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Abstract
A spline is a piecewise defined special function that is usually comprised of
polynomials of a certain degree. These polynomials are supposed to generate a
smooth curve by connecting at given data points. In this work, an application of fifth
degree basis spline functions is presented for a numerical investigation of the
Kuramoto–Sivashinsky equation. The finite forward difference formula is used for
temporal integration, whereas the basis splines, together with a new approximation
for fourth order spatial derivative, are brought into play for discretization in space
direction. In order to corroborate the presented numerical algorithm, some test
problems are considered and the computational results are compared with existing
methods.

Keywords: Quintic polynomial B-spline functions; Crank–Nicolson scheme; Spline
approximations; Von Neumann stability analysis; Kuramoto–Sivashinsky equation

1 Introduction
The Kuramoto–Sivashinsky (KS) equation, a canonical nonlinear evolution equation,
crops up in mathematical modeling of several physical phenomena indicating reaction–
diffusion systems, unstable drift waves in plasmas, pattern formation on thin hydrody-
namic films, flame front instability, long waves on the interface between two viscous fluids,
fluid flow on a vertical plate and spatially uniform oscillating chemical reaction in some
homogeneous medium [1, 2]. The KS equation has chaotic behavior and exhibits a trav-
eling wave like solution that moves without changing its shape in a finite spatial domain
[3–5]. The generalized KS equation is given by

∂y(x, t)
∂t

+ y(x, t)
∂y(x, t)

∂x
+ α

∂2y(x, t)
∂x2 + β

∂3y(x, t)
∂x3 + γ

∂4y(x, t)
∂x4 = 0,

x ∈ [a, b], t ∈ [0, T], (1)
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subject to the following conditions:

y(x, 0) = φ(x), (2)
⎧
⎨

⎩

y(a, t) = φ1(t), y(b, t) = φ2(t),

yx(a, t) = ψ1(t), yx(b, t) = ψ2(t),
(3)

where y(x, t) gives the wave displacement at position x and time t, α, β , γ are constants
and φ(x), φi(t), ψi(t) are known functions. The term yxx is responsible for instability at
broad scales and the dissipative term yxxxx controls the damping effect at small scales. The
nonlinear term yyx serves as an energy stabilizer by transmitting it between small and
large scales [6]. The nonlinear evolution equations have attracted a considerable amount
of research work in recent years [7–15]. Several numerical and analytical techniques have
been proposed for solving these equations [16–23]. Khater and Temsah [24] employed the
Chebyshev spectral collocation approach for an approximate solution of the generalized
fourth order KS equation. Lai and Ma [25] proposed a lattice Boltzmann model for solv-
ing the nonlinear KS equation, A mesh free approach based on radial basis functions was
used in [26] for an approximate solution of the generalized KS equation. Mittal and Arora
[27] explored the numerical solution to KS equation by means of the Crank–Nicolson
scheme and quintic B-spline (QnBS) functions. Porshokouhi and Ghanbari [28] imple-
mented a variational iteration method for series solution of KS equation. The authors in
[29] presented a numerical approach based on basis spline functions for an approximate
solution of the KS equation. Rageh et al. [30] implemented a restrictive Taylor approxi-
mation method to find a numerical solution for the KS equation. Ersoy and Dag [31] pro-
posed an exponential cubic B-spline method for numerical solution of KS equation. Mittal
and Dahiya [6] proposed a differential quadrature method based on QnBS functions for
solving the generalized KS equation. Gomes et al. [32] used linear feedback controls and
techniques to stabilize the non-uniform unstable steady states of the generalized KS equa-
tion. The authors in [33] used polynomial scaling functions for solving the generalized KS
equation. Akgul and Bonyah [34] proposed a reproducing kernel Hilbert space method
for the solving generalized KS equation.

In this article, the numerical investigation of the nonlinear KS equation has been pre-
sented. The finite forward difference formulation and quintic polynomial basis spline
functions are used to discretize the problem in time and spatial domains, respectively.
The spatial order of convergence of a typical QnBS approximation scheme has been im-
proved by involving a new approximation for the fourth order derivative. The stability of
proposed algorithm has been studied by means of Von-Neumann stability analysis.

This study is organized as: In the first section, we discuss some basic ideas related to
QnBS functions. The development of new approximation for y4(x) is explained in Sect. 3.
The numerical method is discussed in Sect. 4. Section 5–6 consists of a stability and error
analysis and finally the computational results are reported in Sect. 7.

2 Quintic polynomial B-spline functions
Let us partition the domain [a, b] into n intervals, [xi, xi+1], of equal length such that xi =
a + (i × h), i = 0, 1, . . . , n, a = x0, b = xn and h = 1

n (b – a). The rth polynomial B-spline of
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degree q, order q + 1, is defined as [35]

Bq,r(x) = Lq,rBq–1,r(x) + (1 – Lq,r+1)Bq–1,r+1(x), x ∈ [xr , xr+1+q], (4)

where q > 0, Lq,r = (x–xr)
(xr+q–xr) and

B0,r(x) =

⎧
⎨

⎩

1, if x ∈ [xr , xr+1],

0, otherwise.
(5)

Using (5)–(4) with q = 5, we get fifth degree basis spline functions [36]:

B5,r(x)

=
1

120h5

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x – xr–3)5, x ∈ [xr–3, xr–2],

h5 + 5h4(x – xr–2) + 10h3(x – xr–2)2 + 10h2(x – xr–2)3

+ 5h(x – xr–2)4 – 5(x – xr–2)5, x ∈ [xr–2, xr–1],

26h5 + 50h4(x – xr–1) + 20h3(x – xr–1)2 – 20h2(x – xr–1)3

– 20h(x – xr–1)4 + 10(x – xr–1)5, x ∈ [xr–1, xr],

26h5 + 50h4(xr+1 – x) + 20h3(xr+1 – x)2 – 20h2(xr+1 – x)3

– 20h(xr+1 – x)4 + 10(xr+1 – x)5, x ∈ [xr , xr+1],

h5 + 5h4(xr+2 – x) + 10h3(xr+2 – x)2 + 10h2(xr+2 – x)3

+ 5h(xr+2 – x)4 – 5(xr+2 – x)5, x ∈ [xr+1, xr+2],

(xr+3 – x)5, x ∈ [xr+2, xr+3],

0 otherwise,

(6)

where r = –2, –1, 0, . . . , n+2. The QnBS approximation Y (x) for a sufficiently smooth func-
tion y(x) is given by

Y (x) =
n+2∑

r=–2

σrB5,r(x), (7)

where the σr are to be calculated. Let Yi, mi, Mi, Ti and Fi represent the QnBS approxi-
mations for y(xi), y′(xi), y(2)(xi), y(3)(xi) and y(4)(xi), respectively.

Using (6) and (7), we have

Yi =
1

120
(σi–2 + 26σi–1 + 66σi + 26σi+1 + σi+2), (8)

mi =
1

24h
(–σi–2 – 10σi–1 + 10σi+1 + σi+2), (9)

Mi =
1

6h2 (σi–2 + 2σi–1 – 6σi + 2σi+1 + σi+2), (10)

Ti =
1

2h3 (–σi–2 + 2σi–1 – 2σi+1 + σi+2), (11)
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Fi =
1
h4 (σi–2 – 4σi–1 + 6σi – 4σi+1 + σi+2). (12)

Moreover, from (8)–(12), we establish the following relations [37–39]:

mi = y′(xi) +
h6

5040
y(7)(xi) –

h8

21,600
y(9)(xi) + · · · , (13)

Mi = y′′(xi) +
h4

720
y(6)(xi) –

h6

3360
y(8)(xi) + · · · , (14)

Ti = y(3)(xi) –
h4

240
y(7)(xi) +

11h6

30,240
y(9)(xi) + · · · , (15)

Fi = y(4)(xi) –
h2

12
y(6)(xi) +

h4

240
y(8)(xi) + · · · . (16)

We see that the truncation error in Fi is O(h2). Instead of using (12), the authors in [36, 40]
proposed a new O(h3) accurate approximation for the fourth order derivative. For the sake
of completeness, we reproduce those results in the following section.

3 Derivation of new approximation for y(4)(x)
From (16), we establish the following relation for Fi–2 at the knot xi, (i = 2, 3, 4, . . . , n – 2):

Fi–2 = y(4)(xi–2) –
h2

12
y(6)(xi–2) +

h4

240
y(8)(xi–2) + · · ·

= y(4)(xi) – 2hy(5)(xi) +
23h2

12
y(6)(xi) –

7h3

6
y(7)(xi) + · · · . (17)

Similar expressions for Fi–1, Fi+1 and Fi+2 at xi are derived as follows:

Fi–1 = y(4)(xi) – hy(5)(xi) +
5h2

12
y(6)(xi) –

h3

12
y(7)(xi) + · · · , (18)

Fi+1 = y(4)(xi) + hy(5)(xi) +
5h2

12
y(6)(xi) +

h3

12
y(7)(xi) + · · · , (19)

Fi+2 = y(4)(xi) + 2hy(5)(xi) +
23h2

12
y(6)(xi) +

7h3

6
y(7)(xi) + · · · . (20)

Suppose
∼
Fi denotes the new approximation for y(4)(xi) s.t.

∼
Fi = a1Fi–2 + a2Fi–1 + a3Fi + a4Fi+1 + a5Fi+2. (21)

Using (17)–(20) in (21), we obtain a1 = – 1
240 , a2 = 1

10 , a3 = 97
120 , a4 = 1

10 and a5 = – 1
240 .

Hence

∼
Fi =

1
240h4 (–σi–4 + 28σi–3 + 92σi–2 – 604σi–1 + 970σi – 604σi+1

+ 92σi+2 + 28σi+3 – σi+4), i = 2, 3, . . . , n – 2. (22)

For x = x0, we consider

∼
F0 = a1F0 + a2F1 + a3F2 + a4F3, (23)
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where

F0 = y(4)(x0) –
h2

12
y(6)(x0) +

h4

240
y(8)(x0) + · · · , (24)

F1 = y(4)(x0) + hy(5) +
5h2

12
y(6)(x0) +

h3

12
y(7)(x0) + · · · , (25)

F2 = y(4)(x0) + 2hy(5) +
23h2

12
y(6)(x0) +

7h3

6
y(7)(x0) + · · · , (26)

F3 = y(4)(x0) + 3hy(5) +
53h2

12
y(6)(x0) +

17h3

4
y(7)(x0) + · · · . (27)

From (23)–(27), we get a1 = 7
6 , a2 = – 5

12 , a3 = 1
3 and a4 = – 1

12 to obtain the following rela-
tion:

∼
F0 =

1
12h4 (14σ–2 – 61σ–1 + 108σ0 – 103σ1 + 62σ2 – 27σ3 + 8σ4 – σ5). (28)

Working in similar way, the following relations can be derived at x1, xn–1 and xn:

∼
F1 =

1
12h4 (σ–2 + 6σ–1 – 33σ0 + 52σ1 – 33σ2 + 6σ3 + σ4), (29)

∼
Fn–1 =

1
12h4 (σn–4 + 6σn–3 – 33σn–2 + 52σn–1 – 33σn + 6σn+1 + σn+2), (30)

∼
Fn =

1
12h4 (–σn–5 + 8σn–4 – 27σn–3 + 62σn–2

– 103σn–1 + 108σn – 61σn+1 + 14σn+2). (31)

4 Description of the numerical method
Applying a finite forward difference formula and θ weighted scheme in the time direction,
the semi-discretized form of problem (1) is obtained as follows:

yj+1 – yj


t
+ θ

[
(yyx)j+1 + αyj+1

xx + βyj+1
xxx + γ yj+1

xxxx
]

+ (1 – θ )
[
yjyj

x + αyj
xx + βyj+1

xxx + γ yj
xxxx

]
= 0, (32)

where 
t is the mesh size in the time direction, 0 ≤ θ ≤ 1 and yj+1 is used to denote y(x, tj +

t). The nonlinear term (yyx)j+1 is treated as [33]

(yyx)j+1 = yj+1yj
x + yjyj+1

x – yjyj
x. (33)

Substituting (33) into (32), we get

yj+1 – yj


t
+ θ

[
yj+1yj

x + yjyj+1
x – yjyj

x + αyj+1
xx + βyj+1

xxx + γ yj+1
xxxx

]

+ (1 – θ )
[
yjyj

x + αyj
xx + βyj

xxx + γ yj
xxxx

]
= 0. (34)
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For θ = 1
2 , Eq. (34) can be rearranged as

[
2


t
+ yj

x

]

yj+1 + yjyj+1
x + αyj+1

xx + βyj+1
xxx + γ yj+1

xxxx

=
2


t
yj – αyj

xx – βyj
xxx – γ yj

xxxx. (35)

Now, let us divide the spatial domain [a, b] in n equal parts [xi, xi+1] s.t. xi = x0 + i × h,
i = 0, 1, . . . , n, a = x0, b = xn and h = 1

n (b – a).
Let Y (x, tj) be the QnBS solution for (1) at t = tj s.t.

Y (x, tj) =
n+2∑

r=–2

σ j
r B5,r(x), (36)

where the σ
j
r are unknown control points. Substituting (36) into (35), at x = xi, we obtain

wj
iY

j+1
i + Y j

i mj+1
i + αMj+1

i + βTj+1
i + γ Fj+1

i = zj
i, (37)

where wj
i = 2


t + mj
i and zj

i = 2

t Y j

i – αMj
i – βTj

i – γ Fj
i .

Using (8)–(11), (22), (28) and (29)–(31) in (37), for i = 0, 1, 2, 3, . . . , n, we get n + 1 linear
equations involving n + 5 control points:

wj
0

120
(
σ

j+1
–2 + 26σ

j+1
–1 + 66σ

j+1
0 + 26σ

j+1
1 + σ

j+1
2

)
–

Y j
0

24h
(
σ

j+1
–2 + 10σ

j+1
–1 – 10σ

j+1
1 – σ

j+1
2

)

+
α

6h2

(
σ

j+1
–2 + 2σ

j+1
–1 – 6σ

j+1
0 + 2σ

j+1
1 + σ

j+1
2

)
–

β

3h3

(
σ

j+1
–2 – 2σ

j+1
–1 + 2σ

j+1
1 – σ

j+1
2

)

+
γ

12h4

(
14σ

j+1
–2 – 61σ

j+1
–1 + 108σ

j+1
0 – 103σ

j+1
1 + 62σ

j+1
2 – 27σ

j+1
3 + 8σ

j+1
4 – σ

j+1
5

)

= zj
0, (38)

wj
1

120
(
σ

j+1
–1 + 26σ

j+1
0 + 66σ

j+1
1 + 26σ

j+1
2 + σ

j+1
3

)
–

Y j
1

24h
(
σ

j+1
–1 + 10σ

j+1
0 – 10σ

j+1
2 – σ

j+1
3

)

+
α

6h2

(
σ

j+1
–1 + 2σ

j+1
0 – 6σ

j+1
1 + 2σ

j+1
2 + σ

j+1
3

)
–

β

3h3

(
σ

j+1
–1 – 2σ

j+1
0 + 2σ

j+1
2 – σ

j+1
3

)

+
γ

12h4

(
σ

j+1
–2 + 6σ

j+1
–1 – 33σ

j+1
0 + 52σ

j+1
1 – 33σ

j+1
2 + 6σ

j+1
3 + σ

j+1
4

)
= zj

1, (39)

wj
i

120
(
σ

j+1
i–2 + 26σ

j+1
i–1 + 66σ

j+1
i + 26σ

j+1
i+1 + σ

j+1
i+2

)
–

Y j
i

24h
(
σ

j+1
i–2 + 10σ

j+1
i–1 – 10σ

j+1
i+1 – σ

j+1
i+2

)

+
α

6h2

(
σ

j+1
i–2 + 2σ

j+1
i–1 – 6σ

j+1
i + 2σ

j+1
i+1 + σ

j+1
i+2

)
–

β

3h3

(
σ

j+1
i–2 – 2σ

j+1
i–1 + 2σ

j+1
i+1 – σ

j+1
i+2

)

–
γ

240h4

(
σ

j+1
i–4 – 28σ

j+1
i–3 – 92σ

j+1
i–2 + 604σ

j+1
i–1 – 970σ

j+1
i

+ 604σ
j+1
i+1 – 92σ

j+1
i+2 – 28σ

j+1
i+3 + σ

j+1
i+4

)

= zj
i, i = 2, 3, 4, . . . , n – 2, (40)
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wj
n–1

120
(
σ

j+1
n–3 + 26σ

j+1
n–2 + 66σ

j+1
n–1 + 26σ j+1

n + σ
j+1
n+1

)
–

Y j
n–1

24h
(
σ

j+1
n–3 + 10σ

j+1
n–2 – 10σ j+1

n – σ
j+1
n+1

)

+
α

6h2

(
σ

j+1
n–3 + 2σ

j+1
n–2 – 6σ

j+1
n–1 + 2σ j+1

n + σ
j+1
n+1

)
–

β

3h3

(
σ

j+1
n–3 – 2σ

j+1
n–2 + 2σ j+1

n – σ
j+1
n+1

)

+
γ

12h4

(
σ

j+1
n–4 + 6σ

j+1
n–3 – 33σ

j+1
n–2 + 52σ

j+1
n–1 – 33σ j+1

n + 6σ
j+1
n+1 + σ

j+1
n+2

)
= zj

n–1, (41)

wj
n

120
(
σ

j+1
n–2 + 26σ

j+1
n–1 + 66σ j+1

n + 26σ
j+1
n+1 + σ

j+1
n+2

)
–

Y j
n

24h
(
σ

j+1
n–2 + 10σ

j+1
n–1 – 10σ

j+1
n+1 – σ

j+1
n+2

)

+
α

6h2

(
σ

j+1
n–2 + 2σ

j+1
n–1 – 6σ j+1

n + 2σ
j+1
n+1 + σ

j+1
n+2

)
–

β

3h3

(
σ

j+1
n–2 – 2σ

j+1
n–1 + 2σ

j+1
n+1 – σ

j+1
n+2

)

–
γ

12h4 (σn–5 – 8σn–4 + 27σn–3 – 62σn–2 + 103σn–1 – 108σn + 61σn+1 + 14σn+2)

= zj
n. (42)

From the given end conditions (3), we get

(
σ

j+1
–2 + 26σ

j+1
–1 + 66σ

j+1
0 + 26σ

j+1
1 + σ

j+1
2

)
/120 = φ1(tj+1), (43)

(
–σ

j+1
–2 – 10σ

j+1
–1 + 10σ

j+1
1 + σ

j+1
2

)
/24h = ψ1(tj+1), (44)

(
–σ

j+1
n–2 – 10σ

j+1
n–1 + 10σ

j+1
n+1 + σ

j+1
n+2

)
/24h = ψ2(tj+1), (45)

(
σ

j+1
n–2 + 26σ

j+1
n–1 + 66σ j+1

n + 26σ
j+1
n+1 + σ

j+1
n+2

)
/120 = φ2(tj+1). (46)

The set of equations (38)–(46) can be written in matrix form as

Lσ j+1 = R, (47)

where L is the (n + 5) × (n + 5) coefficient matrix, R is (n + 5) × 1 matrix and σ j+1 =
[σ j+1

–2 σ
j+1
–1 σ

j+1
0 · · · σ

j+1
n+2]T . Solving (47), we get σ j+1 and put these control points into (36)

to get the approximate solution at (j + 1)th time level. However, first we need to find σ 0,
using the given initial condition, as follows (2):

(
–σ 0

–2 – 10σ 0
–1 + 10σ 0

1 + σ 0
2
)
/24h = φ′(x0),

(
σ 0

–2 + 2σ 0
–1 – 6σ 0

0 + 2σ 0
1 + σ 0

2
)
/6h2 = φ′′(x0),

(
σ 0

i–2 + 26σ 0
i–1 + 66σ 0

i + 26σ 0
i+1 + σ 0

i+2
)
/120 = φ(xi), i = 0, 1, . . . , n,

(
σ 0

n–2 + 2σ 0
n–1 – 6σ 0

n + 2σ 0
n+1 + σ 0

n+2
)
/6h2 = φ′′(xn),

(
–σ 0

n–2 – 10σ 0
n–1 + 10σ 0

n+1 + σ 0
n+2

)
/24h = φ′(xn).

In matrix form, we have

Lσ 0 = R. (48)

The matrix system (48) can easily be solved using for σ 0 using a modified form of Thomas
algorithm. The numerical simulation is run in Mathematica 10.
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5 Stability analysis
Setting y = η in the nonlinear term yyx, Eq. (32) takes the following form:

yj+1 – yj


t
+ θ

[
η(yx)j+1 + αyj+1

xx + βyj+1
xxx + γ yj+1

xxxx
]

+ (1 – θ )
[
ηyj

x + αyj
xx + βyj+1

xxx + γ yj
xxxx

]
= 0. (49)

Setting θ = 0.5, the fully discretized form of (49) is as follows:

Y j+1
i +


t
2

[
ηmj+1

i + αMj+1
i + βTj+1

i + γ Fj+1
i

]

= Y j
i –


t
2

[
ηmj

i + αMj
i + βTj+1

i + γ Fj
i
]
. (50)

Using (8)–(11) and (22) in (50), we have

–d3σ
j+1
i–4 + 28d3σ

j+1
i–3 + 2

(
46d3 – 60hd2 + 20h2d1 – 5h3d4 + 2h4)σ

j+1
i–2

+ 4
(
–151d3 + 60hd2 + 20h2d1 – 25h3d4 + 26h4)σ

j+1
i–1

+ 2
(
485d3 – 120hd1 + 132h4)σ

j+1
i

+ 4
(
–151d3 – 60hd2 – 20h2d1 + 25h3d4 + 26h4)σ

j+1
i+1

+ 2
(
46d3 + 60hd2 + 20h2d1 + 5h3d4 + 2h4)σ

j+1
i+2 + 28d3σ

j+1
i+3 – d3σ

j+1
i+4

= d3σ
j
i–4 – 28d3σ

j
i–3 + 2

(
–46d3 + 60hd2 – 20h2d1 + 5h3d4 + 2h4)σ

j
i–2

+ 4
(
151d3 – 60hd2 – 20h2d1 + 25h3d4 + 26h4)σ

j
i–1

+ 2
(
–485d3 + 120hd1 + 132h4)σ

j
i

+ 4
(
151d3 + 60hd2 – 20h2d1 – 25h3d4 + 26h4)σ

j
i+1

+ 2
(
–46d3 – 60hd2 – 20h2d1 – 5h3d4 + 2h4)σ

j
i+2 – 28d3σ

j
i+3 + d3σ

j
i+4, (51)

where d1 = α
t, d2 = β
t, d3 = γ
t, d4 = η
t.
Now, following [27, 41], we substitute σ

j
i = ξ jeimϕ into (51):

ξ j+1[–d3eι(m–4)ϕ + 28d3eι(m–3)ϕ + 2
(
46d3 – 60hd2 + 20h2d1 – 5h3d4 + 2h4)eι(m–2)ϕ

+ 4
(
–151d3 + 60hd2 + 20h2d1 – 25h3d4 + 26h4)eι(m–1)ϕ

+ 2
(
485d3 – 120hd1 + 132h4)eιmϕ

+ 4
(
–151d3 – 60hd2 – 20h2d1 + 25h3d4 + 26h4)eι(m+1)ϕ

+ 2
(
46d3 + 60hd2 + 20h2d1 + 5h3d4 + 2h4)eι(m+2)ϕ

+ 28d3eι(m+3)ϕ – d3eι(m+4)ϕ]

= ξ j[d3eι(m–4)ϕ – 28d3eι(m–3)ϕ

+ 2
(
–46d3 + 60hd2 – 20h2d1 + 5h3d4 + 2h4)eι(m–2)ϕ

+ 4
(
151d3 – 60hd2 – 20h2d1 + 25h3d4 + 26h4)eι(m–1)ϕ

+ 2
(
–485d3 + 120hd1 + 132h4)eιmϕ
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+ 4
(
151d3 + 60hd2 – 20h2d1 – 25h3d4 + 26h4)eι(m+1)ϕ

+ 2
(
–46d3 – 60hd2 – 20h2d1 – 5h3d4 + 2h4)eι(m+2)ϕ

– 28d3eι(m+3)ϕ + d3eι(m+4)ϕ]
, (52)

where ι =
√

–1, ϕ = ζh and ζ is the mode number.
After some simplification, (52) takes the following form:

ξ
[
–d3 cos 4ϕ + 28d3 cos 3ϕ + 2

(
46d3 + 20h2d1 + 2h4) cos 2ϕ

+ 2ι
(
60hd2 + 5h3d4

)
sin 2ϕ + 4

(
–151d3 + 20h2d1 + 26h4) cosϕ

+ 4ι
(
–60hd2 + 25h3d4

)
sinϕ + 485d3 – 120hd1 + 132h4]

=
[
d3 cos 4ϕ – 28d3 cos 3ϕ + 2

(
–46d3 – 20h2d1 + 2h4) cos 2ϕ

+ 2ι
(
–60hd2 – 5h3d4

)
sin 2ϕ + 4

(
151d3 – 20h2d1 + 26h4) cosϕ

+ 4ι
(
60hd2 – 25h3d4

)
sinϕ – 485d3 + 120hd1 + 132h4]. (53)

Equation (53) can be written as ξ = ν1–iω
ν2+iω , where

ν1 = d3 cos 4ϕ – 28d3 cos 3ϕ + 2
(
–46d3 – 20h2d1 + 2h4) cos 2ϕ

+ 4
(
151d3 – 20h2d1 + 26h4) cosϕ – 485d3 + 120hd1 + 132h4,

ν2 = –d3 cos 4ϕ + 28d3 cos 3ϕ + 2
(
46d3 + 20h2d1 + 2h4) cos 2ϕ

+ 4
(
–151d3 + 20h2d1 + 26h4) cosϕ + 485d3 – 120hd1 + 132h4,

ω = 2
(
–60hd2 – 5h3d4

)
sin 2ϕ + 4

(
60hd2 – 25h3d4

)
sinϕ.

Now

ν2
2 – ν2

1 = 64h4(33 + 26 cosϕ + cos 2ϕ) sin2 ϕ

2
[
170d3 – 80d1h2

– 5
(
29d3 + 8d1h2) cosϕ – 26d3 cos 2ϕ + d3 cos 3ϕ

]
.

We plug in the values of d1 and d3 with α = –1, γ = 1 in the last expression to get

ν2
2 – ν2

1 = 64h4(33 + 26 cosϕ + cos 2ϕ) sin2 ϕ

2

t

[

(97 + 24 cosϕ – cos 2ϕ) sin2 ϕ

2

+ 40h2(2 + cosϕ)
]

.

Since

64h4(33 + 26 cosϕ + cos 2ϕ) sin2 ϕ

2

t ≥ 0,

(97 + 24 cosϕ – cos 2ϕ) sin2 ϕ

2
≥ 0,

40h2(2 + cosϕ)] ≥ 0,

we have ν2
2 – ν2

1 ≥ 0.
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Consequently |ξ | ≤ 1, the proposed algorithm is proved to be stable.

6 Error analysis
From (8)–(11), we can obtain the following expressions [38, 39]:

h
[
Y ′(xi–2) + 26Y ′(xi–1) + 66Y ′(xi) + 26Y ′(xi+1) + Y ′(xi+2)

]

= 5
[
–Y (xi–2) – 10Y (xi–1) + 10Y (xi+1) + Y (xi+2)

]
, (54)

h2[Y ′′(xi–2) + 26Y ′′(xi–1) + 66Y ′′(xi) + 26Y ′′(xi+1) + Y ′′(xi+2)
]

= 20
[
Y (xi–2) + 2Y (xi–1) – 6Y (xi) + 2Y (xi+1) + Y (xi+2)

]
, (55)

h3[Y ′′′(xi–2) + 26Y ′′′(xi–1) + 66Y ′′′(xi) + 26Y ′′′(xi+1) + Y ′′′(xi+2)
]

= 60
[
–Y (xi–2) + 2Y (xi–1) – 2Y (xi+1) + Y (xi+2)

]
. (56)

Similarly, using (10), (11) and (22), we have

h4Y (4)(xi) =
h2

40
[
–Y ′′(xi–2) + 114Y ′′(xi–1) – 142Y ′′(xi) + 30Y ′′(xi+1) – Y ′′(xi+2)

]

+
7h3

10
[
Y ′′′(xi–1) + 2Y ′′′(xi)

]
. (57)

Employing the operator notation, Eλ(Y ′(xi)) = Y ′(xi+λ), λ ∈ Z, Eqs. (54)–(56) are written
as [37]

h
[
E–2 + 26E–1 + 66 + 26E1 + E2]Y ′(xi) = 5

[
–E–2 – 10E–1 + 10E1 + E2]y(xi), (58)

h2[E–2 + 26E–1 + 66 + 26E1 + E2]Y ′′(xi) = 20
[
E–2 – 2E–1 + –6 + 2E1 + E2]y(xi), (59)

h3[E–2 + 26E–1 + 66 + 26E1 + E2]Y ′′′(xi) = 60
[
–E–2 + 2E–1 – 2E1 + E2]y(xi). (60)

Using E = ehD, D ≡ d/dx, Eqs. (58)–(60) give the following expressions, respectively [38,
39]:

Y ′(xi) = y′(xi) +
h6

5040
y(7)(xi) –

h8

21,600
y(9)(xi) +

h10

1,036,800
y(11)(xi) + · · · , (61)

Y ′′(xi) = y′′(xi) +
h4

720
y(6)(xi) –

h6

3360
y(8)(xi) +

h8

86,400
y(10)(xi) + · · · , (62)

Y ′′′(xi) = y(3)(xi) –
h4

240
y(7)(xi) +

11h6

30,240
y(9)(xi) –

h8

288,00
y(11)(xi) + · · · . (63)

Similarly, writing (57) in operator notation, we get

h4Y (4)(xi) =
h2

40
[
–E–2 + 114E–1 – 142 + 30E1 – E2]y′′(xi) +

7h3

10
[
E–1 + 2

]
y(3)(xi). (64)
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The above relation can be expanded as

h4Y (4)(xi) =
h2

40

[

–84hD + 68h2D2 – 14h3D3 +
14
3

h4D4 + · · ·
]

y′′(xi)

+
7h3

10

[

3 – hD +
1
2

h2D2 –
1
6

h3D3 +
1

24
h4D4

]

y(3)(xi). (65)

After some simplification, we obtain

Y (4)(xi) = y(4)(xi) +
7h3

600
y(7)(xi) –

19h4

3600
y(8)(xi) + · · · . (66)

Now, the generalized KS equation (1) can be written as

yt = G(x, t, y), (67)

where G = –yyx – αyxx – βyxxx – γ yxxxx, with yj+1
i – yj

i = 
t[θGj+1
i + (1 – θ )Gj

i].
Applying a Taylor series about (j + θ )
t, we obtain

(yt)i –
2θ – 1

2

t(ytt)i +

1 + 3θ (θ – 1)
6


t2(yttt)i + · · ·

= Gi –
θ (θ – 1)

2

t2(Gtt)i +

θ (θ – 1)(2θ – 1)
2


t3(Gttt)i + · · · . (68)

Setting y = η in the nonlinear term yyx and using (67) in (68), we get

(yt)i = Gi +
2θ – 1

2

t(Gt)i –

1 + 6θ (θ – 1)
6


t2(Gtt)i + · · · . (69)

From (67), the truncation error is defined as

ei = (yt)i –
[
–η(Yx)i – α(Yxx)i – β(Yxxx)i – γ (Yxxxx)i

]
,

ei =
2θ – 1

2

t(ytt)i +

7γ h3

600
(yxxxxxxx)i + · · · . (70)

Hence, theoretically, the proposed numerical algorithm for KS equation is O(
t + h3) con-
vergent.

7 Numerical results
To show the versatility of numerical algorithm, we have presented four numerical exper-
iments. The accuracy and efficiency of the method is tested by the maximum, Euclidian
and the global relative error (GRE) norms, which are calculated as [27, 42]

L∞ = max
0≤i≤n

|yi – Yi|, L2 =

√
√
√
√h

n∑

i=0

(yi – Yi)2, GRE =
∑n

i=0 |yi – Yi|
∑n

i=0 |yi| ,

where Yi and yi are the approximate and exact solutions at the ith spatial knot, respectively.
The numerical outcomes are compared with the Lattice Boltzmann model (LBM) [25],
the Quintic B-spline collocation method (QnBSM) [27], B-spline functions (BSF) [29],
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the Exponential cubic B-spline collocation method (ExCBSM) [31], the QnBS differential
quadrature method (QnBS–DQM) [6] and Polynomial scaling functions (PSF) [33].

Problem 1 Consider the following KS equation [6, 25, 27, 31]:

yt + yyx + yxx + yxxxx = 0, x ∈ [–30, 30], t ∈ [0, 4].

The piecewise defined spline solution at t = 1 using the proposed method for Example 1,
when n = 100, 
t = 0.01, λ = 5 and ν = –12, is given by

Y (x, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.89237 + x(0.0153636 + x(0.00100909 + x(0.0000332031

+ (5.47221E – 7 + 3.61331E – 9x)x))), if x ∈ [–30, – 147
5 ],

3.87164 + x(0.0118388 + x(0.000769305 + x(0.0000250471

+ (4.08512E – 7 + 2.66971E – 9x)x))), if x ∈ [– 147
5 , – 144

5 ],

3.92466 + x(0.0210431 + x(0.0014085 + x(0.0000472413

+ (7.93828E – 7 + 5.34552E – 9x)x))), if x ∈ [– 144
5 , – 141

5 ],

3.97167 + x(0.0293783 + x(0.00199965 + x(0.000068204

+ (1.16551E – 6 + 7.98154E – 9x)x))), if x ∈ [– 141
5 , – 138

5 ],
...,

...

6.06349 + x(0.103044 + x(–0.037693 + x(0.00881429

+ (–0.00141027 + 0.000132128x)x))), if x ∈ [– 3
5 , 0],

6.06349 + x(0.103044 + x(–0.037693 + x(0.00881429

+ (–0.00141027 + 0.000135264x)x))), if x ∈ [0, 3
5 ],

...,
...

6.20139 + x(6.48201E – 7 + x(–4.4005E – 8 + x(1.5134E – 9

+ (–2.56932E – 11 + 1.74971E – 13x)x))), if x ∈ [ 138
5 , 141

5 ],

6.2014 + x(4.54485E – 7 + x(–3.11993E – 8 + x(1.03319E – 9

+ (–1.72804E – 11 + 1.16351E – 13x)x))), if x ∈ [ 141
5 , 144

5 ],

6.2014 + x(3.27826E – 7 + x(–2.16532E – 8 + x(6.98492E – 10

+ (–1.15961E – 11 + 7.63833E – 14x)x))), if x ∈ [ 144
5 , 147

5 ],

6.2014 + x(1.22935E – 7 + x(–7.45058E – 9 + x(2.32831E – 10

+ (–3.63798E – 12 + 2.22045E – 14x)x))), if x ∈ [ 147
5 , 30].

The exact solution is

y(x, t) = λ +
30
19

μ
[
–9 tanh(μ(x – λt – ν) + 11 tanh3(μ(x – λt – ν)

)]
,

where μ = 1
2

√
11
19 and the initial and end conditions can be derived from the given exact

solution. The GRE corresponding to λ = 5, ν = –12, n = 100 and 
t = 0.01 is listed in
Table 1 at t = 1, 2, 3, 4. It can be observed that our approximate results are better than
LBM [25], QnBSM [27], ExCBSM [31] and QnBS–DQM [6]. Table 2 shows a comparison
of computational error norms with QnBS-DQM [6] corresponding to λ = 0.1, ν = –10,
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Table 1 Global relative error for Problem 1 when λ = 5 and ν = –12

t LBM [25] QnBSM [27] ExCBSM [31] QnBS–DQM [6] Proposed method
n = 600 n = 150 n = 150 n = 150 n = 100

t = 0.0001 
t = 0.01 
t = 0.01 
t = 0.01

1 6.79× 10–4 3.82× 10–4 3.33× 10–4 2.40× 10–4 2.50× 10–5

2 1.15× 10–3 5.51× 10–4 5.56× 10–4 2.99× 10–4 4.57× 10–5

3 1.59× 10–3 7.04× 10–4 8.75× 10–4 3.63× 10–4 6.35× 10–5

4 2.01× 10–3 8.64× 10–4 1.25× 10–3 4.33× 10–4 7.86× 10–5

Table 2 L2 and L∞ norms for Problem 1 when λ = 0.1 and ν = –10

t QnBS–DQM [6] Proposed method

L2 L∞ L2 L∞
0.1 8.50× 10–3 8.59× 10–3 1.74× 10–4 1.17× 10–4

0.3 1.18× 10–2 9.52× 10–3 3.36× 10–4 2.12× 10–4

0.5 1.44× 10–2 1.00× 10–2 4.72× 10–4 2.83× 10–4

0.7 1.69× 10–2 1.04× 10–2 5.83× 10–4 3.35× 10–4

1.0 1.92× 10–2 1.19× 10–2 7.14× 10–4 3.87× 10–4

Figure 1 Numerical and exact solution for Problem 1 using n = 100, 
t = 0.01, λ = 5 and ν = –12

Figure 2 Exact and approximate solution for Problem 1 when 0≤ t ≤ 4, –30 ≤ x ≤ 30, n = 100, 
t = 0.01,
λ = 5 and ν = –12

n = 100 and 
t = 0.01 at t = 0.1, 0.3, 0.5, 0.5, 0.7, 1.0. The 2D plots of approximate and exact
solutions at different time stages are displayed in Fig. 1 and the 3D graphics of the exact
and numerical solutions are portrayed in Fig. 2.
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Problem 2 Consider the following KS equation [6, 25, 27, 31]:

yt + yyx – yxx + yxxxx = 0, x ∈ [–50, 50], t ∈ [0, 4].

The piecewise defined spline solution at t = 1 using the proposed method for Example 2,
when n = 100, 
t = 0.01, λ = 5 and ν = –25, is given by

Y (x, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5.33339 + x(–0.00293376 + x(–0.000119332 + x(–2.42684E – 6

+ (–2.4676E – 8 – 1.00357E – 10x)x))), if x ∈ [–50, –49],

5.36867 + x(0.00066654 + x(0.0000276187 + x(5.72159E – 7

+ (5.92601E – 9 + 2.4549E – 11x)x))), if x ∈ [–49, –48],

5.35992 + x(–0.000244348 + x(–0.000010335 + x(–2.18545E – 7

+ (–2.31046E – 9 – 9.76963E – 12x)x))), if x ∈ [–48, –47],

5.36312 + x(0.0000959346 + x(4.14508E – 6 + x(8.95434E – 8

+ (9.67049E – 10 + 4.17727E – 12x)x))), if x ∈ [–47, –46],
...,

...

5.36221 + x(–0.000010259 + x(–2.33857E – 6 + x(–3.5414E – 7

+ (–3.93807E – 8 – 2.85432E – 9x)x))), if x ∈ [–1, 0],

5.36221 + x(–0.000010259 + x(–2.33857E – 6 + x(–3.5414E – 7

+ (–3.93807E – 8 – 4.44859E – 9x)x))), if x ∈ [0, 1],
...,

...

9.30952 + x(–0.474015 + x(0.01929 + x(–0.000393476

+ (4.02218E – 6 – 1.64808E – 8x)x))), if x ∈ [46, 47],

7.96662 + x(–0.331153 + x(0.0132108 + x(–0.000264131

+ (2.64617E – 6 – 1.06255E – 8x)x))), if x ∈ [47, 48],

6.74426 + x(–0.203824 + x(0.00790544 + x(–0.000153602

+ (1.49483E – 6 – 5.82822E – 9x)x))), if x ∈ [48, 49],

6.32486 + x(–0.161028 + x(0.00615866 + x(–0.000117953

+ (1.13107E – 6 – 4.34348E – 9x)x))), if x ∈ [49, 50].

The exact solution is

y(x, t) = λ +
30
19

μ
[
–3 tanh

(
μ(x – λt – ν)

)
+ tanh3(μ(x – λt – ν)

)]
,

where μ = 1
2
√

19 and the initial and boundary constraints can be derived from given ex-
act solution. In Table 3, the GRE corresponding to λ = 5, ν = –25, n = 100 and 
t =
0.01 is compared with LBM [25], QnBSM [27], ExCBSM [31] and QnBS–DQM [6] at
t = 6, 8, 10, 12. Figure 3 exhibits 2D plots of the exact and numerical solution at dif-



Iqbal et al. Advances in Difference Equations        (2020) 2020:558 Page 15 of 21

Table 3 Global relative error for Problem 2 when λ = 5 and ν = –25

t LBM [25] QnBSM [27] ExCBSM [31] QnBS–DQM [6] Proposed method
n = 1000 n = 200 n = 200 n = 150 n = 100

t = 0.0001 
t = 0.01 
t = 0.01 
t = 0.01

6 7.88× 10–6 6.51× 10–6 9.34× 10–6 3.59× 10–6 3.00× 10–7

8 9.53× 10–6 7.13× 10–6 1.57× 10–5 4.29× 10–6 3.62× 10–7

10 1.09× 10–5 7.31× 10–6 2.37× 10–5 5.09× 10–6 4.14× 10–7

12 1.18× 10–5 8.78× 10–6 3.33× 10–5 3.79× 10–6 4.43× 10–7

Figure 3 Numerical and analytical exact solutions for Problem 2 with 
t = 0.01, n = 100, λ = 5 and ν = –25

Figure 4 Exact and numerical solutions for Problem 2 when 0≤ t ≤ 10, –50 ≤ x ≤ 50, n = 100, 
t = 0.01,
λ = 5 and ν = –25

ferent time stages. The 3D graphs of the exact and numerical solutions are shown in
Fig. 4.

Problem 3 Consider the following KS equation [29, 33]:

yt + yyx + yxx + 0.5yxxxx = 0, x ∈ [–10, 10], t ∈ [0, 10].
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The piecewise defined spline solution at t = 1 using proposed method for Example 3,
when n = 100, 
t = 0.01 and λ = 0.1, is given by

Y (x, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–968493. + x(–492419. + x(–100141.

+ x(–10182.2 + (–517.634 – 10.5255x)x))), if x ∈ [–10, – 49
5 ],

221758. + x(114852. + x(23791.4

+ x(2463.98 + x(127.581 + 2.64218x)))), if x ∈ [– 49
5 , – 48

5 ],

–83398.6 + x(–44083.7 + x(–9320.23

+ x(–985.155 + (–52.0609 – 1.10037x)x))), if x ∈ [– 48
5 , – 47

5 ],

34542.2 + x(18650.8 + x(4027.53

+ x(434.82 + (23.4696 + 0.506665x)x))), if x ∈ [– 47
5 , – 46

5 ],
...,

...

–0.938649 + x(–3.92441 + x(1.00339

+ x(1.6944 + (–0.425134 – 0.459114x)x))), if x ∈ [– 1
5 , 0],

–0.938649 + x(–3.92441 + x(1.00339

+ x(1.6944 + (–0.425134 – 0.321792x)x))), if x ∈ [0, 1
5 ],

...,
...

–34545.3 + x(18652.3 + x(–4027.88

+ x(434.858 + (–23.4718 + 0.506711x)x))), if x ∈ [ 46
5 , 47

5 ],

83405.8 + x(–44087.6 + x(9321.05

+ x(–985.241 + (52.0654 – 1.10046x)x))), if x ∈ [ 47
5 , 48

5 ],

–221773. + x(114859. + x(–23792.9

+ x(2464.13 + x(–127.589 + 2.64235x)))), if x ∈ [ 48
5 , 49

5 ],

968551. + x(–492448. + x(100147.

+ x(–10182.8 + (517.664 – 10.5261x)x))), if x ∈ [ 49
5 , 10].

The exact solution is

y(x, t) = –
λ

μ
+

60
19

μ
(
–38γμ2 + α

)
tanh(μx + λt) + 120γμ3 tanh3(μx + λt),

where μ = 1
2
√

11α/19γ and the initial and boundary constraints are obtained from the
given exact solution. The error norms, L2 and L∞, with λ = 0.1 and 
t = 0.1, 0.01, 0.001
are reported in Table 4. It is clear that our numerical algorithm provides a better ap-
proximation to the exact solution than BSF [29] and PSF [33]. The 2D graphs of numer-
ical and true solutions at different time levels are shown in Fig. 5, and Fig. 6 depicts the
3D plots of the exact and numerical solutions in the temporal domain 0 ≤ t ≤ 10 using

t = 0.01.
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Table 4 Error norms for Problem 3 when λ = 0.1


t BSF [29] PSF [33] Proposed method

L2 L∞ L2 L∞ L2 L∞
0.1 8.9× 10–3 9.9× 10–6 1.4× 10–4 1.3× 10–4 5.83× 10–5 7.09× 10–5

0.01 1.6× 10–3 2.1× 10–6 1.5× 10–6 1.3× 10–6 5.84× 10–7 7.11× 10–7

0.001 · · · · · · 2.2× 10–8 2.1× 10–8 6.54× 10–9 7.95× 10–9

Figure 5 Numerical and exact solutions for Problem 3 at t = 1, 5, 10 using n = 100 and 
t = 0.01

Figure 6 Exact and approximate solutions for Problem 3 when 0 ≤ t ≤ 1, 
t = 0.001 and λ = 0.1

Table 5 Global relative error for Problem 4 when λ = 6, μ = 0.5 and ν = –10

t LBM [25] QnBS–DQM [6] Proposed method
n = 600 n = 150 n = 150

t = 0.0001 
t = 0.001

1 2.59× 10–2 2.56× 10–3 5.14× 10–4

2 2.80× 10–2 4.91× 10–3 1.39× 10–3

3 2.67× 10–2 1.11× 10–2 3.02× 10–3

4 3.52× 10–2 1.92× 10–2 5.03× 10–3
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Problem 4 Consider the KS equation [6, 25]

yt + yyx + yxx + 4yxxx + yxxxx = 0, x ∈ [–30, 30], t ∈ [0, 4].

The piecewise defined spline solution at t = 1 using the proposed method for Example 4,
when n = 100, 
t = 0.01, λ = 6, μ = 0.5 and ν = –10, is given by

Y (x, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–50671. + x(–8613.05 + x(–585.635 + x(–19.9104

+ (–0.338466 – 0.00230157x)x))), if x ∈ [–30, – 147
5 ],

3735.51 + x(639.763 + x(43.808 + x(1.49923

+ (0.0256427 + 0.000175363x)x))), if x ∈ [– 147
5 , – 144

5 ],

–2485.85 + x(–440.333 + x(–31.1986 + x(–1.10517

+ (–0.0195726 – 0.000138632x)x))), if x ∈ [– 144
5 , – 141

5 ],

968.556 + x(172.149 + x(12.2398 + x(0.435199

+ (0.00773898 + 0.0000550672x)x))), if x ∈ [– 141
5 , – 138

5 ],
...,

...

0.0379155 + x(–0.0741793 + x(0.0714278 + x(–0.0447254

+ (0.0190591 – 0.00966862x)x))), if x ∈ [– 3
5 , 0],

0.0379155 + x(–0.0741793 + x(0.0714278 + x(–0.0447254

+ (0.0190591 – 0.00431186x)x))), if x ∈ [0, 3
5 ],

...,
...

–1.40981E – 9 + x(2.61336E – 10 + x(–1.93724E – 11 + x(7.1782E – 13

+ (–1.3295E – 14 + 9.84664E – 17x)x))), if x ∈ [ 138
5 , 141

5 ],

2.24784E – 8 + x(–3.97417E – 9 + x(2.81018E – 10 + x(–9.93432E – 12

+ (1.75573E – 13 – 1.24102E – 15x)x))), if x ∈ [ 141
5 , 144

5 ],

–5.50318E – 8 + x(9.48247E – 9 + x(–6.53471E – 10 + x(2.25132E – 11

+ (–3.87752E – 13 + 2.67096E – 15x)x))), if x ∈ [ 144
5 , 147

5 ],

1.16927E – 8 + x(–1.86523E – 9 + x(1.18482E – 10 + x(–3.74368E – 12

+ (5.87933E – 14 – 3.66767E – 16x)x))), if x ∈ [ 147
5 , 30].

The exact solution is

y(x, t) = 9 + λ – 15
[
tanh(μ(x – λt – ν) + tanh2(μ(x – λt – ν) + tanh3(μ(x – λt – ν)

]
.

The initial and end conditions are established from given exact solution. Table 5 portrays
the comparison of GRE with LBM [25] and QnBS-DQM [6] corresponding to λ = 6, μ =
0.5, ν = –10, n = 150 and 
t = 0.001 at t = 1, 2, 3, 4. Figure 7 shows the comparison of
approximate and exact solution at different time stages. The 3D graphics of the exact and
numerical solutions are given in Fig. 8 when –30 ≤ x ≤ 30, 0 ≤ t ≤ 1 using n = 100 and

t = 0.01.
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Figure 7 Numerical and analytical exact solutions for Problem 4 with 
t = 0.01, n = 100, λ = 6, μ = 0.5 and
ν = –10

Figure 8 Exact and approximate solutions for Problem 4 when –30 ≤ x ≤ 30, 0≤ t ≤ 4, n = 100, 
t = 0.01,
λ = 6, μ = 0.5 and ν = –10

8 Conclusion
In this work, an application of a new quintic polynomial B-spline approximation approach
has been presented for a numerical investigation of the Kuramoto–Sivashinsky equation.
The numerical scheme employs typical fifth degree polynomial basis spline functions in
association with a new approximation and a Crank–Nicolson scheme to discretize the
problem in the space and time directions, respectively. The error and stability analysis of
the proposed scheme is carried out. Four test problems are considered from the available
literature and the simulation results are compared with LBM [25], QnBSM [27], BSF [29],
ExCBSM [31], QnBS-DQM [6] and PSF [33]. It is concluded that the presented algorithm
outperforms the other variants on the topic with superior accuracy and straightforward
implementation.
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