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Abstract
Recently, special functions of fractional order calculus have had many applications in
various areas of mathematical analysis, physics, probability theory, optimization
theory, graph theory, control systems, earth sciences, and engineering. Very recently,
Zayed et al. (Mathematics 8:136, 2020) introduced the shifted Legendre-type matrix
polynomials of arbitrary fractional orders and their various applications utilizing
Rodrigues matrix formulas. In this line of research, we use the fractional order of
Rodrigues formula to provide further investigation on such Legendre polynomials
from a different point of view. Some properties, such as hypergeometric
representations, continuation properties, recurrence relations, and differential
equations, are derived. Moreover, Laplace’s first integral form and orthogonality are
obtained.
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1 Introduction
The recent advances in fractional order calculus (FOC) are dominated by its multidisci-
plinary applications. Undoubtedly, fractional calculus has become an exciting new math-
ematical approach to solving various problems in mathematics, model physical, engineer-
ing, and many branches of science (see, for example, [2–7] and the references therein).
The “special functions of fractional order calculus” (SF of FOC) as generalized fractional
calculus operators of some classical special functions were found by Kiryakova [8, 9] and
Agarwal [2]. Recently, there has been an increasing interest to use classes of special func-
tions, referred to as (SF of FOC), that play most important role in the theory of differentia-
tion and integration of arbitrary order (i.e. FC) and appear as solutions of fractional order
differential equations and systems (see e.g. [10–15]).

On the contrary, the mainstream and, perhaps, the most effective approach to the field
of special functions of matrix argument is the fractional calculus approach, recently pre-
sented in the fundamental works (for instance, see [16–19]). Analogous to the classical
case, it is also noticed that Rodrigues matrix formula is a useful approach to define a se-
quence of orthogonal matrix polynomials (see [1, 20–25]). This approach allows estab-
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lishing many interesting properties of the matrix polynomials. Moreover, these general-
ized matrix formulas allow to define new classes of special matrix functions and matrix
polynomials and to include fractional order differentiation.

The Legendre polynomials are used by mathematicians and engineers for a variety of
mathematical and numerical solutions. For example, Legendre and associate Legendre
polynomials are widely used in the determination of wave functions of electrons in the
orbits of an atom [26] and in the determination of potential functions in the spherically
symmetric geometry [27], etc. The Legendre polynomials are applicable in fluid dynam-
ics to study the flow around the outside of a puff of hot gas rising through the air, see for
details [28, 29]. For readers, they can find other applications of these polynomials in [30–
35]. Later on, a new kind of the Legendre matrix polynomials was introduced by Upad-
hyaya and Shehata [36, 37]. Within the frame, they discussed some fundamental proper-
ties and applications of these matrix polynomials. Motivated by certain recent extensions
of the shifted Legendre-type matrix polynomials of arbitrary fractional orders utilizing
Rodrigues matrix formulas [1], we introduce and examine some properties of the frac-
tional order of Legendre-type matrix polynomials generated by fractional analogues of
the Rodrigues-type formulas of these polynomials. The paper is organized, as follows:
Sect. 2 includes the basic definitions and properties used in the following sections. In
Sect. 3, we define the Legendre-type matrix polynomials of arbitrary fractional orders.
The section also includes the hypergeometric matrix representations and establish that
these Legendre-type matrix polynomials are continuous functions of arbitrary fractional
orders. Recurrence relations and development of second-order matrix differential equa-
tions satisfied by these polynomials are provided in Sect. 4. Laplace’s first integral form
and the orthogonality of Legendre-type matrix polynomials of arbitrary fractional orders
are proved in Sect. 5. We reach the conclusion in Sect. 6.

2 Preliminaries
In this section, we recall some definitions and terminologies which will be used to prove
the main results in the next sections.

Definition 2.1 A matrix D, in the space of complex matrices C
N×N , is called positive

stable [25] if

Re(z) > 0, z ∈ σ (D),

where σ (D) is the spectrum of matrix D.

Definition 2.2 Let D be a positive stable matrix in C
N×N . The gamma matrix function

�(D) is defined in [25] as follows:

�(D) =
∫ ∞

0
e–zzD–I dz; zD–I = exp

(
(D – I) ln z

)
. (1)

Definition 2.3 ([25]) For all D in C
N×N , we assume

D + nI is invertible for all n ∈N0 := N∪ {0}, (2)
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and the Pochhammer symbol (the shifted factorial) is defined by

(D)n = D(D + I) · · · (D + (n – 1)I
)

= �(D + nI)�–1(D); (D)0 ≡ I, (3)

where I is an identity matrix in C
N×N .

Lemma 2.1 (Lancaster [38]) Let D be a matrix in C
N×N such that ‖D‖ < 1 and ‖I‖ = 1,

then (I + D)–1 exists, and we have

(I + D)–1 = I – D + D2 – D3 + D4 – D5 + · · · ,

where ‖D‖ is denoted by

‖D‖ = sup
x �=0

‖Dx‖2

‖x‖2

for a vector y in CN , ‖y‖2 = (yHy) 1
2 is the Euclidean norm of y, and yH denotes the Hermitian

adjoint of y.

Definition 2.4 ([24, 25]) Let s and r be finite positive integers, the generalized hypergeo-
metric matrix function is defined by the matrix power series

sFr(E; D; z) =
∞∑

n=0

s∏
i=1

(Ei)n

r∏
j=1

[
(Dj)n

]–1 zn

n!
, (4)

where Ei, 1 ≤ i ≤ s, and Dj, 1 ≤ j ≤ r, are commutative matrices in C
N×N and

Dj + nI are invertible for all integers n ∈N0. (5)

Note that for s = 2, r = 1 we get the Gauss hypergeometric matrix function 2F1 (see [25]).

Definition 2.5 ([2, 8, 9]) The fractional order integral (Riemann–Liouville operator) of
the function f (u) of order α is defined by

(
Iα

a f
)
(u) =

1
�(α)

∫ ∞

a
(u – t)α–1f (t) dt, (6)

where a ∈R and α ∈R
+.

Definition 2.6 ([1, 17]) Let D be a positive stable matrix in C
N×N and μ ∈ C such that

Re(μ) > 0, the Riemann–Liouville fractional integral of order μ is defined as follows:

Iμ
(
ζ D)

=
1

�(μ)

∫ ζ

0
(ζ – z)μ–1ζ D dz, D ∈C

N×N , (7)

where Re(z) > 0.
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Lemma 2.2 ([1, 18]) Let D be a positive stable matrix in C
N×N such that Re(μ) > 0. Then

the Riemann–Liouville fractional integrals of order μ can be written as

Iμ
(
ζ D–I) = �(D)�–1(D + μI)ζ D+(μ–1)I . (8)

For the fractional order derivative, we have the following definition.

Definition 2.7 ([2, 9, 39]) The Liouville–Caputo fractional derivative of order α ∈ (n –
1, n) (n ∈N := {1, 2, . . .}) of f (τ ), τ ≥ a is given by

Dα
a f (τ ) = In–α

a Dnf (τ ), D =
d

dτ
. (9)

This definition is more convenient in many applications in physics, engineering, and
applied sciences [3, 9, 14, 15, 39]. Moreover, it generalizes (interpolates) the definition
of integer order derivative. The fractional derivative of the product functions g(τ )f (τ ) is
given by the Leibniz rule in the form (cf. [2, 15])

Dα
[
g(τ )f (τ )

]
=

∞∑
s=0

(
α

s

)
Dsg(τ )Dα–sf (τ ). (10)

3 Fractional Legendre matrix polynomials and hypergeometric representation
Following [25, 36, 37], we adapt the Legendre-type matrix polynomials to the fractional
setting as follows.

Definition 3.1 (Fractional Legendre matrix polynomial) Let E be a positive stable ma-
trix in C

N×N , and let us denote
√

E = E 1
2 = exp( 1

2 log E) the image of the function z 1
2 =

exp( 1
2 logη) by the Riesz–Dunford functional calculus, acting on the matrix E, where

logη denotes the principal branch of the complex logarithm (cf. [25, 40]). We define the
Legendre-type matrix functions (LTMFs) by the Rodrigues formula

L 1
m

(z, E) =
1

�( 1
m + 1)

D
1
m
–1(

√
2E)– 1

m

{(
z
√

2E
2

)2

– I
} 1

m
, m = 1, 2, 3, . . . , (11)

and, for α ∈ (–1, 0), the Legendre-type matrix functions of order α are defined by

Lα(z, E) =
1

�(α + 1)
(
√

2E)–αI–α
–1

[(
z
√

2E
2

)2

– I
]α

. (12)

3.1 Hypergeometric representation
Theorem 3.1 The matrix polynomials L 1

m
(z, E) have the following representations in

terms of the Gauss hypergeometric function:
(i) L 1

m
(z, E) = { 1

2 ( z
√

2E
2 – I)} 1

m 2F1(– 1
m , – 1

m ; 1; ( z
√

2E
2 + I)( z

√
2E

2 – I)–1).

(ii) L 1
m

(z, E) = (–1) 1
m 2F1(– 1

m , 1
m + 1; 1; 2I+z

√
2E

4 ).

(iii) Lα(z, E) = (–1)α 2F1(–α,α + 1; 1; 2I+z
√

2E
4 ); α ∈ (–1, 0).
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Proof (i) According to Definition 3.1, we can write

L 1
m

(z, E) =
1

�( 1
m + 1)

D
1
m
–1(

√
2E)– 1

m

{
z
√

2E
2

– I
} 1

m
{

z
√

2E
2

+ I
} 1

m
.

Using the Leibniz rule for fractional derivative, we obtain

L 1
m

(z, E) =
(
√

2E)– 1
m

�( 1
m + 1)

∞∑
k=0

C
1
m

k Dk
(

z
√

2E
2

– I
) 1

m
D

1
m –k
–1

(
z
√

2A
2

+ I
) 1

m

=
{

1
2

(
z
√

2E
2

– I
)} 1

m

×
∞∑

k=0

{�( 1
m + 1)}2

{�( 1
m – k + 1)}2{�(k + 1)}2

(
z
√

2E
2

+ I
)k(z

√
2E

2
– I

)–k

.

Thus,

L 1
m

(z, E) =
{

1
2

(
z
√

2E
2

– I
)} 1

m

2F1

(
–

1
m

, –
1
m

; 1;
(

z
√

2E
2

+ I
)(

z
√

2E
2

– I
)–1)

.

(ii) Since

L 1
m

(z, E) =
1

�( 1
m + 1)

D
1
m
–1(

√
2E)– 1

m

{(
z
√

2E
2

)2

– I
} 1

m

=
D

1
m
–1(

√
2E)– 1

m

�( 1
m + 1)

{
(–1)

1
m

(
z
√

2E
2

+ I
) 1

m
(

I –
x
√

2E
2

) 1
m
}

=
1

�( 1
m + 1)

D– 1
m

–1 (
√

2E)
1
m

{
(–2)

1
m

(
z
√

2E + 2I
2

) 1
m

·
(

I –
z
√

2E + 2I
4

) 1
m
}

.

To make use of Lemma 2.1, we observe that

(
I –

z
√

2E + 2I
4

) 1
m

=
∞∑

k=0

(–1)kC
1
m

k

(
z
√

2E + 2I
4

)k

=
∞∑

k=0

(–1)k

2k C
1
m

k

(
z
√

2E + 2I
2

)k

.

Therefore, we get

L 1
m

(z, E) =
(–2) 1

m (
√

2E)– 1
m

�( 1
m + 1) · 2 1

m

∞∑
k=0

(–1)k

22k C
1
m

k D
1
m
–1(z

√
2E + 2I)

1
m +k

= (–1)k(
√

2E)– 1
m (

√
2E)

1
m

∞∑
k=0

(– 1
m )k( 1

m + 1)k

(�(k + 1))2

(
2I + z

√
2E

4

)k

= (–1)k
∞∑

k=0

(– 1
m )k( 1

m + 1)k

(1)kk!

(
2I + z

√
2E

4

)k

= (–1)
1
m 2F1

(
–

1
m

,
1
m

+ 1; 1;
z
√

2E + 2I
4

)
.
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(iii) Similarly, in proof (ii), we obtain the required relationship. �

3.2 Property of continuity
Theorem 3.2 If m = 1, 2, 3, . . . and α ∈ (–1, 0), then

(i) lim 1
m →0+ L 1

m
(z, E) = limα→0– Lα(z, E) = 1.

(ii) L 1
m

(–z, E) = (–1) 1
m L 1

m
(z, E).

Proof (i) According to relation (ii) in Theorem 3.1, we have

lim
1
m →0+

L 1
m

(z, E) = lim
1
m →0+

(–1)
1
m 2F1

(
–

1
m

,
1
m

+ 1; 1;
2I + z

√
2E

4

)

= lim
1
m →0+

(–1)
1
m

{ (– 1
m )0( 1

m + 1)0

(1)0
+

(– 1
m )1( 1

m + 1)1

(1)1

2I + z
√

2E
4

+ · · ·
}

,

where (ς )0 = 1, (0)s = 0, then we obtain the required result as follows:

lim
1
m →0+

L 1
m

(z, E) = 1.

Similarly,

lim
α→0–

Lα(z, E) = 1.

(ii) From relation (i) in Theorem 3.1, we can write

L 1
m

(–z, E) =
{

1
2

(
–z

√
2E

2
– I

)} 1
m

2F1

(
–

1
m

, –
1
m

; 1;
(

I –
z
√

2E
2

)(
–z

√
2E

2
– I

)–1)

= (–1)
1
m

{
1
2

(
z
√

2E
2

+ I
)} 1

m

× 2F1

(
–

1
m

, –
1
m

; 1;
(

z
√

2E
2

– I
)(

z
√

2E
2

+ I
)–1)

.

Thus,

L 1
m

(–z, E) = (–1)
1
m L 1

m
(z, E). (13)

�

4 Recurrence relations and matrix differential equations
Two main results are given in this section. The first one is concerned with the Legendre-
type matrix polynomials of arbitrary fractional orders L 1

m
(z, E), which generalizes its coun-

terpart given in [36]. The second main result provides a differential equation related to
L 1

m
(z, E).

Theorem 4.1 The matrix polynomials L 1
m

(z, E) have the following recurrence relations:
(i) 2L′

1
m +1

(z, E) – 2L′
1
m –1

(z, E) = ( 2
m + 1)

√
2EL 1

m
(z, E).

(ii) 2L′
1
m +1

(z, E) = ( 1
m + 1)

√
2EL 1

m
(z, E) + z

√
2EL′

1
m

(z, E).
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(iii) z
√

2EL′
1
m

(z, E) – 1
m

√
2EL 1

m
(z, E) = 2L′

1
m –1

(z, E).

Proof (i) Since

L 1
m

(z, E) =
1

�( 1
m + 1)

D
1
m
–1(

√
2E)– 1

m

{(
z
√

2E
2

)2

– I
} 1

m
,

then

L 1
m +1(z, E) =

1
�( 1

m + 2)
D

1
m +1
–1 (

√
2E)–( 1

m +1)
{(

z
√

2E
2

)2

– I
} 1

m +1

.

Hence, it follows

L 1
m +1(z, E) =

(
√

2E)–( 1
m +1)

�( 1
m + 2)

{
I1– 1

m
–1 D2

((
z
√

2E
2

)2

– I
) 1

m +1}

=
(
√

2E)–( 1
m +1)

�( 1
m + 2)

{
I1– 1

m
–1 D

[(
1
m

+ 1
)((

z
√

2E
2

)2

– I
) 1

m 2z(
√

2E)2

4

]}

=
(
√

2E)1– 1
m

2�( 1
m + 1)

×
{

I1– 1
m

–1

[((
z
√

2E
2

)2

– I
) 1

m
+

2(z
√

2E)2

4m

((
z
√

2E
2

)2

– I
) 1

m –1]}

=
(
√

2E)1– 1
m

2�( 1
m + 1)

×
{

I1– 1
m

–1

[(
2
m

+ 1
)((

z
√

2E
2

)2

– I
) 1

m
+

2
m

((
z
√

2E
2

)2

– I
) 1

m –1]}
.

We now have

L 1
m +1(z, E) =

(
√

2E)1– 1
m

2�( 1
m + 1)

I1– 1
m

–1

{(
2
m

+ 1
)((

z
√

2E
2

)2

– I
) 1

m
}

+
(
√

2E)1– 1
m

�( 1
m )

I1– 1
m

–1

((
z
√

2E
2

)2

– I
) 1

m –1

.

Differentiating both sides, we get

L′
1
m +1(z, E) =

(
2
m

+ 1
)(√

2E
2

)
D

1
m
–1(

√
2E)– 1

m

�( 1
m + 1)

{(
x
√

2A
2

)2

– I
} 1

m

+
DD

1
m –1
–1 (

√
2E)–( 1

m –1)

�( 1
m )

{(
z
√

2E
2

)2

– I
} 1

m –1

=
(

2
m

+ 1
)(√

2E
2

)
L 1

m
(z, E) + L′

1
m –1(z, E). (14)

Thus the proof of (i) in Theorem 4.1 is completed.
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(ii) Also we have

L 1
m +1(z, E) =

D
1
m +1
–1 (

√
2E)–( 1

m +1)

�( 1
m + 2)

{(
z
√

2E
2

)2

– I
} 1

m +1

=
(
√

2E)–( 1
m +1)

�( 1
m + 2)

D
1
m
–1D

{(
z
√

2E
2

)2

– I
} 1

m +1

=
2( 1

m + 1)(
√

2E)–( 1
m +1)(

√
2E)2

4�( 1
m + 2)

D
1
m
–1

{
z
((

z
√

2E
2

)2

– I
) 1

m
}

=
(
√

2E)1– 1
m

2�( 1
m + 1)

D
1
m
–1

{
z
((

z
√

2E
2

)2

– I
) 1

m
}

.

Using the Leibniz rule for fractional derivative, we have

L 1
m +1(z, E) =

(
√

2E)1– 1
m

2�( 1
m + 1)

{ ∞∑
k=0

C
1
m

k DkxD
1
m –k
–1

((
z
√

2E
2

)2

– I
) 1

m
}

=
(
√

2E)1– 1
m

2�( 1
m + 1)

{
zD

1
m
–1

((
z
√

2E
2

)2

– I
) 1

m
+

1
m

D
1
m –1
–1

((
z
√

2E
2

)2

– I
) 1

m
}

.

Multiplying it by 2 and differentiating it, we obtain

2L′
1
m +1(z, E) =

√
2E

{
zL′

1
m

(z, E) + L 1
m

(z, E) +
1
m

L 1
m

(z, E)
}

=
(

1
m

+ 1
)√

2EL 1
m

(z, E) + z
√

2EL′
1
m

(z, E),

which is the required result in (ii).
(iii) Subtracting (i) and (ii), we get

z
√

2EL′
1
m

(z, E) –
1
m

√
2EL 1

m
(z, E) = 2L′

1
m –1(z, E), (15)

which is the required result in (iii). �

Theorem 4.2 For each natural number m ≥ 1, the Legendre-type matrix polynomials
L 1

m
(z, E) will satisfy the following matrix differential equation:

(
4I – (z

√
2E)2)L′′

1
m

(z, E) – 2x(
√

2E)2L′
1
m

(z, E)

+
1
m

(
1
m

+ 1
)

(
√

2E)2L 1
m

(z, E) = 0, |z| ≤ 1. (16)

Proof From (ii) in Theorem 4.1, we have

2L′
1
m +1(z, E) =

(
1
m

+ 1
)√

2EL 1
m

(z, E) + z
√

2EL′
1
m

(z, E). (17)
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Replacing 1
m by 1

m – 1 to get

2L′
1
m

(z, E) =
1
m

√
2EL 1

m –1(z, E) + z
√

2EL′
1
m –1(z, E). (18)

Differentiating (18) with respect to z, we have

2L′′
1
m

(z, E) =
1
m

√
2EL′

1
m –1(z, E) +

√
2EL′

1
m –1(z, E) + z

√
2EL′′

1
m –1(z, E), (19)

thus

2L′′
1
m

(z, E) =
(

1
m

+ 1
)√

2EL′
1
m –1(z, E) + z

√
2EL′′

1
m –1(z, E). (20)

Also, from (iii) in Theorem 4.1, we have

z
√

2EL′
1
m

(z, E) –
1
m

√
2EL 1

m
(z, E) = 2L′

1
m –1(z, E). (21)

Differentiating (21) with respect to z, we have

√
2EL′

1
m

(z, E) + z
√

2EL′′
1
m

(z, E) –
1
m

√
2EL′

1
m

(z, E) = 2L′′
1
m –1(z, E), (22)

thus

(
1 –

1
m

)√
2EL′

1
m

(z, E) + x
√

2EL′′
1
m

(z, E) = 2L′′
1
m –1(z, E). (23)

Multiplying (22) by 2, we get

4L′′
1
m

(z, E) = 2
(

1
m

+ 1
)√

2EL′
1
m –1(z, E) + 2z

√
2EL′′

1
m –1(z, E). (24)

From (21) and (23) in (24), we obtain

4L′′
1
m

(z, E) =
(

1
m

+ 1
)√

2E
{

z
√

2EL′
1
m

(z, E) –
1
m

√
2EL 1

m
(z, E)

}

+ x
√

2E
{(

1 –
1
m

)√
2EL′

1
m

(z, E) + z
√

2EL′′
1
m

(z, E)
}

. (25)

Therefore, the proof Theorem 4.2 is completed. �

Corollary 4.1 For m = 1, 2, 3, . . . , W (cosφ, E) = L 1
m

(cosφ, E) satisfying the following differ-
ential equation:

(
√

2E)2

sinφ

d
dφ

(
sinφ

dW
dφ

)
+

1
m

(
1
m

+ 1
)

(
√

2E)2W = 0. (26)

Proof Replacing z
√

2E
2 by I cosφ in equation (18), we have the required result. �
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5 Laplace’s first integral form and orthogonality property
Two more basic properties of the Legendre-type matrix polynomials of arbitrary fractional
orders L 1

m
(z, E) are developed in this section. That they enjoy an integral form is obtained

in Theorem 5.1 in Sect. 5.1 through exploitation of their Definition 3.1 in terms of the hy-
pergeometric matrix function. Orthogonality as an integral over [–1, 1] is also the subject
of Theorem 5.2 in Sect. 5.2.

5.1 Laplace’s first integral form
Theorem 5.1 The Legendre-type matrix polynomials of arbitrary (fractional) orders
L 1

m
(z, E) have the following Laplace’s first integral form:

L 1
m

(z, E) =
1
π

∫ π

0

[
z
√

2E
2

+
((

z
√

2E
2

)2

– I
) 1

2
cosϕ

] 1
m

dϕ. (27)

Proof According to Theorem 3.2, we can write

L 1
m

(z, E) = (–1)
1
m 2F1

(
–

1
m

,
1
m

+ 1; 1;
2I + z

√
2E

4

)

= 2F1

(
–

1
m

,
1
m

+ 1; 1;
2I – z

√
2E

4

)

= 2F1

(
–

1
m

,
1
m

+ 1; 1;
I – z

√
2E

2
2

)
. (28)

Therefore, we obtain

L 1
m

(z, E) = 2F1

(
–

1
m

,
1
m

+ 1; 1;
I – z

√
2E

2
2

)

=
(

z
√

2E
2

) 1
m

2F1

(
–

1
2m

, –
1

2m
+

1
2

; 1;
{((

z
√

2E
2

)2

– I
)((

z
√

2E
2

)–1)2})

=
(

z
√

2E
2

) 1
m ∞∑

k=0

(– 1
2m )k(– 1

2m + 1
2 )k

(1)kk!

{((
z
√

2E
2

)2

– I
)((

z
√

2E
2

)–1)2}k

.

Note that

(
–

1
2m

)
k

(
–

1
2m

+
1
2

)
k

=
(– 1

m )2k

22k =
(–1)2k�( 1

m + 1)
22k�( 1

m – 2k + 1)
.

Now, we see that

L 1
m

(z, E) =
∞∑

k=0

{
�( 1

m + 1)( z
√

2E
2 ) 1

m –2k(( z
√

2E
2 )2 – I)k

22k(k!)2�( 1
m – 2k + 1)

}
, (29)

where ( 1
2 )k = �(2k+1)

22k k! = (2k)!
22k k! ⇒ 22kk! = (2k)!

( 1
2 )k

, then

L 1
m

(z, E) =
∞∑

k=0

{
�( 1

m + 1)( 1
2 )k( z

√
2E

2 ) 1
m –2k(( z

√
2E

2 )2 – I)k

k!(2k)!�( 1
m – 2k + 1)

}
. (30)
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But we have ( 1
2 )k
k! = 1

π

∫ π

0 cos2k ϕ dϕ and
∫ π

0 coss ϕ dϕ = 0 for odd s. Hence,

L 1
m

(z, E) =
1
π

∞∑
k=0

{
�( 1

m + 1)( z
√

2E
2 ) 1

m –k(( z
√

2E
2 )2 – I) 1

2 k

k!�( 1
m – k + 1)

}∫ π

0
cosk ϕ dϕ, (31)

in which each term involving an odd k is zero, yields the desired result of Theorem 5.1. �

5.2 Orthogonality property
Theorem 5.2 Let μ,ν = 1, 2, 3, . . . . Then the Legendre-type matrix polynomials of arbi-
trary (fractional) orders L 1

μ
(z, E) and L 1

ν
(z, E) satisfy the following property:

∫ 1

–1
L 1

μ
(z, E)L 1

ν
(z, E) dz = 0; μ �= ν. (32)

Proof From Theorem 4.2, for any two numbers μ �= ν , we have

(
4I – (z

√
2E)2)L′′

1
μ

(z, E) – 2z(
√

2E)2L′
1
μ

(z, E) +
1
μ

(
1
μ

+ 1
)

(
√

2E)2L 1
μ

(z, E) = 0 (33)

and

(
4I – (z

√
2E)2)L′′

1
ν

(z, E) – 2z(
√

2E)2L′
1
ν

(z, E) +
1
ν

(
1
ν

+ 1
)

(
√

2E)2L 1
ν

(z, E) = 0. (34)

By multiplying (33) by L 1
ν

(z, E) and (34) by L 1
μ

(z, E), subtracting the resulting equations,
we have

(
4I – (z

√
2E)2)[L′′

1
μ

(z, E)L 1
ν

(z, E) – L′′
1
ν

(z, E)L 1
μ

(z, E)
]

– 2z(
√

2E)2[L′
1
μ

(z, E)L 1
ν

(z, E) – L′
1
ν

(z, E)L 1
μ

(z, E)
]

+ (
√

2E)2
[

1
μ

(
1
μ

+ 1
)

–
1
ν

(
1
ν

+ 1
)]

P 1
μ

(z, E)L 1
ν

(z, E) = 0

=
d
dz

(
4I – (z

√
2E)2)[L′

1
μ

(z, E)L 1
ν

(z, E) – L′
1
ν

(z, E)L 1
μ

(z, E)
]

+ (
√

2E)2
[

1
μ

(
1
ν

+ 1
)

–
1
ν

(
1
ν

+ 1
)]

L 1
μ

(z, E)L 1
ν

(z, E) = 0.

Integrating from –1 to 1, we obtain the result in (32). �

6 Conclusion
The Legendre polynomials Pn(z) are given by the following Rodrigues’ formula [41]:

Pn(z) =
1

2nn!
dn

dzn

(
z2 – 1

)n, n ∈N0.

These polynomials satisfy the second order linear differential equation

d
dz

[(
1 – z2)dPn(z)

dz

]
+ n(n + 1)Pn(z) = 0; |z| ≤ 1.
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Legendre polynomial is an important orthogonal polynomial with interval of orthogonal-
ity between –1 and 1, in the form

∫ 1

–1
Pm(z)Pn(z) dz =

⎧⎨
⎩

0 if n �= m,
2

2n+1 if m = n.

Because of their orthogonal properties, Legendre polynomials have been used for solv-
ing other integral equations such as Fredholm integral equations [31], Bagley–Torvik
equations [33], and Volterra integral equations [34]. Recently, orthogonal matrix polyno-
mials and their generalizations in different ways have been a focus of increasing attention
leading to new and interesting problems. In this perspective, this manuscript is a continu-
ation of the recent authors’ paper [1], where we have discussed the Legendre-type matrix
polynomials via fractional orders, starting from the Rodrigues matrix formula. This study
is assumed to be a generalization of the scalar case [39] to the matrix setting. This ap-
proach allows us to derive several new integral and differential representations that can
be used in theoretical and applicable aspects and for some numerical methods.
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