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Abstract
We provide an effective finite element method to solve the Schrödinger eigenvalue
problem with an inverse potential on a spherical domain. To overcome the difficulties
caused by the singularities of coefficients, we introduce spherical coordinate
transformation and transfer the singularities from the interior of the domain to its
boundary. Then by using orthogonal properties of spherical harmonic functions and
variable separation technique we transform the original problem into a series of
one-dimensional eigenvalue problems. We further introduce some suitable Sobolev
spaces and derive the weak form and an efficient discrete scheme. Combining with
the spectral theory of Babuška and Osborn for self-adjoint positive definite
eigenvalue problems, we obtain error estimates of approximation eigenvalues and
eigenvectors. Finally, we provide some numerical examples to show the efficiency
and accuracy of the algorithm.
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1 Introduction
The Schrödinger eigenvalue problem with the inverse-square (IS) or centrifugal poten-
tial is widely used in nuclear physics, quantum physics, nonlinear optics, and so on [1–6].
The potential in many electronic equations produces singularity and can describe the at-
traction or repulsion between objects, which usually leads to strong singularities of the
eigenfunctions, and this cannot be simply regarded as a perturbation term [7–11]. There-
fore new tools and techniques, different from linear elliptic operators with bounded coef-
ficients, are urgently needed for such an eigenvalue problem with the IS potential, both in
analysis and in numerics. Ghanbari et al. [12–15] and Khater et al. [16–20] discussed some
effective numerical methods to remove the singularity of nonlocal operators. In addition,
some other works [21–26] mainly focus on studying exact solitary wave solutions.
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In the last decade, increasing attention is paid to the numerical approximation of
Schrödinger operators with similar singular potentials [1, 27–30]. If we solve the Schrö-
dinger eigenvalue problem directly in a three-dimensional domain, it will take a lot
of computing time and memory capacity to obtain high-precision numerical solutions
[11, 31, 32]. In practice, we usually need to solve the Schrödinger eigenvalue problem on a
three-dimensional spherical domain. As far as we know, there is little work discussing the
eigenvalue problem with IS potential on a spherical domain.

The purpose of this work is developing an effective finite element method for the eigen-
value problem of the Schrödinger equation with an IS potential on spherical domain. To
overcome the difficulties caused by the singularities of coefficients, we introduce spherical
coordinate transformation and transfer the singularities from the interior of the domain to
the boundary of the domain. Then by using orthogonal properties of spherical harmonic
functions and variable separation technique we reduce the original problem to a series of
one-dimensional eigenvalue problems. We further introduce some suitable Sobolev spaces
and derive an effective discrete scheme. Combined with the theory of self-adjoint eigen-
values, we obtain error estimates of approximation eigenvalues and eigenvectors. Finally,
we give several numerical examples to verify the convergence and accuracy of the algo-
rithm.

The rest of the paper is organized as follows. In Sect. 2, we obtain a dimensional re-
duction scheme for the Schrödinger eigenvalue problem with IS potential. In Sect. 3, we
construct a weak form and numerical discretization scheme. In Sect. 4, we obtain error
estimates of approximation eigenvalues and eigenfunctions. In Sect. 5, we study the im-
plementation details of the algorithm. In Sect. 6, we test the accuracy and convergence of
the numerical algorithm. Finally, in Sect. 7, we provide some concluding remarks.

2 Dimension reduction scheme
In this paper, we consider the following eigenvalue problem with Dirichlet boundary con-
ditions:

–�u +
c2

x2 + y2 + z2 u = λu in �, (1)

u = 0 on ∂�, (2)

where c is a bounded constant, and � = {(x, y, z) ∈R
3 : 0 ≤ a < r < b} with r =

√
x2 + y2 + z2.

Let x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ , ψ(r, θ ,φ) = u(x, y, z). We take the Laplacian
in spherical coordinates

Lψ =
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 �Sψ , (3)

where

�S =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 . (4)
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Then (1)–(2) can be rewritten as the eigenvalue problem of the Schrödinger equation in
spherical coordinates:

–Lψ +
c2

r2 ψ = λψ , (r, θ ,φ) ∈ (a, b) × [0,π ] × [0, 2π ], (5)

(1) ψ(b, θ ,φ) = 0, (θ ,φ) ∈ [0,π ] × [0, 2π ] for a = 0, (6)

(2) ψ(a, θ ,φ) = ϕ(b, θ ,φ) = 0, (θ ,φ) ∈ [0,π ] × [0, 2π ] for a > 0. (7)

We recall that an important property of the spherical harmonics {Y l
m} (as normalized in

[33]) is that they are eigenfunctions of the Laplace–Beltrami operator �S . More precisely,

�SY m
l = –l(l + 1)Y m

l , l ≥ 0, |m| ≤ l, (8)

and from the definition of L2(S) we find

∫

S
Y m

l Y m′
l′ dS = δll′δmm′ . (9)

Using spherical harmonic expansion, we obtain that

ψ(r, θ ,φ) =
∞∑

l=0

l∑

|m|=0

ψm
l Y m

l . (10)

First of all, we take into account the case a = 0. Define the differential operator L̃lψ
m
l =

1
r2 (∂r(r2∂rψ

m
l ) – l(l + 1)ψm

l ). By substituting expression (10) into (5) and (6) we can obtain
a series of equivalent one-dimensional eigenvalue problems:

–L̃lψ
m
l +

c2

r2 ψm
l = λlψ

m
l , r ∈ (0, b), (11)

ψm
l (b) = 0. (12)

Let r = t+1
2 b, um

l (t) = ψm
l ( t+1

2 b), and Llum
l = 1

(t+1)2 ∂t((t + 1)2∂tum
l ) – l(l+1)

(t+1)2 um
l . Then (11)–

(12) can be rewritten as

–Llum
l +

c2

(t + 1)2 um
l =

b2

4
λlum

l , t ∈ (–1, 1), (13)

um
l (1) = 0. (14)

Analogously, for the case a > 0, inserting expression (10) into (5) and (7), we can derive
the following one-dimensional eigenvalue problem:

–L̃lψ
m
l +

c2

r2 ψm
l = λlψ

m
l , r ∈ (0, b), (15)

ψm
l (a) = ψm

l (b) = 0. (16)
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Let r = b–a
2 t + b+a

2 , um
l (t) = ψm

l (r), and Llum
l = 4

(b–a)2r2 ∂t(r2∂tum
l ) – l(l+1)

r2 um
l . From (15)–(16)

we derive that

–Llum
l +

c2

r2 um
l = λlum

l , t ∈ (–1, 1), (17)

um
l (–1) = um

l (1) = 0. (18)

3 Weak form and discrete scheme
When a = 0, we can define the space

H1
0,l(I) :=

{
um

l :
∫

I
(t + 1)2∣∣∂tum

l
∣∣2 +

[
l(l + 1) + c2]u2 dt < ∞, um

l (1) = 0
}

.

The inner product and norm can be defined as follows:

(
um

l , vm
l
)

1,l =
∫

I
(t + 1)2∂tum

l ∂tvm
l +

[
l(l + 1) + c2]um

l vm
l dt,

∥∥um
l
∥∥

1,l =
(
um

l , um
l
) 1

2
1,l.

Thus the weak form of (13)–(14) is: Find (λl, um
l ) ∈R× H1

0,l(I) such that

al
(
um

l , vm
l
)

= λlbl
(
um

l , vm
l
)
, ∀vm

l ∈ H1
0,l(I), (19)

where

al
(
um

l , vm
l
)

=
∫

I
(t + 1)2∂tum

l ∂tvm
l +

[
l(l + 1) + c2]um

l vm
l dt,

bl
(
um

l , vm
l
)

=
b2

4

∫

I
(t + 1)2um

l vm
l dt.

We denote by Ṽh(l) = P̃1h ∩H1
0,l(I) the approximation space, where P̃1h is a piecewise linear

interpolation polynomial space. Thus the corresponding numerical scheme of (19) is: Find
(λlh, um

lh) ∈R× Ṽh(l) such that

al
(
um

lh, vm
lh
)

= λlhbl
(
um

lh, vm
lh
)
, ∀vm

lh ∈ Ṽh(l). (20)

When a > 0, the usual space can be denoted as

H1
0 (I) :=

{
um

l : um
l , ∂tum

l ∈ L2(I), um
l (–1) = um

l (1) = 0
}

.

We define the inner product and norm as

(
um

l , vm
l
)

1,I =
∫

I

(
∂tum

l ∂tvm
l + um

l vm
l
)

dt,
∥∥um

l
∥∥

1,I =
(
um

l , um
l
) 1

2
1,I .

Thus the weak form of (17)–(18) is: Find (λl, um
l ) ∈R× H1

0 (I) such that

al
(
um

l , vm
l
)

= λlbl
(
um

l , vm
l
)
, ∀vm

l ∈ H1
0 (I), (21)
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where

al
(
um

l , vm
l
)

=
∫

I

4
(b – a)2 r2∂tum

l ∂tvm
l +

[
l(l + 1) + c2]um

l vm
l dt,

bl
(
um

l , vm
l
)

=
∫

I
r2um

l vm
l dt.

We denote by Vh = P1h ∩ H1
0 (I) the approximation space, where P1h is a piecewise linear

interpolation polynomial space. Then the corresponding numerical scheme of (21) is: Find
(λlh, um

lh) ∈R× Sh(l) such that

al
(
um

lh, vm
lh
)

= λlhbl
(
um

lh, vm
lh
)
, ∀vm

lh ∈ Vh. (22)

4 Error estimation of approximation solutions
In this section, we prove error estimates of approximate eigenvalues and eigenfunctions.
Without loss of generality, we only consider the case a > 0.

Use the technique of [34], we deduce the following results.

Theorem 1 al(um
l , vm

l ) is positive definite and continuous on H1
0 (I) × H1

0 (I), that is,

∣∣al
(
um

l , vm
l
)∣∣ �

∥∥um
l
∥∥

1,I

∥∥vm
l
∥∥

1,I ,

al
(
um

l , um
l
)
�

∥∥um
l
∥∥2

1,I .

Proof Using the Cauchy–Schwarz inequality, we find

∣∣al
(
um

l , vm
l
)∣∣ =

∣∣∣∣

∫

I

4
(b – a)2 r2∂tum

l ∂tvm
l +

[
l(l + 1) + c2]um

l vm
l dt

∣∣∣∣

≤
∫

I

4
(b – a)2 b2∣∣∂tum

l ∂tvm
l
∣∣ +

[
l(l + 1) + c2]∣∣um

l vm
l
∣∣dt

�
∫

I

∣∣∂tum
l ∂tvm

l
∣∣ +

∣∣um
l vm

l
∣∣dt

≤
(∫

I

∣∣∂tum
l
∣∣2 dt

) 1
2
(∫

I

∣∣∂tvm
l
∣∣2 dt

) 1
2

+
(∫

I

∣∣um
l
∣∣2 dt

) 1
2
(∫

I

∣∣vm
l
∣∣2 dt

) 1
2

≤
[∫

I

∣∣∂tum
l
∣∣2 +

∣∣um
l
∣∣2 dt

] 1
2
[∫

I

∣∣∂tvm
l
∣∣2 +

∣∣vm
l
∣∣2 dt

] 1
2

=
∥∥um

l
∥∥

1,I

∥∥vm
l
∥∥

1,I .

From the Poincaré inequality we derive that

al
(
um

l , um
l
)

=
∫

I

4
(b – a)2 r2(∂tum

l
)2 +

[
l(l + 1) + c2](um

l
)2 dt

≥
∫

I

4
(b – a)2 a2(∂tum

l
)2 dt �

∣∣um
l
∣∣2
1,I �

∥∥um
l
∥∥2

1,I . �

Similarly, we have the following conclusions.
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Theorem 2 bl(um
l , vm

l ) is also positive definite and continuous on L2(I) × L2(I), that is,

∣∣bl
(
um

l , vm
l
)∣∣ �

∥∥um
l
∥∥

0,I

∥∥vm
l
∥∥

0,I , (23)

bl
(
um

l , um
l
)
�

∥∥um
l
∥∥2

0,I . (24)

Let V (λl) and V (λlh) be the eigenfunction spaces corresponding to the eigenvalues λl

and λlh, respectively. Let

εh = sup
um

l ∈V (λl),‖um
l ‖al =1

inf
vm

lh∈Vh

∥∥um
l – vm

lh
∥∥

al
,

where ‖um
l ‖al =

√
al(um

l , um
l ). From Theorems 1 and 2 we know that al(um

l , vm
l ) (resp.,

bl(um
l , vm

l )) is a symmetric, continuous, and coercive bilinear form on H1
0 (I) × H1

0 (I) (resp.,
L2(I) × L2(I)).

By the spectral theory of eigenvalue problems [34] we have the following theorem.

Theorem 3 Let (λl, um
l ) and (λlh, um

lh) be respectively the eigenpairs of (21) and (22). Then
the following inequalities hold:

∥∥um
l – um

lh
∥∥

al
� εh, (25)

λlh – λl � ε2
h. (26)

Define the piecewise linear interpolation operator Ih : H1
0 (I) → Vh by

Ihum
l (t) = pli(t), t ∈ Ii,

where pli(t) denotes the linear interpolation polynomial of um
l on the interval Ii = [ti–1, ti].

Let

um
li (t) = um

l (t), t ∈ Ii.

Then from an error formula of linear interpolating remainder term we derive that

um
li (t) – pli(t) =

(um
li )(2)(ξi(t))

2!
(t – ti–1)(t – ti),

where ξi(t) ∈ Ii is a function depending on t.
For um

l , we have the following error results.

Theorem 4 Let Kli(t) = (um
li )(2)(ξi(t))

2! , um
l ∈ H1

0 (I). Suppose that um
l is smooth enough such

that |∂k
t Kli(t)| ≤ M(k = 0, 1), where M is a positive constant. Then

∣∣Ihum
l – um

l
∣∣
1,I � h, (27)

where h = max1≤i≤n{hi}, hi = ti – ti–1.
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Proof Since

um
li (t) – pli(t) = Kli(t)(t – ti–1)(t – ti),

we have

∂t
(
um

li (t) – pli(t)
)

= ∂tKli(t)(t – ti–1)(t – ti) + Kli(t)∂t
(
(t – ti–1)(t – ti)

)
.

Thus we obtain

∣∣∂t
(
um

li (t) – pli(t)
)∣∣2 �

∣∣(t – ti–1)(t – ti)
∣∣2 +

∣∣∂t
(
(t – ti–1)(t – ti)

)∣∣2

=
∣∣(t – ti–1)(t – ti)

∣∣2 +
∣∣(t – ti) + (t – ti–1)

∣∣2

≤
(

hi

2

)4

+ (2hi)2 � h2
i .

From the Poincaré inequality we derive that

∥∥Ihum
l – um

l
∥∥2

1,I �
∣∣Ihum

l – um
l
∣∣2
1,I

=
n∑

i=1

∣∣Ihum
l – um

l
∣∣2
1,Ii

=
n∑

i=1

∣∣pli – um
li
∣∣2
1,Ii

=
n∑

i=1

∫

Ii

∣∣∂t
(
um

li (t) – pli(t)
)∣∣2 dt

�
n∑

i=1

h3
i � h2.

This ends the proof. �

We can get the following standard error estimation results.

Theorem 5 Let (λl, um
l ) and (λlh, um

lh) be the eigenpairs of (21) and (22), respectively. If
um

l ∈ H1
0 (I) satisfy the condition of Theorem 4, then the following inequalities hold:

∥∥um
l – um

lh
∥∥

al
� h, λlh – λl � h2. (28)

Proof Since

εh = sup
um

l ∈V (λl),‖um
l ‖al =1

inf
vm

lh∈Vh

∥∥um
l – vm

lh
∥∥

al

≤ sup
um

l ∈V (λl),‖um
l ‖al =1

∥∥um
l – Ihum

lh
∥∥

al

� sup
um

l ∈V (λl),‖um
l ‖al =1

∥∥um
l – Ihum

lh
∥∥

1,I ,
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from the Poincaré inequality and Theorem 4 we derive that

εh � sup
um

l ∈V (λl),‖um
l ‖al =1

∥∥um
l – Ihum

lh
∥∥

1,I

� sup
um

l ∈V (λl),‖um
l ‖al =1

∣∣um
l – Ihum

lh
∣∣
1,I

� h.

Combining this with Theorem 3, we obtain (28). �

5 Implementation of the numerical scheme
In this section, we present the algorithm to solve problems (20) and (22). First, we define
some basis functions. Let

ψ0(t) =

⎧
⎨

⎩
– t–t1

h1
, t0 ≤ t ≤ t1,

0, otherwise,

ψi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t–ti–1
hi

, ti–1 ≤ t ≤ ti,

– t–ti+1
hi+1

, ti ≤ t ≤ ti+1,

0, otherwise,

where i = 1, . . . , N – 1. We find that

Ṽh = span
{
ψ0(t), . . . ,ψN–1(t)

}
,

Vh = span
{
ψ1(t), . . . ,ψN–1(t)

}
.

Case 1. a = 0. Set

aij =
∫

I
(t + 1)2(ψj)′(ψi)′ dt, bij =

∫

I
ψjψi dt,

cij =
∫

I
(t + 1)2ψjψi dt.

Let

um
lh =

N–1∑

i=0

uiψi. (29)

Substituting expression (29) into (20) and noticing the vm
lh , we can observe the linear system

[
A +

(
l2 + l + c2)

B
]
U =

b2

4
λlhCU, (30)

where

A = (aij), B = (bij), C = (cij), U = (u0, . . . , uN–1)T .
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From the properties of the basis functions we know that the stiff matrices and mass
matrix in (30) are all tridiagonal sparse matrices.

Case 2. a > 0. Let

um
lh =

N–1∑

i=1

uiψi. (31)

Substituting expression (31) into (22) and taking vm
lh in Vh, we obtain the linear system

AU = λlhBU , (32)

where

A = (aij,l), B = (bij,l), aij,l = al(ψj,ψi), bij,l = bl(ψj,ψi),

U = (u1, . . . , uN–1)T .

Similarly, from the properties of the basis functions we know that the stiff matrices and
mass matrix in (32) are all tridiagonal sparse matrices.

Remark 1 Our numerical method can transform three-dimensional problems into a
series of eigenvalue problems. By constructing appropriate basis functions these one-
dimensional value problems will be discretized into asparse stiffness matrix and mass ma-
trix, which can be efficiently solved.

6 Numerical experiments
In this section, we present several numerical examples to check the convergence and ac-
curacy of the numerical algorithm.

Example 1 We take c = 0, a = 0, b = 1, and l = 0, 1, 2 as our example. In Tables 1–3, we
provide the first four eigenvalues with different l and h of Example 1.

Example 2 We take c = 1
3 , a = 0, b = 1, and l = 0, 1, 2 as our example. In Tables 1–3, we

give the first four eigenvalues with different l and h of Example 2.
We know from Tables 1–6 that the approximation eigenvalues achieve at least three-

digit accuracy with h ≤ 1
512 for l = 0, 1, 2. To further show the convergence of approxima-

tion eigenvalues, we let the numerical solution of h = 1
1024 be the reference solution. The

error of the approximate eigenvalues with different h are provided in Figs. 1–6.
We observe from Figs. 1–6 that the numerical eigenvalues are convergent.

Table 1 a = 0, the four eigenvalues with l = 0 and h

h λ1
0h λ2

0h λ3
0h λ4

0h

1/64 9.869857717467 39.497938355087 88.947662545164 158.330138143300
1/128 9.869667769569 39.483298848912 88.856747023505 158.017765253015
1/256 9.869620245684 39.479637982214 88.834016573723 157.939692761527
1/512 9.869608362394 39.478722703012 88.828333857921 157.920175919198
1/1024 9.869605391441 39.478493879297 88.826913172297 157.915296787651
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Table 2 a = 0, the four eigenvalues with l = 1 and h

h λ1
1h λ2

1h λ3
1h λ4

1h

1/64 20.192597755854 59.718503283484 119.092115617980 198.448082264746
1/128 20.191196002143 59.689264430485 118.947930249028 198.005334602179
1/256 20.190845426967 59.681953168655 118.911884395986 197.894689220523
1/512 20.190757774611 59.680125256653 118.902872969163 197.867030522764
1/1024 20.190735860985 59.679668272588 118.900620114823 197.860116014585

Table 3 a = 0, the four eigenvalues with l = 2 and h

h λ1
2h λ2

2h λ3
2h λ4

2h

1/64 33.221527912004 82.779965293070 152.120849702143 241.466504738343
1/128 33.218478774072 82.734418406613 151.921374315241 240.893774149263
1/256 33.217716151749 82.723028162111 151.871499583334 240.750621394948
1/512 33.217525475045 82.720180381294 151.859030542575 240.714835156415
1/1024 33.217477804567 82.719468422366 151.855913260174 240.705888719943

Table 4 a = 0, the four eigenvalues with l = 0 and h

h λ1
0h λ2

0h λ3
0h λ4

0h

1/64 10.784422087149 41.409061237094 91.862254368608 162.255452978584
1/128 10.783897714384 41.391953774531 91.763361765200 161.924692186926
1/256 10.783722018000 41.387479496580 91.738161486718 161.841125052992
1/512 10.783658754253 41.386276025201 91.731657235236 161.819852309708
1/1024 10.783634535429 41.385938328125 91.729942732668 161.814368929169

Table 5 a = 0, the four eigenvalues with l = 1 and h

h λ1
1h λ2

1h λ3
1h λ4

1h

1/64 20.622531429872 60.512755868097 120.249994940413 199.970863052496
1/128 20.621082705047 60.482989673348 120.103951531653 199.523657856357
1/256 20.620720381598 60.475546521030 120.067441003649 199.411897858243
1/512 20.620629791855 60.473685633053 120.058313398197 199.383960493605
1/1024 20.620607143877 60.473220404839 120.056031498617 199.376976318024

Table 6 The first four eigenvalues for l = 2 and different h with a = 0

h λ1
2h λ2

2h λ3
2h λ4

2h

1/64 33.539386696208 83.321688069218 152.883872499399 242.450993494860
1/128 33.536292906786 83.275738174388 152.683074749736 241.875210146000
1/256 33.535519115145 83.264247113685 152.632869196580 241.731293670130
1/512 33.535325645709 83.261374124815 152.620317436233 241.695316468978
1/1024 33.535277277012 83.260655863631 152.617179473073 241.686322289850

Example 3 We take c = 1
2 , a = 1, b = 2, and l = 0, 1, 2 as our example. The first four eigen-

values for different l and h are listed in Tables 7–9.
We know from Tables 7–9 that the numerical eigenvalues can achieve six-digit accuracy

at least for h ≤ 1
512 for l = 0, 1, 2. Similarly, we select the solutions with h = 1

1024 as the
reference solutions. In Figs. 7–8, we plot the error of the approximate eigenvalues. We
observe from Figs. 7–8 that the numerical eigenvalues are also convergent.
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Figure 1 Errors for l = 0

Figure 2 Errors for l = 1

Figure 3 Errors for l = 2
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Figure 4 Errors for l = 0

Figure 5 Errors for l = 1

Figure 6 Errors for l = 2
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Table 7 a > 0, the four eigenvalues with l = 0 and h

h λ1
0h λ2

0h λ3
0h λ4

0h

1/64 9.988012930043 39.633375167001 89.112712061030 158.549222565147
1/128 9.986375926619 39.608980395076 88.990846603507 158.165675283969
1/256 9.985966717519 39.602883767284 88.960402033368 158.069907148956
1/512 9.985864417864 39.601359739506 88.952792255536 158.045972559582
1/1024 9.985838843186 39.600978740678 88.950889896467 158.039989377952

Table 8 a > 0, the four eigenvalues with l = 1 and h

h λ1
1h λ2

1h λ3
1h λ4

1h

1/64 10.915762724023 40.613236009777 90.103550633775 159.544012021946
1/128 10.914153283961 40.588873995812 89.981719322438 159.160499469372
1/256 10.913750964537 40.582785551208 89.951283273667 159.064739988704
1/512 10.913650387204 40.581263568823 89.943675625219 159.040807561191
1/1024 10.913625243058 40.580883081317 89.941773798436 159.034824919945

Table 9 a > 0, the four eigenvalues with l = 2 and h

h λ1
2h λ2

2h λ3
2h λ4

2h

1/64 12.7606082907083 42.5751685615016 92.0871194476254 161.5348743615320
1/128 12.7590444146313 42.5508636384775 91.9653485323629 161.1514235895622
1/256 12.7586534825387 42.5447894481584 91.9349275389073 161.0556794745995
1/512 12.7585557518340 42.5432710282045 91.9273236515782 161.0317508835969
1/1024 12.7585313192603 42.5428914311462 91.9254227648108 161.0257692010616

Figure 7 Errors for l = 2

7 Conclusions
In this work, an efficient finite element method is constructed to solve the Schrödinger
eigenvalue problem with the IS potential on a spherical domain. By using spherical coor-
dinate transformation and variable separation technique, we reduce the original problem
into a series of equivalent and independent eigenvalue problems, which not only over-
comes the difficulty brought by the singular coefficient, but also reduces the degrees of
freedom greatly by dimension reduction. Thus we can spend less computing time and
memory capacity to obtain high-precision numerical solutions. Numerical results show
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Figure 8 Errors for l = 1 (left) and l = 2 (right)

that our algorithm is very effective. We believe that this method can be extended to more
complex practical problems.
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