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Abstract
Alcoholism is a social phenomenon that affects all social classes and is a chronic
disorder that causes the person to drink uncontrollably, which can bring a series of
social problems. With this motivation, a delayed drinking model including five
subclasses is proposed in this paper. By employing the method of characteristic
eigenvalue and taking the temporary immunity delay for alcoholics under treatment
as a bifurcation parameter, a threshold value of the time delay for the local stability of
drinking-present equilibrium and the existence of Hopf bifurcation are found. Then
the length of delay has been estimated to preserve stability using the Nyquist
criterion. Moreover, optimal strategies to lower down the number of drinkers are
proposed. Numerical simulations are presented to examine the correctness of the
obtained results and the effects of some parameters on dynamics of the drinking
model.
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1 Introduction
In recent years, with the improvement of our living standards, life styles are becoming
more and more diversified, and drinking plays an increasingly important role in people’s
daily life. However, the current situation of alcoholism around the world is really wor-
rying. Taking China as an example, from the statistical data in the white paper on the
status of moderate drinking among Chinese drinkers in 2017 [1], the drinking rate of men
and women is 84.1% and 29.3%, respectively. It also points out that 65% of drinkers show
unhealthy drinking and the main problem is excessive drinking. Alcoholism has become
one of the public health and social problems considered by the world. The harm of al-
coholism is very serious. Alcoholism may not only have a serious impact on the brain,
nervous system, liver, stomach, and heart, but it also accelerates the spread of AIDS and
sexually transmitted diseases. And it can also lead to traffic accidents, social violence, and
other serious consequences of criminal acts. It is reported that more than 3 million people
died because of alcohol, which accounts for 5.3% of all deaths [2]. Therefore, alcoholism
is not only a serious global public health problem, but also a social problem to be solved.
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Health-related risky behaviors related to addictions can be regarded as treatable con-
tagious diseases since they can spread through the social interaction [3, 4]. It is worth
mentioning that health-related risky behaviors such as smoking [5–11] and drug abuse
[12–16] have been explored by mathematical modeling method. In the same way, some
drinking models [17–22] based on differential equations have been developed to describe
the spreading law of drinking dynamics since the pioneering work of [23]. Specially, there
are also some models considering the impact of social environment on drinking spread.
Huo and Zhang [24] established a drinking model taking into account the influence of
Twitter and showed that Twitter can affect the spread of drinking. Xiang et al. [25] formu-
lated a drinking model considering the effects of public health educational campaigns and
demonstrated that the public health educational campaigns can slow down the drinking
dynamics. Recently, Xiang et al. [26] proposed the following drinking model considering
the effect of immigration on drinking behavior:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = � + (1 – q1 – q2)� – εP(t) – ηP(t)L(t) – αP(t)S(t)

– βP(t)Q(t) – μP(t),
dL(t)

dt = q1� + εP(t) + ηP(t)L(t) + αP(t)S(t) + βP(t)Q(t)
+ ρQ(t) – (μ + d1 + 	 )L(t),

dS(t)
dt = q2� + (1 – p)	L(t) – (μ + d2 + φ)S(t),

dQ(t)
dt = p	L(t) + φS(t) – (μ + d3 + ρ)Q(t),

(1)

where P(t), L(t), S(t), and Q(t) denote the number of moderate drinkers, light alcoholics,
heavy alcoholics, and alcoholics under treatment at time t, respectively. � is the total re-
cruitment rate due to birth; � denotes the total number of immigrants; q1 is the fraction
of immigrants entering into light alcoholics, and q2 is the fraction of immigrants entering
into heavy alcoholics; η, α and β are the contact rates; 	 denotes the departure rate of
light alcoholics among which a proportion p (0 < p < 1) accept treatment and the rest 1 – p
enter into heavy alcoholics; μ is the natural death rate; d1, d2, and d3 are the death rates
due to drinking; ε, ρ , and φ are state transition rates.

Evidently, it is instantaneous for alcoholics under treatment to enter into the compart-
ment of heavy alcoholics in system (1). This is not acceptable in real life. Indeed, alcoholics
under treatment may enter into the compartment of heavy alcoholics again due to their
own reasons or the influence of other external factors. However, for such a process, it is
reasonable that there is usually a certain period due to the impact of the accepted treat-
ment and self-control for alcoholics under treatment. In other words, the alcoholics begin
to accept treatment at t –τ , then they may become heavy alcoholics again at time t for some
reason. From another perspective, in comparison with ordinary differential equations, de-
layed differential equations present more complex dynamics. In fact, delayed differential
equations have been applied in various fields, for example, mathematical biology [27–30],
epidemiology [31–33], and computer virus [34–37]. All the work above revealed that delay
can influence dynamics of the systems significantly. Inspired by the above consideration
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and related research work, we investigate the following delayed drinking model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = � + (1 – q1 – q2)� – εP(t) – ηP(t)L(t) – αP(t)S(t)

– βP(t)Q(t) – μP(t),
dL(t)

dt = q1� + εP(t) + ηP(t)L(t) + αP(t)S(t) + βP(t)Q(t)
+ ρQ(t – τ ) – (μ + d1 + 	 )L(t),

dS(t)
dt = q2� + (1 – p)	L(t) – (μ + d2 + φ)S(t),

dQ(t)
dt = p	L(t) + φS(t) – (μ + d3)Q(t) – ρQ(t – τ ),

(2)

where τ is the temporary immunity delay for alcoholics under treatment due to the impact
of the accepted treatment and self-control.

2 Existence of Hopf bifurcation and local stability analysis
Applying the results in [26], it can be obtained that system (2) has drinking-present equi-
librium E∗(P∗, L∗, S∗, Q∗), where

P∗ =
� + (1 – q1 – q2)�

ηL∗ + α
b [q2� + (1 – p)	L∗] + β

bc [d	L∗ + q2�φ] + e
,

S∗ =
q2�

b
+

(1 – p)	L∗
b

,

Q∗ =
d	L∗

bc
+

q2�φ

bc
,

with

a = μ + d1 + 	 ,

b = μ + d2 + φ,

c = μ + d3 + ρ,

d = p(μ + d2) + φ,

e = ε + μ,

and L∗ is the positive root of Eq. (3)

f1L2 + f2L + f3 = 0, (3)

where

f1 =
(

–a +
dρ	

bc

)[

η +
α(1 – p)	

b
+

dβ	

bc

]

,

f2 = q1�η + η
[
� + (1 – q1 – q2)�

]
– ae +

(1 – p)	
b

[
q1α� + α� + α(1 – q1 – q2)�

]

–
aq2α�

b
+

d	

bc
[
q1�β + β� + β(1 – q1 – q2)� + eρ

]
+

q2φ�

bc
(ρη – aβ)

+
q2α	ρ�

b2c
[
d + (1 – p)φ

]
+ 2

dq2	ρφ�

b2c2 ,
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f3 = eq1� + ε
[
� + (1 – q1 – q2)�

]
+

q2�

b
(
q1α� + α� + (1 – q1 – q2)α�

)

+
q2φ�

bc
[
q1β� + β� + eρ + (1 – q1 – q2)β�

]
+

q2
2�

2αρφ

b2c
+

q2
2φ

2�2βρ

b2c2 .

The associated characteristic equation at E∗(P∗, L∗, S∗, Q∗) is

λ4 + ϒ3λ
3 + ϒ2λ

2 + ϒ1λ + ϒ0 +
(
�3λ

3 + �2λ
2 + �1λ + �0

)
e–λτ = 0, (4)

where

ϒ0 = P11P33(P22P44 – P24P42) + P21P44(P13P32 – P12P33)

+ P14P21(P33P42 – P32P43) + P11P24P32P43,

ϒ1 = P12P21(P33 + P44) + P24P42(P11 + P33) – P21(P13P32 + P14P42)

–
[
P11P22(P33 + P44) + P33P44(P11 + P22)

]
– P24P32P43,

ϒ2 = (P11 + P22)(P33 + P44) + P11P22 + P33P44 – P12P21 – P24P42,

ϒ3 = –(P11 + P22 + P33 + P44),

�0 = P11P33(P22Q44 – P42Q24) + P21Q44(P13P32 – P12P33)

+ P11P32(P43Q24 – P23Q44),

�1 = P42Q24(P11 + P33) – P32P43Q24

+ Q44(P12P21 + P23P32 – P11P22 – P11P33 – P22P33),

�2 = Q44(P11 + P22 + P33) – P42Q24, �3 = –Q44,

with

P11 = –(ε + ηL∗ + αS∗ + βQ∗ + μ), P12 = –ηP∗, P13 = –αP∗, P14 = –βP∗,

P21 = ε + ηL∗ + αS∗ + βQ∗, P22 = ηP∗ – (μ + d1 + 	 ),

P23 = αP∗, P24 = βP∗,

P32 = (1 – p)	 , P33 = –(μ + d2 + φ),

P42 = p	 , P43 = φ, P44 = –(μ + d3), Q24 = ρ, Q44 = –ρ.

When τ = 0, Eq. (4) becomes

λ4 + �3λ
3 + �2λ

2 + �1λ + �0 = 0, (5)

with

�0 = ϒ0 + �0, �1 = ϒ1 + �1, �2 = ϒ2 + �2, �3 = ϒ3 + �3.
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Clearly, if �0 > 0, �1 > 0, �3 > 0, and �1�2�3 > �2
1 + �0�

2
3, then Eq. (5) has negative

real roots when τ = 0. Next, if λ = iω (ω > 0) is the solution of Eq. (4), it leads to

{
(�1ω – �3ω

3) sin τω + (�0 – �2ω
2) cos τω = ϒ2ω

2 – ω4 – ϒ0,
(�1ω – �3ω

3) cos τω – (�0 – �2ω
2) sin τω = ϒ3ω

3 – ϒ1ω.
(6)

It follows that

ω8 + Z3ω
6 + Z2ω

4 + Z1ω
2 + Z0 = 0, (7)

where

Z0 = ϒ2
0 – �2

0 ,

Z1 = ϒ2
1 – 2ϒ0ϒ2 – �2

1 + 2�0�2,

Z2 = ϒ2
2 + 2ϒ0 – 2ϒ1ϒ3 – �2

2 + 2�1�3,

Z3 = ϒ2
3 – 2ϒ0ϒ2 – �2

3 .

Put ω2 = ζ . Equation (7) becomes

ζ 4 + Z3ζ
3 + Z2ζ

2 + Z1ζ + Z0 = 0. (8)

If Z0 < 0, then Eq. (8) has at least one positive root. We suppose that Eq. (8) has four
positive roots, represented by ζ1, ζ2, ζ3, and ζ4, respectively. Then ωi =

√
ζi (i = 1, 2, . . . , 4)

are the roots of Eq. (7). Then, by Eq. (6), we get

τ
j
i =

1
ωi

× arccos

[
U1(ωi)
U2(ωi)

+ 2jπ
]

, i = 1, 2, 3, 4; j = 0, 1, 2, . . . , (9)

where

U1(ωi) = (�2 – �3ϒ3)ω6
i + (�1ϒ3 + �3ϒ1 – �2ϒ2 – �0)ω4

i

+ (�0ϒ2 + �2ϒ0 – �1ϒ1)ω2
i – �0ϒ0,

U2(ωi) = �2
3ω6

i +
(
�2

2 – 2�1�3
)
ω4

i +
(
�2

1 – 2�0�2
)
ω2

i + �2
0 .

Define

τ0 = min
{
τ 0

i
}

, i = 1, 2, 3, 4. (10)

Then Eq. (7) has a pair of purely imaginary roots ±iω0 when τ = τ0.
Going forward, to obtain a condition for the occurrence of Hopf bifurcation, we differ-

entiate both sides of Eq. (4) concerning τ , it can be achieved that

[
dλ

dτ

]

=
V1(λ)
V2(λ)

, (11)
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with

V1(λ) = λ
(
�3λ

3 + �2λ
2 + �1λ + �0

)
e–λτ ,

V2(λ) = 4λ3 + 3ϒ3λ
2 + 2ϒ2λ + ϒ1 +

(
3�3λ

2 + 2�2λ + �1
)
e–λτ

– τ
(
�3λ

3 + �2λ
2 + �1λ + �0

)
e–λτ .

Then we claim that

[
dλ

dτ

]–1

= –
4λ3 + 3ϒ3λ

2 + 2ϒ2λ + ϒ1

λ(λ4 + ϒ3λ3 + ϒ2λ2 + ϒ1λ + ϒ0)
+

3�3λ
2 + 2�2λ + �1

λ(�3λ3 + �2λ2 + �1λ + �0)
–

τ

λ
. (12)

Hereby, we have

Re

[
dλ

dτ

]–1

τ=τ0

=
F ′(ζ0)

U2(ω0)
, (13)

where F(ζ ) = ζ 4 + Z3ζ
3 + Z2ζ

2 + Z1ζ + Z0 and ζ0 = ω2
0. It is apparent that if F ′(ζ0) �= 0 then

Re[dλ/dτ ]τ=τ0 �= 0, which indicates that the transversality condition is matched.
In accordance with the discussion above and the Hopf bifurcation theorem in [38], we

establish the following results.

Theorem 2.1 If τ ∈ [0, τ0), then the drinking-present equilibrium E∗(P∗, L∗, S∗, Q∗) in sys-
tem (2) is locally asymptotically stable; a Hopf bifurcation at the drinking-present equilib-
rium E∗(P∗, L∗, S∗, Q∗) is observed by system (2) whenever τ = τ0.

3 Numerical simulations of Hopf bifurcation
We choose the same parameters as the ones used in literature [26]: � = 0.3, � = 0.12, ε =
0.1, η = 0.6, α = 0.3, β = 0.2, ρ = 0.8, φ = 0.226, p = 0.3, 	 = 0.583, μ = 0.1595, d1 = 0.02,
d2 = 0.038, d3 = 0.03, q1 = 0.4, q2 = 0.3. System (2) turns into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.21 – 0.2595P(t) – 0.6P(t)L(t) – 0.3P(t)S(t)
– 0.2P(t)Q(t),

dL(t)
dt = 0.12 + 0.1P(t) + 0.6P(t)L(t) + 0.3P(t)S(t)

+ 0.2P(t)Q(t) + 0.8Q(t – τ ) – 0.7625L(t),
dS(t)

dt = 0.09 + 0.4081L(t) – 0.4235S(t),
dQ(t)

dt = 0.1749L(t) + 0.226S(t) – 0.1895Q(t) – 0.8Q(t – τ ),

(14)

Equation (3) turns into

–0.43098534L2 + 0.20901291L + 0.08931151 = 0, (15)

which leads to the drinking-present E∗(0.1967, 0.7583, 0.9432, 0.3495). Based on Eq. (8)
and Eq. (10), we get ω0 = 0.1644 and τ0 = 2.7958 with the aid of Matlab software package.
As exhibited in Fig. 1, the drinking-present equilibrium E∗(0.1967, 0.7583, 0.9432, 0.3495)
is locally asymptotically stable when we fix τ = 2.6865. However, when the fixed value of
the delay exceeds τ0 = 2.7958, the drinking-present equilibrium E∗(0.1967, 0.7583, 0.9432,
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Figure 1 Time plots of P, L, S and Q for τ = 2.6865 < τ0 = 2.7958

0.3495) loses stability and the specific case of system (2) experiences a Hopf bifurcation,
which can be depicted by Fig. 2. In what follows, we are interested in focusing on the effects
of some other parameters on dynamics of system (2).

(i) The number of moderate drinkers decreases as the value of � increases, whereas
the number of light alcoholics, heavy alcoholics, and alcoholics under treatment
increases, which can be displayed in Fig. 3.

(ii) The number of moderate drinkers and heavy alcoholics decreases; however, the
number of light alcoholics and alcoholics under treatment increases when the value
of p or φ increases. This phenomenon can be exhibited in Figs. 4 and 5. It is also
interesting to note that the system changes from stable state to limit cycle as there
is a decrease in p or φ, which can be observed in Fig. 6 and 7.

(iii) The number of moderate drinkers and alcoholics under treatment increases due to
the increase of ρ ; nevertheless, the number of light alcoholics and heavy alcoholics
decreases, which can be shown in Fig. 8. It can also be found in Fig. 9 that the
system will lose stability and exhibits limit cycle due to the increase of ρ .

4 Estimation of the length of delay to preserve stability
Let the initial condition for system (2) be

P(θ ) = φ1(θ ), L(θ ) = φ2(θ ), S(θ ) = φ3(θ ), Q(θ ) = φ4(θ ) with

φi(θ ) ≥ 0, φi(0) > 0, i = 1, 2, 3, 4; θ ∈ [–τ , 0].
(16)
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Figure 2 Time plots of P, L, S and Q for τ = 2.8985 > τ0 = 2.7958

We consider the set of all real-valued continuous functions defined on [–τ ,∞), those
satisfy the initial conditions (16). Using the substitutions u1 = P – P∗, u2 = L – L∗, u3 =
S – S∗, and u4 = Q – Q∗, the linearized form of system (2) is given by

du1

dt
= P11u1 + P12u2 + P13u3 + P14u4,

du2

dt
= P21u1 + P22u2 + P23u3 + P24u4 + ρu4(t – τ ),

du3

dt
= P32u2 + P33u3,

du4

dt
= P42u2 + P43u3 + P44u4 – ρu4(t – τ ),

(17)

where the expression for Pij, i, j = 1, 2, 3, 4, is given in Sect. 2 before Eq. (5). Now, the
Laplace transform of system (17) is as follows:

(s – P11)ū1 = u1(0) + P12ū2 + P13ū3 + P14ū4,

(s – P22)ū2 = u2(0) + P21ū1 + P23ū3 + P24ū4 + ρe–sτ K(s) + ρe–sτ ū4,

(s – P33)ū3 = u3(0) + P32ū2,

(s – P44)ū4 = u4(0) + P42ū2 + P43ū3 – ρe–sτ K(s) – ρe–sτ ū4,

(18)
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Figure 3 Time plots of P, L, S and Q for different � at τ = 2.0505. The rest of the parameters are taken as
given in the text

where K(s) =
∫ 0

–τ
e–sτ u4(t) dt and ūi(s) are the Laplace transforms of ui(t), i = 1, 2, 3, 4, re-

spectively. To reach our objective, we use the Nyquist criterion for local stability and follow
the lines of [28]. The characteristic equation of system (18) is of the form

H(s) : s4 + ϒ3s3 + ϒ2s2 + ϒ1s + ϒ0 +
(
�3s3 + �2s2 + �1s + �0

)
e–sτ = 0, (19)

where the forms of ϒi and �i, i = 0, 1, 2, 3, are given in Sect. 2 after Eq. (4). Let s = iη, and
separating the real and imaginary parts, we get

η4 – ϒη2 + ϒ0 =
(
�3η

3 – �1η
)

sinητ +
(
�2η

2 – �0
)

cosητ (20)

and

ϒ1η – ϒ3η
3 =

(
�3η

3 – �1η
)

cosητ –
(
�2η

2 – �0
)

sinητ . (21)

Using the Nyquist criteria for local stability, we have

Re H(iη0) = 0 (22)

and

Im H(iη0) > 0, (23)
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Figure 4 Time plots of P, L, S and Q for different p at τ = 2.0505. The rest of the parameters are taken as given
in the text

where η0 is the smallest positive root of Eq. (22). If the relations in Eq. (22) and Eq. (23)
hold simultaneously, then system (18) as well as system (2) are stable. Using these to es-
timate the delay τ , we now find the upper bound η+ on η0 which is independent of τ and
satisfies the relations in Eq. (23) ∀η, 0 ≤ η ≤ η+ at η = η0. Now, we assume | sinη0τ | ≤ 1
and | cosη0τ | ≤ 1, then from Eq. (22) we get

η4
0 – |�3|η3

0 –
(
ϒ2 + |�2|

)
η2

0 + |�1|η0 +
(
ϒ0 + |�0| – 1

) ≤ 0. (24)

Let η+ be a positive solution of Eq. (24) such that η0 ≤ η+. Therefore, from Eq. (23) we get

η2
0 <

ϒ1

ϒ3
+

�2η0

ϒ3
sinη0τ –

�0

ϒ3η0
sinη0τ –

�3η
2
0

ϒ3
cosη0τ +

�1

ϒ3
cosη0τ . (25)

Now, substituting Eq. (22) in Eq. (25) and rearranging, we get

(

�2η
2
0 – �0 +

�3

ϒ3
η4

0 –
�1

ϒ3
η2

0

)

(1 – cosη0τ )

<
(

�1η0 +
�2

ϒ3
η3

0 – �3η
3
0 –

�0

ϒ3
η0

)

sinη0τ

+
(

ϒ1

ϒ3
η2

0 – ϒ2η
2
0 + ϒ0 – �2η

2
0 + �0 –

�3

ϒ3
η4

0 +
�1

ϒ3
η2

0

)

. (26)
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Figure 5 Time plots of P, L, S and Q for different φ at τ = 2.0505. The rest of the parameters are taken as given
in the text

Figure 6 Phase plots for different p at τ = 2.8985. The rest of the parameters are taken as given in the text

Now,

(

�2η
2
0 – �0 +

�3

ϒ3
η4

0 –
�1

ϒ3
η2

0

)

(1 – cosη0τ )

=
(

�2η
2
0 – �0 +

�3

ϒ3
η4

0 –
�1

ϒ3
η2

0

)

2 sin2 η0τ

2

≤
∣
∣
∣
∣�2η

2
+ – �0 +

�3

ϒ3
η4

+ –
�1

ϒ3
η2

+

∣
∣
∣
∣
1
2
η2

+τ 2, (27)
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Figure 7 Phase plots for different φ at τ = 2.8985. The rest of the parameters are taken as given in the text

Figure 8 Time plots of P, L, S and Q for different ρ at τ = 2.0505. The rest of the parameters are taken as given
in the text

and

(

�1η0 +
�2

ϒ3
η3

0 – �3η
3
0 –

�0

ϒ3
η0

)

sinη0τ

≤
(

�1η+ +
�2

ϒ3
η3

+ – �3η
3
+ –

�0

ϒ3
η+

)

η+τ . (28)
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Figure 9 Phase plots for different ρ at τ = 2.8985. The rest of the parameters are taken as given in the text

Let us denote

K1 =
η2

+
2

∣
∣
∣
∣�2η

2
+ – �0 +

�3

ϒ3
η4

+ –
�1

ϒ3
η2

+

∣
∣
∣
∣,

K2 = η+

(

�1η+ +
�2

ϒ3
η3

+ – �3η
3
+ –

�0

ϒ3
η+

)

,

K3 =
ϒ1

ϒ3
η2

+ – ϒ2η
2
+ + ϒ0 – �2η

2
+ + �0 –

�3

ϒ3
η4

+ +
�1

ϒ3
η2

+,

and using Eq. (27) and Eq. (28), from Eq. (26) we get

K1τ
2 + K2τ < K3. (29)

Thus from (29) we have 0 ≤ τ < τ+, where

τ+ =
1

2K2

(
–K2 +

√

K2
2 + 4K1K3

)
. (30)

From Eq. (30), we can determine the length of the delay (τ ) where the stability is pre-
served.

5 Optimal control analysis
We considered an optimal control model for the drinking model. In this model, con-
trol is education or media coverage, which changes the behavior of certain individuals
in the heavy alcoholics class. This change in behavior leads to subdividing heavy alco-
holics into three subclasses, namely S, S1, and S2. A proportion of the heavy alcoholics
populations S decide to change their behavior due to the effect of a successful education
campaign and thus enter the S1 or S2 class. These two classes S1 and S2 have lower trans-
mission rates than the S class and will contribute to lowering the number of moderate
drinkers.
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We consider optimal control of an ordinary differential equation model, which describes
the interaction of education with heavy alcoholics as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = � + (1 – q1 – q2)� – εP(t) – ηP(t)L(t) – α1P(t)S(t)

– α2P(t)S1(t) – α3P(t)S2(t) – βP(t)Q(t) – μP(t),
dL(t)

dt = q1� + εP(t) + ηP(t)L(t) + α1P(t)S(t) + α2P(t)S1(t)
+ α3P(t)S2(t) + βP(t)Q(t) + ρQ(t – τ )
– (μ + d1 + 	 )L(t),

dS(t)
dt = q2� + (1 – p)	L(t) – (μ + d2 + φ1)S(t) – (λ1 + λ2)u(t)S(t),

dS1(t)
dt = q2� + (1 – p)	L(t) – (μ + d2 + φ2)S1(t) + λ1u(t)S(t),

dS2(t)
dt = q2� + (1 – p)	L(t) – (μ + d2 + φ3)S2(t) + λ2u(t)S(t),

dQ(t)
dt = 1p	L(t) + φ1S(t) + φ2S1(t) + φ3S2(t) – (μ + d3)Q(t)

– ρQ(t – τ ),

(31)

with the initial conditions

P(σ ) = P0, L(σ ) = L0, S(σ ) = S0,

S1(σ ) = S10 , S2(σ ) = S20 , and Q(σ ) = Q0,

where σ ∈ (–τ , 0].
In the above optimal control model, we need three rates α1, α2, α3 for S, S1, and S2

respectively for their interactions with the class P. We also state transition rates φ1, φ1, φ1.
Notice that, as a result of interactions of individuals in class S with the control, education
u(t), a proportion of heavy alcoholics leave the general heavy alcoholics class S and move
to S1 and S2. The rate of moving into class Si for i = 1, 2 is λiu(t)S(t) .

Now, we will focus on the use of the variable control function u(t), which represents the
level of education or media coverage and enables heavy alcoholics to change their behavior.

Our goal is to find the control u(t) and associated state variables P(t), L(t), S(t), S1(t),
S2(t), and Q(t) to minimize the following objective functional:

min J
(
u(t)

)
=

∫ T

0

(
Cu2(t) + S(t) + P(t)

)
dt.

The control set u is

U =
{

u(t) : umin(t) ≤ u(t) ≤ umax(t)
}

,

where 0 ≤ umin(t) < umax(t) ≤ 1, C is weighted costs associated with the use of the control
u(t).

In this subsection, we derive the first order necessary conditions for the existence of
optimal control by constructing Hamiltonian H and then applying Pontryagin’s maximum
principle. To simplify the notations, we write x(t) = [P(t), L(t), S(t), S1(t), S2(t), Q(t)]T .ρ(t) =
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[ρ1(t),ρ2(t),ρ3(t),ρ4(t),ρ5(t),ρ6(t)]T . The Hamiltonian is given by

H = Cu2(t) + S(t) + P(t) + ρ1(t)
(
� + (1 – q1 – q2)� – εP(t) – ηP(t)L(t)

– α1P(t)S(t) – α2P(t)S1(t) – α3P(t)S2(t) – βP(t)Q(t) – μP(t)
)

+ ρ2(t)
(
q1� + εP(t) + ηP(t)L(t) + α1P(t)S(t) + α2P(t)S1(t)

+ α3P(t)S2(t) + βP(t)Q(t) + ρQ(t – τ )
)

+ ρ3(t)
(
q2� + (1 – p)	L(t) – (μ + d2 + φ1)S(t) – (λ1 + λ2)u(t)S(t)

)

+ ρ4(t)
(
q2� + (1 – p)	L(t) – (μ + d2 + φ2)S1(t) + λ1u(t)S(t)

)

+ ρ5(t)
(
q2� + (1 – p)	L(t) – (μ + d2 + φ3)S2(t) + λ2u(t)S(t)

)

+ ρ6(t)
(
p	L(t) + φ1S(t) + φ2S1(t) + φ3S2(t) – (μ + d3)Q(t)

– ρQ(t – τ )
)
. (32)

Let χ[t1,t2](t) be the characteristic function defined by

χ[t1,t2](t) =

⎧
⎨

⎩

1, if t ∈ [t1, t2],

0, otherwise.

Let u∗ be the optimal control and x∗ = [P(t), L(t), S(t), S1(t), S2(t), Q(t)]T be the corre-
sponding optimal trajectory. Then there exists ρ(t) ∈R

6 such that the first order necessary
condition for the existence of optimal control is given by the equation

0 =
[

∂H
∂u

(t)
]

u=u∗
,

dx
dt

=
dH

dρ(t)
,

dρ(t)
dt

= –
[

∂H
∂x

(t) + χ[0,T–τ ](t)
[

∂H
∂xτ

(t)
]

t=t+τ

]

x=x∗
.

Now we apply the necessary conditions to the Hamiltonian H in (32).

Theorem 4.1 Let P∗, L∗, S∗, S∗
1 , S∗

2 , Q∗, u∗ be optimal state solutions with associated opti-
mal control variables u∗ for the optimal control problem. Then there exist adjoint variables
ρi, i = 1, 2, 3, 4, 5, 6, from the above equation, we obtain

2Cu∗ –
(
ρ3(t)(λ1 + λ2)S(t) + ρ4(t)λ1S(t) + ρ5(t)λ2S(t)

)
= 0, (33)

dρ1(t)
dt

= –
[

dH
dP

]

u=u∗ ,x=x∗

= –
(
1 + ρ1(t)

(
–ε – ηL(t) – α1S(t) – α2S1(t) – α3S2(t) – βQ(t) – μ

)

+ ρ2(t)
(
εP(t) + ηL(t) + α1S(t) + α2S1(t)

+ α3S2(t) + βQ(t)
))

,
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dρ2(t)
dt

= –
[

dH
dL

]

u=u∗ ,x=x∗

= –
(
ρ1(t)

(
–ηP(t)

)
+ ρ2(t)

(
ηP(t)

)
+ ρ3(t)

(
(1 – p)	

)

+ ρ4(t)
(
(1 – p)	

)
+ ρ5(t)

(
(1 – p)	

)
+ ρ6(t)(p	 )

)
,

dρ3(t)
dt

= –
[

dH
dS

]

u=u∗ ,x=x∗

= –
(
1 + ρ1(t)

(
–α1P(t)

)
+ ρ2(t)

(
α1P(t)

)
+ ρ3(t)

(
–(μ + d2 + φ1)

– (λ1 + λ2)u(t)
)

+
(
ρ4(t)λ1 + ρ5(t)λ2

)
u(t) + ρ6(t)(φ1)

)
,

dρ4(t)
dt

= –
[

∂H
∂S1

]

u=u∗ ,x=x∗

= –
(
ρ1(t)

(
–α2P(t)

)
+ ρ2(t)

(
α2P(t)

)
+ ρ4(t)

(
–(μ + d2 + φ2)

)

+ ρ6(t)(φ2)
)
,

dρ5(t)
dt

= –
[

∂H
∂S2

]

u=u∗ ,x=x∗

= –
(
ρ1(t)

(
–α3P(t)

)
+ ρ2(t)

(
α3P(t)

)
+ ρ5(t)

(
–(μ + d2 + φ3)

)

+ ρ6(t)(φ3)
)
,

dρ6(t)
dt

= –
[

dH
dQ

+ χ[0,T–τ2]
∂H
∂Qτ

|t=T+τ2

]

u=u∗ ,x=x∗

= –
(
ρ1(t)

(
–βP(t)

)
+ ρ2(t)

(
βP(t)

)
+ χ[0,T–τ ]ρ2(t + τ )ρ

+ ρ6(t)
(
–(μ + d3) – χ[0,T–τ ]ρ6(t + τ )ρ

))

(34)

with transversality conditions (or boundary condition)

ρi(T) = 0, i = 1, 2, 3, 4, 5, 6. (35)

Furthermore, optimal controls u∗ are given by

u∗(t) = max

{

umin, min

{

umax,
(ρ3(t)(λ1 + λ2)S(t) + (ρ4(t)λ1 + ρ5(t)λ2)S(t))

2C

}}

,

t ∈ [0, t – τ1].
(36)

Proof To determine the adjoint equation and the transversality condition, we use the
Hamiltonian in Eq. (32). From setting P(t) = P∗(t), L(t) = L∗(t), S(t) = S∗(t), S1(t) = S∗

1(t),
S2(t) = S∗

2(t), and Q(t) = Q∗(t), differentiating the Hamiltonian in Eq. (32) with respect to
P, L, S, S1, S2, Q, respectively, we obtain Eq. (33) and Eq. (34). By solving the equations
and using the optimality conditions and the property of the control space U, we derive
Eq. (36).
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Here we call formulas in Eq. (36) for u∗ the characterization of the optimal control. The
optimal control and the state are found by solving the optimality system, which consists
of the state system Eq. (31), the adjoint system Eq. (34), initial conditions at t = 0, bound-
ary conditions Eq. (35), and the characterization of the optimal control Eq. (36). To solve
the optimality system, we use the initial and transversality conditions together with the
optimal control given by Eq. (36). �

6 Simulations of optimal control strategy
In this section, the drinking model optimal system is solved using Euler’s method. The
optimal strategy is obtained by solving the state and adjoint systems and the transversal-
ity conditions. When viewing the graphs, remember that each of the individuals without
control is marked by blue solid lines. The individuals with control are marked by red dash
lines. The weight constant value in the objective functional is C = 0.5.

Figure 10 represents the behavior time plots of P, L, S, and Q in a system without
control and with control. In Fig. 11, we plot the optimal control u(t) in the system. We
select the parameters as follows: � = 0.8, q1 = 0.5, q2 = 0.3, � = 0.6, ε = 0.4, η = 0.9,
β = 0.4, μ = 0.26, ρ = 0.8, d1 = 0.05, d2 = 0.048, d3 = 0.04, 	 = 0.583, φ1 = 0.4, φ2 = 0.2,
φ3 = 0.2, λ1 = 0.7, λ2 = 0.9, p = 0.3. Time delay is τ = 2. Initial conditions are as follows:
(P(0), L(0), S(0), S1(0), S2(0), Q(0)) = (0.15, 0.729, 0.52, 0, 0, 0.78).

Figure 10 The behavior time plots of P, L, S and Q
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Figure 11 The behavior time plots of u∗

Figure 10 shows that after effective control such as education activities, media coverage,
etc., the number of P, L, S, Q is significantly reduced compared with that without control.
The results of numerical simulation prove that the effect of media coverage can reduce
the number of moderate drinkers, light alcoholics, heavy alcoholics, and alcoholics under
treatment in a certain period of time. In particular, the control resulted in a significant
reduction in the number of heavy alcoholics.

7 Concluding remarks
Death rate because of drinking has been higher than that of tuberculosis, HIV/AIDS, and
diabetes by WTH in 2018. Mathematical modeling has been used to predict the spread of
drinking by scholars. During its spread in a particular population, drinking shows different
kinds of delays which essentially impact the dynamics. We proposed a delayed drinking
model with the effect of immigration by introducing the temporary immunity delay for
alcoholics under treatment due to the impact of the accepted treatment and self-control
into the model formulated in [26].

By considering the time delay as a bifurcation parameter, we have seen the effect of time
delay on the stability of the model. We observe that if the time delay is suitably small un-
der some certain conditions, then the four populations in system (2) tend to the drinking-
present equilibrium, which indicates that the spread of drinking can be dominated. On
the contrary, it will be out of control when the time delay is large enough. Thus, it gives
a conclusion that the time delay is harmful for the control of spread of drinking. The nu-
merical simulation shows that system (2) changes its stable state into limit cycle as p or
φ decreases, which makes it difficult to control the spread of drinking. From this point of
view, we should strongly appeal to more and more people to join the team of those ab-
staining from drinking. On the other hand, it is revealed that system (2) becomes stable
as we increase the value of ρ , which indicates that alcoholics under treatment should have
strong will.

We also find that the number of light alcoholics, heavy alcoholics, and alcoholics un-
der treatment will increase once the amount of immigrants increases, which gives us a
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suggestion that we should properly control the immigrants in a particular community.
Furthermore, since the number of heavy alcoholics decreases when p or φ increases, it is
strongly suggested that drinkers should give up drinking and accept treatment as soon as
possible, if necessary. However, the number of both light and heavy alcoholics increases
with the decrease in ρ . Thus, we can conclude that once the drinkers accept treatment
and begin to give up drinking, they should have strong will and self-control, not give up
halfway.

Moreover, we study the optimal control of the drinking model. The behavior change of
various classes is caused by media coverage and propaganda messages. This work demon-
strates the power of public propaganda and is an easy control tool for making relevant
propaganda plans and policy decisions.
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