.

One can observe that �(a1)+�(a2)
2 = 13

2 . We have

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
�2( 1

2 )
8

[
1

�2( 1
2 )

∫ 3

2
λ2(3 – λ)– 3

4 dλ +
1

�2( 1
2 )

∫ 3

2
λ2(λ – 2)– 3

4 dλ

]
=

577
90

.

It follows that

�(a1) + �(a2)
2

–
�κ (α + κ)

2(a2 – a1) α
κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
4

45
.

On the other hand

a2 – a1

2

∫ 1

0

[
(1 – λ)

α
κ – λ

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ

=
1
2

∫ 1

0

[
(1 – λ)

1
4 – λ

1
4
]
(6 – 2λ) dλ =

4
45

.

Example 2.4 Let a1 = 2, a2 = 3, α = 1
2 , κ = 1

2 , �(x) = x2, χ (x) = x. Then all the assumptions
in Lemma 2.2 are satisfied.

One can observe that �(a1)+�(a2)
2 = 13

2 . We have

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
� 1

2
( 1

2 )

2

[
1

� 1
2

( 1
2 )

∫ 3

2
λ2 dλ +

1
� 1

2
( 1

2 )

∫ 3

2
λ2 dλ

]
=

19
3

.

It follows that

�(a1) + �(a2)
2

–
�κ (α + κ)

2(a2 – a1) α
κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
1
6

.
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On the other hand

a2 – a1

2

∫ 1

0

[
(1 – λ)

α
κ – λ

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ

=
1
2

∫ 1

0
(1 – 2λ)(6 – 2λ) dλ =

1
6

.

Lemma 2.5 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2). Also
suppose that � ∈ L[a1, a2], then, for κ > 0, we have

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)

=
a2 – a1

2

∫ 1

0

[
μ + λ

α
κ – (1 – λ)

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ,

where

μ =

⎧⎨
⎩

1, for 0 ≤ λ < 1
2 ,

–1, for 1
2 ≤ λ < 1.

Proof It suffices to show that

a2 – a1

2

∫ 1

0
μ�′(λa1 + (1 – λ)a2

)
dλ

=
a2 – a1

2

∫ 1
2

0
�′(λa1 + (1 – λ)a2

)
dλ –

a2 – a1

2

∫ 1

1
2

�′(λa1 + (1 – λ)a2
)

dλ

=
�(a2) – �( a1+a2

2 )
2

+
�(a1) – �( a1+a2

2 )
2

=
�(a1) + �(a2)

2
– �

(
a1 + a2

2

)
.

By Lemma 2.2, we have

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)

=
[

�(a1) + �(a2)
2

– �

(
a1 + a2

2

)]

–
{

�(a1) + �(a2)
2

–
�κ (α + κ)

2(a2 – a1) α
κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]}

=
a2 – a1

2

∫ 1

0
μ�′(λa1 + (1 – λ)a2

)
dλ
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–
a2 – a1

2

∫ 1

0

[
(1 – λ)

α
κ – λ

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ

=
a2 – a1

2

∫ 1

0

[
μ + λ

α
κ – (1 – λ)

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ.

This completes the proof. �

Example 2.6 Let a1 = 2, a2 = 3, α = 1
2 , κ = 2, �(x) = x2, χ (x) = x. Then all the assumptions

in the Lemma 2.5 are satisfied.

One can observe that �( a1+a2
2 ) = 25

4 .

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
�2( 1

2 )
8

[
1

�2( 1
2 )

∫ 3

2
λ2(3 – λ)– 3

4 dλ +
1

�2( 1
2 )

∫ 3

2
λ2(λ – 2)– 3

4 dλ

]

=
577
90

.

It follows that

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)

=
29

180
.

On the other hand

a2 – a1

2

∫ 1

0

[
μ + λ

α
κ – (1 – λ)

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ

=
a2 – a1

2

∫ 1

0
μ�′(λa1 + (1 – λ)a2

)
dλ

–
a2 – a1

2

∫ 1

0

[
λ

α
κ – (1 – λ)

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ =

29
180

.

Example 2.7 Let a1 = 2, a2 = 3, α = 1
2 , κ = 1

2 , �(x) = x2, χ (x) = x. Then all the assumptions
in Lemma 2.5 are satisfied.

One can observe that �( a1+a2
2 ) = 25

4 . We have

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]

=
� 1

2
( 1

2 )

2

[
1

� 1
2

( 1
2 )

∫ 3

2
λ2 dλ +

1
�2( 1

2 )

∫ 3

2
λ2 dλ

]
=

19
3

.
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It follows that

�κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)

=
1

12
.

On the other hand

a2 – a1

2

∫ 1

0

[
μ + λ

α
κ – (1 – λ)

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ

=
a2 – a1

2

∫ 1

0
μ�′(λa1 + (1 – λ)a2

)
dλ

–
a2 – a1

2

∫ 1

0

[
λ

α
κ – (1 – λ)

α
κ
]
�′(λa1 + (1 – λ)a2

)
dλ =

1
12

.

Theorem 2.8 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2).
Also suppose that |�′| is s-convex on [a1, a2], χ (x) is an increasing and positive monotone
function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2) and α ∈ (0, 1), then, for
κ > 0, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣
≤ a2 – a1

2(1 + s)
(∣∣�′(a1)

∣∣ +
∣∣�′(a2)

∣∣).

Proof Using Lemma 2.5 and the fact that |�′| is s-convex, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ a2 – a1

2

∫ 1

0

∣∣μ + λ
α
κ – (1 – λ)

α
κ

∣∣∣∣�′(λa1 + (1 – λ)a2
)∣∣dλ

≤ a2 – a1

2

[∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
][

λs∣∣�′(a1)
∣∣ + (1 – λ)s∣∣�′(a2)

∣∣]dλ

+
∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
][

λs∣∣�′(a1)
∣∣ + (1 – λ)s∣∣�′(a2)

∣∣]dλ

]

=
a2 – a1

2

{∣∣�′(a1)
∣∣
[∫ 1

2

0

[
λs – λs(1 – λ)

α
κ + λ

α
κ +s]dλ

+
∫ 1

1
2

[
λs + λs(1 – λ)

α
κ – λ

α
κ +s]dλ

]

+
∣∣�′(a2)

∣∣
[∫ 1

2

0

[
(1 – λ)s + λ

α
κ (1 – λ)s – (1 – λ)

α
κ +s]dλ

+
∫ 1

1
2

[
(1 – λ)s – λ

α
κ (1 – λ)s + (1 – λ)

α
κ +s]dλ

]}

≤ a2 – a1

2

{∣∣�′(a1)
∣∣
[∫ 1

2

0
λs dλ +

∫ 1

1
2

λs dλ

]



Chu et al. Advances in Difference Equations        (2020) 2020:594 Page 10 of 15

+
∣∣�′(a2)

∣∣
[∫ 1

2

0
(1 – λ)s dλ +

∫ 1

1
2

(1 – λ)s dλ

]}

=
a2 – a1

2

{∣∣�′(a1)
∣∣
∫ 1

0
λs dλ +

∣∣�′(a2)
∣∣
∫ 1

0
(1 – λ)s dλ

}

=
a2 – a1

2(1 + s)
(∣∣�′(a1)

∣∣ +
∣∣�′(a2)

∣∣).

This completes the proof. �

Theorem 2.9 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2).
Also suppose that |�′|q is s-convex on [a1, a2], χ (x) is an increasing and positive monotone
function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2) and α ∈ (0, 1), then, for
κ > 0, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ (a2 – a1)
(

κ

(αp + κ)2
αp+κ

κ

) 1
p
(

1
(s + 1)2s+1

) 1
q {(∣∣�′(a1)

∣∣q +
(
2s+1 – 1

)∣∣�′(a2)
∣∣q) 1

q

+
(
2s+1 – 1

)∣∣�′(a1)
∣∣q +

∣∣�′(a2)
∣∣q)

1
q
}

, (2.1)

where p–1 + q–1 = 1

Proof Using Lemma 2.5, Hölder’s integral inequality and the fact that |�′|q is s-convex,
we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ a2 – a1

2

∫ 1

0

∣∣μ + λ
α
κ – (1 – λ)

α
κ

∣∣∣∣�′(λa1 + (1 – λ)a2
)∣∣dλ

≤ a2 – a1

2

[∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣dλ

+
∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣dλ

]

≤ a2 – a1

2

[(∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]p dλ

) 1
p
(∫ 1

2

0

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ

) 1
q

+
(∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]p dλ

) 1
p
(∫ 1

1
2

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ

) 1
q
]

≤ a2 – a1

2

(∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]p dλ

) 1
p

×
{(∫ 1

2

0

(
λs∣∣�′(a1)

∣∣q + (1 – λ)s∣∣�′(a2)
∣∣q)dλ

) 1
q

+
(∫ 1

1
2

(
λs∣∣�′(a1)

∣∣q + (1 – λ)s∣∣�′(a2)
∣∣q)dλ

) 1
q
}
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=
a2 – a1

2

(∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]p dλ

) 1
p

×
{(

1
(s + 1)2s+1

∣∣�′(a1)
∣∣q +

1
s + 1

(
1 –

1
2s+1

)∣∣�′(a2)
∣∣q

) 1
q

+
(

1
s + 1

(
1 –

1
2s+1

)∣∣�′(a1)
∣∣q +

1
(s + 1)2s+1

∣∣�′(a2)
∣∣q

) 1
q
}

≤ a2 – a1

2

(
2p

∫ 1
2

0
λ

αp
κ dλ

) 1
p
(

1
(s + 1)2s+1

) 1
q {(∣∣�′(a1)

∣∣q +
(
2s+1 – 1

)∣∣�′(a2)
∣∣q) 1

q

+
(
2s+1 – 1

)∣∣�′(a1)
∣∣q +

∣∣�′(a2)
∣∣q)

1
q
}

= (a2 – a1)
(

κ

(αp + κ)2
αp+κ

κ

) 1
p
(

1
(s + 1)2s+1

) 1
q {(∣∣�′(a1)

∣∣q +
(
2s+1 – 1

)∣∣�′(a2)
∣∣q) 1

q

+
(
2s+1 – 1

)∣∣�′(a1)
∣∣q +

∣∣�′(a2)
∣∣q)

1
q
}

.

This completes the proof. �

Corollary 2.10 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2).
Also suppose that |�′|q, q > 1, is s-convex on [a1, a2], χ (x) is an increasing and positive
monotone function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2) and α ∈
(0, 1), then, for κ > 0, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ (a2 – a1)
(

κ

(αp + κ)2
αp+κ

κ

) 1
p
(

1
(s + 1)2s+1

) 1
q

× (
1 +

(
2s+1 – 1

) 1
q
)(∣∣�′(a1)

∣∣q +
∣∣�′(a2)

∣∣q),

where p–1 + q–1 = 1.

Proof Use (2.1) and let a1 = |�′(a1)|q, b1 = (2s+1 – 1)|�′(a2)|q, a2 = (2s+1 – 1)|�′(a1)|q, b2 =
|�′(a2)|q. Here 0 < 1

q < 1 for q > 1. Then using (1.1), we obtain the required result. �

Theorem 2.11 Let a1 < a2, q > 1 and � : [a1, a2] → R be a differentiable mapping on
(a1, a2). Also suppose that |�′|q is s-convex on [a1, a2], χ (x) is an increasing and posi-
tive monotone function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2) and
α ∈ (0, 1), then, for κ > 0, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ a2 – a1

2

(
κ

α + κ

)1– 1
q
(

α – κ

2κ
+

1
2 α

κ

)1– 1
q
(

1
(s + 1)2s+1

) 1
q

× {(∣∣�′(a1)
∣∣q +

(
2s+1 – 1

)∣∣�′(a2)
∣∣q) 1

q +
(
2s+1 – 1

)∣∣�′(a1)
∣∣q +

∣∣�′(a2)
∣∣q)

1
q
}

. (2.2)
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Proof Using Lemma 2.5, the power mean integral inequality and the fact that |�′|q is s-
convex, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ a2 – a1

2

∫ 1

0

∣∣μ + λ
α
κ – (1 – λ)

α
κ

∣∣∣∣�′(λa1 + (1 – λ)a2
)∣∣dλ

≤ a2 – a1

2

[∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣dλ

+
∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣dλ

]

≤ a2 – a1

2

[(∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]

dλ

)1– 1
q

×
(∫ 1

2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣q dλ

) 1
q

+
(∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]

dλ

)1– 1
q

×
(∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣q dλ

) 1
q
]

≤ a2 – a1

2

(∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]

dλ

)1– 1
q

×
{(∫ 1

2

0

[
1 – λ

α
κ + (1 – λ)

α
κ
](

λs∣∣�′(a1)
∣∣q + (1 – λ)s∣∣�′(a2)

∣∣q)dλ

) 1
q

+
(∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
](

λs∣∣�′(a1)
∣∣q + (1 – λ)s∣∣�′(a2)

∣∣q)dλ

) 1
q
}

≤ a2 – a1

2

(
κ

α + κ

)1– 1
q
(

α – κ

2κ
+

1
2 α

κ

)1– 1
q

×
{(∣∣�′(a1)

∣∣q
∫ 1

2

0

[
λs – λs(1 – λ)

α
κ + λ

α
κ +s]dλ

+
∣∣�′(a2)

∣∣q
∫ 1

2

0

[
(1 – λ)s + λ

α
κ (1 – λ)s – (1 – λ)

α
κ +s]dλ

) 1
q

+
(∣∣�′(a1)

∣∣q
∫ 1

1
2

[
λs + λs(1 – λ)

α
κ – λ

α
κ +s]dλ

+
∣∣�′(a2)

∣∣q
∫ 1

1
2

[
(1 – λ)s – λ

α
κ (1 – λ)s + (1 – λ)

α
κ +s]dλ

) 1
q
}

≤ a2 – a1

2

(
κ

α + κ

)1– 1
q
(

α – κ

2κ
+

1
2 α

κ

)1– 1
q

×
{(∣∣�′(a1)

∣∣q
∫ 1

2

0
λs dλ +

∣∣�′(a2)
∣∣q

∫ 1
2

0
(1 – λ)s dλ

) 1
q
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+
(∣∣�′(a1)

∣∣q
∫ 1

1
2

λs dλ +
∣∣�′(a2)

∣∣q
∫ 1

1
2

(1 – λ)s dλ

) 1
q
}

=
a2 – a1

2

(
κ

α + κ

)1– 1
q
(

α – κ

2κ
+

1
2 α

κ

)1– 1
q

×
{(

1
(s + 1)2s+1

∣∣�′(a1)
∣∣q +

1
s + 1

(
1 –

1
2s+1

)∣∣�′(a2)
∣∣q

) 1
q

+
(

1
s + 1

(
1 –

1
2s+1

)∣∣�′(a1)
∣∣q +

1
(s + 1)2s+1

∣∣�′(a2)
∣∣q

) 1
q
}

=
a2 – a1

2

(
κ

α + κ

)1– 1
q
(

α – κ

2κ
+

1
2 α

κ

)1– 1
q
(

1
(s + 1)2s+1

) 1
q

× {(∣∣�′(a1)
∣∣q +

(
2s+1 – 1

)∣∣�′(a2)
∣∣q) 1

q +
(
2s+1 – 1

)∣∣�′(a1)
∣∣q +

∣∣�′(a2)
∣∣q)

1
q
}

.

This completes the proof. �

Corollary 2.12 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2).
Also suppose that |�′|q, q > 1 is s-convex on [a1, a2], χ (x) is an increasing and positive
monotone function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2) and α ∈
(0, 1), then, for κ > 0, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ a2 – a1

2

(
κ

α + κ

)1– 1
q
(

α – κ

2κ
+

1
2 α

κ

)1– 1
q
(

1
(s + 1)2s+1

) 1
q

× (
1 +

(
2s+1 – 1

) 1
q
)(∣∣�′(a1)

∣∣q +
∣∣�′(a2)

∣∣q).

Proof Using the same technique as in the proof of Corollary 2.10, the proof is complete. �

Theorem 2.13 Let a1 < a2 and � : [a1, a2] → R be a differentiable mapping on (a1, a2).
Also suppose that |�′|q is s-concave on [a1, a2], χ (x) is an increasing and positive monotone
function on (a1, a2], having a continuous derivative χ ′(x) on (a1, a2) and α ∈ (0, 1), then, for
κ > 0, we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ (a2 – a1)
(

κ

(αp + κ)2αp+κ

) 1
p
(

1
2

) 1
q
(∣∣∣∣�′

(
a1 + 3a2

4

)∣∣∣∣ +
∣∣∣∣�′

(
3a1 + a2

4

)∣∣∣∣
)

,

where p–1 + q–1 = 1.
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Proof Using Lemma 2.5, Hölder’s integral inequality and the fact that |�′|q is s-concave,
we have

∣∣∣∣ �κ (α + κ)
2(a2 – a1) α

κ

[
κ Iα:χ

χ–1(a1)+ (� ◦ χ )
(
χ–1(a2)

)
+ κ Iα:χ

χ–1(a2)– (� ◦ χ )
(
χ–1(a1)

)]
– �

(
a1 + a2

2

)∣∣∣∣

≤ a2 – a1

2

∫ 1

0

∣∣μ + λ
α
κ – (1 – λ)

α
κ

∣∣∣∣�′(λa1 + (1 – λ)a2
)∣∣dλ

≤ a2 – a1

2

[∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣dλ

+
∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]∣∣�′(λa1 + (1 – λ)a2

)∣∣dλ

]

≤ a2 – a1

2

[(∫ 1
2

0

[
1 + λ

α
κ – (1 – λ)

α
κ
]p dλ

) 1
p
(∫ 1

2

0

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ

) 1
q

+
(∫ 1

1
2

[
1 – λ

α
κ + (1 – λ)

α
κ
]p dλ

) 1
p
(∫ 1

1
2

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ

) 1
q
]

= (a2 – a1)
(

κ

(αp + κ)2αp+κ

) 1
p
(∫ 1

2

0

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ

) 1
q

+
(∫ 1

1
2

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ

) 1
q

].

Since |�′|q is a concave function on [a1, a2] and using the Jensen integral inequality, we
have

∫ 1
2

0

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ ≤

(∫ 1
2

0
λ∗ dλ

)∣∣∣∣�′
(

(
∫ 1

2
0 (λa1 + (1 – λ)a2) dλ)

(
∫ 1

2
0 λ∗ dλ)

)∣∣∣∣

≤ 1
2

∣∣∣∣�′
(

a1 + 3a2

4

)∣∣∣∣.

Similarly

∫ 1

1
2

∣∣�′(λa1 + (1 – λ)a2
)∣∣q dλ ≤

(∫ 1

1
2

λ∗ dλ

)∣∣∣∣�′
( (

∫ 1
1
2

(λa1 + (1 – λ)a2) dλ)

(
∫ 1

2
0 λ∗ dλ)

)∣∣∣∣

≤ 1
2

∣∣∣∣�′
(

3a1 + a2

4

)∣∣∣∣.

This completes the proof. �
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