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Abstract
A simple deterministic epidemic model for tuberculosis is addressed in this article.
The impact of effective contact rate, treatment rate, and incomplete treatment versus
efficient treatment is investigated. We also analyze the asymptotic behavior, spread,
and possible eradication of the TB infection. It is observed that the disease
transmission dynamics is characterized by the basic reproduction ratio �0; if �0 < 1,
there is only a disease-free equilibrium which is both locally and globally
asymptotically stable. Moreover, for �0 > 1, a unique positive endemic equilibrium
exists which is globally asymptotically stable. The global stability of the equilibria is
shown via Lyapunov function. It is also obtained that incomplete treatment of TB
causes increase in disease infection while efficient treatment results in a reduction in
TB. Finally, for the estimated parameters, some numerical simulations are performed
to verify the analytical results. These numerical results indicate that decrease in the
effective contact rate λ and increase in the treatment rate γ play a significant role in
the TB infection control.
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1 Introduction
Tuberculosis (TB) is an infectious disease caused by mycobacterium tuberculosis, which
most frequently affects the lungs (pulmonary TB). However, in rare conditions, brain, kid-
ney, skin, spinal cord, and central nervous system are also affected. It is an ancient disease
whose existence evidences are found in the relics of ancient Egypt, China, and India [1]. TB
is a communicable disease and can be spread through air by active pulmonary TB patients
that propel the TB bacteria into the atmosphere by spit, cough, or sneezing. An individ-
ual needs to breathe in few TB bacteria to become infected. Approximately 10 percent of
infected individuals develop active TB disease, while the remaining 90 percent remain in
their latent stage. Latently infected individuals do not transmit TB infection as they are
asymptomatic. Moreover, individuals with immune compromised diseases (HIV and di-
abetic patients) are at higher risk of TB infection. The symptoms and signs of active TB
include: coughing that lasts for about two weeks, fever, chest pain, weight loss, fatigue,
night sweats. TB is a curable infectious disease using drug therapy [2]; however, inappro-
priate or incomplete treatments can cause a severe resistant form of TB. Although BCG
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vaccine is available to control TB, its effectiveness to prevent the disease is still controver-
sial, with a reported efficacy rate of 50 percent [3].

In spite of significant work done in TB control and treatment, still one-third of popula-
tion across the world is latently infected, producing a source for active TB in the future.
Globally, in 2018 about 10 million TB new cases were reported, causing more than 1.4 mil-
lion deaths. Besides this, approximately 1.2 million TB patients died with HIV-negative
and 0.25 million people died with HIV-positive in 2018. Most of the deaths were reported
in middle and low income countries like India, Nigeria, Indonesia, Pakistan, Philippines,
and South Africa. Southeast Asia contributed approximately 44 percent incidence of TB
worldwide [4].

Mathematical modeling has a great role in predicting the transmission dynamics and
construction of control strategies for a disease. These models also enhance our knowl-
edge about the basic transmission dynamics of the diseases. Distinct models for TB
transmission dynamics have been developed [5–9] either to provide strategies for TB
spread/control or to evaluate its rampaged effect. In 1962 the first model for TB trans-
mission was formulated by Waaler and Anderson[5]. Okuonghae [9] presented a model to
study the impact of heterogeneity in transmission of TB. Yang et al.[10] studied TB trans-
mission models in which they investigated incomplete treatment and studied the role of
slow and fast transmission on the TB infection. Zhang and Feng [11] proposed a TB model
to study its spread in a host population incorporating incomplete treatment and isolation.
Trauera et al. [12] proposed a model investigating the transmission of TB infection in badly
endemic areas of Asia-Pacific. They studied the impact of partial and temporary vaccine
efficacy. Liu and Zhang [13] developed a TB model to study the role of treatment and vac-
cination on TB transmission. Their results showed that TB can be controlled if treatment
rate or vaccine rate or its efficacy maintain a specific value of threshold.

Keeping the above-mentioned literature and discussion in mind, in our present work
we are going to develop a TB transmission model in order to study its dynamics. On the
basis of this model the role of efficient treatment and incomplete treatment will be stud-
ied. Further, to show the stability of equilibrium states, the Lyapunov–LaSalle method will
be used as in [14]. In this connection, the total host population is separated into five dis-
joint groups, namely susceptible S(t), exposed stage E(t), active TB stage I(t), which is also
termed infectious, treated population T(t), and recovered population R(t). The parameter
π shows the recruitment rate which occurs in the susceptible class only. Susceptible in-
dividuals acquire the TB infection from infectious individuals as a result of close contact
with each other at a rate λS(t)(I(t) + βT(t)), where λ is the effective contact rate, while
β(0 ≤ β < 1) shows reduction in infectiousness depending on the stage of treatment. The
natural death rate is η, while the disease-related death rates are δ1 and δ2 respectively for
infectious I(t) and treated T(t) classes with δ1 > δ2. α expresses the transfer rate from class
E(t) to class I(t). Parameter γ shows the treatment rate for infectious class. The individu-
als leave the treated class at a rate θ , a fraction pθT of which enter the recovered class due
to efficient treatment and (1 – p)θT reenter the exposed class due to incomplete or inap-
propriate treatment. The parameter p (0 < p ≤ 1) reflects the part of efficient treatment.
It is assumed that at the exposed stage individuals do not cause infection and the treated
individuals can cause infection i.e. can transmit the TB infection. The aforementioned as-
sumptions about the transmission model and the transfer process among distinct classes
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lead to the following system of autonomous differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = π – λS(I + βT) – ηS,
dE
dt = λS(I + βT) – (η + α)E + (1 – p)θT ,
dI
dt = αE – (η + δ1 + γ )I,
dT
dt = γ I – (η + δ2 + θ )T ,
dR
dt = pθT – ηR.

(1)

To write model (1) in a simple form, we use the following substitutions:

h1 = η + α, h2 = η + δ1 + γ , h3 = η + δ2 + θ .

Thus, model (1) will take the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = π – λS(I + βT) – ηS,
dE
dt = λS(I + βT) – h1E + (1 – p)θT ,
dI
dt = αE – h2I,
dT
dt = γ I – h3T ,
dR
dt = pθT – ηR.

(2)

Initial conditions for the proposed model are S0 > 0, E0 ≥ 0, I0 ≥ 0, T0 ≥ 0, R0 ≥ 0 at t = 0.
For the future study of the topic, we suggest to the readers that they consider the model
for the fractional order case. Besides, the existence, stability, and numerical simulations
may be obtained with the help of recent development in the subject as given in [15–22].

The current work is organized as follows. Section 2 is for discussion of some funda-
mental properties of the model. The basic reproduction ratio and stability analysis of the
disease-free equilibrium are discussed in Sect. 3. Section 4 is devoted to highlighting the
existence, uniqueness, and stability of positive endemic equilibrium. Section 5 is for nu-
merical simulations. Conclusion and discussion of the findings are highlighted in Sect. 6.

2 Positivity and boundedness
Since the proposed model in the present research work shows human population, it is
essential to disclose that all the state variables are nonnegative. For this purpose, we shall
state and prove the result below.

Theorem 2.1 The solution of system (2) with given initial conditions will always remain
nonnegative for t > 0.

Proof Suppose ts = sup{t > 0 : S0 > 0, E0 > 0, I0 > 0, T0 > 0, R0 > 0}. The first equation of sys-
tem (2) is recalled here as follows:

dS
dt

= π – λS(I + βT) – ηS.

Letting ζ (t) = λ(I + βT) yields

dS
dt

= π –
(
ζ (t) + η

)
S,
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which implies that

d
(

S(t) exp

{

ηt +
∫ t

0
ζ (e) de

})

= π exp

{

ηt +
∫ t

0
ζ (e) de

}

dt,

hence

S(ts) exp

{

ηts +
∫ ts

0
ζ (e) de

}

– S(0) =
∫ ts

0
π

[

exp

{

ηt +
∫ t

0
ζ (e) de

}]

dt.

Thus, we have

S(ts) = S(0) exp

{

–ηts –
∫ ts

0
ζ (e) de

}

+ exp

{

–ηts –
∫ ts

0
ζ (e) de

}

×
∫ ts

0
π

[

exp

{

ηt +
∫ t

0
ζ (e) de

}]

dt > 0.

In the same manner it can be disclosed that other variables are also nonnegative for t > 0.
Hence the required result is obtained. �

Next, for the proposed TB model, we consider a biologically feasible domain � ⊂ R
5
+,

where � = {(S(t), E(t), I(t), T(t), R(t))εR5
+ : 0 ≤ N(t) ≤ π

η
}.

Lemma 2.2 The closed set � is positively invariant in R
5
+.

Proof From system (2), we have

dN
dt

= π – ηN – δ1I – δ2T ,

which implies

dN
dt

≤ π – ηN .

It is obvious that dN
dt ≤ 0, provided N(t) ≥ π

η
, this gives

N(t) ≤
(

N(0) –
π

η

)

e–ηt +
π

η
.

Clearly, N(t) ≤ π
η

if N(0) ≤ π
η

. Moreover, for N(0) > π
η

, then the solutions either enter �

in finite time or N(t) asymptotically approaches π
η

as t → ∞. Hence the required result is
obtained. �

Thus, it is meaningful to study the proposed TB model in feasible region � . For the
upcoming results, we suggest the readers some recent related results for the stabilities
and numerical techniques given in [23–29].



Ullah et al. Advances in Difference Equations        (2020) 2020:499 Page 5 of 14

3 Stability of disease-free equilibrium (DFE)
The DFE of our proposed TB transmission model can be obtained by taking the right-hand
sides of the model equal to zero, and we get the following result:

ξ = (S0, 0, 0, 0, 0),

where S0 = π
η

.
Now, to examine the qualitative behavior of model (2), it is necessary to determine a

threshold quantity, called basic reproduction ratio (�0). For this purpose, the next gener-
ation operator method [30] is used. For computation of �0, the corresponding matrices
are as follows:

F =

⎛

⎜
⎝

0 λS0 λβS0

0 0 0
0 0 0

⎞

⎟
⎠ ,

V =

⎛

⎜
⎝

h1 0 –(1 – p)θ
–α h2 0
0 –γ h3

⎞

⎟
⎠ .

Using �0 = ρ(FV–1), where ρ(A) is the spectral radius of matrix A, so �0 is obtained as
follows:

�0 =
αλS0(h3 + βγ )

h1h2h3 – (1 – p)θαγ
.

�0 shows the average number of newly generated TB infection by a single actively TB
patient.

In the case when p = 1, there is no inappropriate or incomplete treatment (100 percent
efficient treatment). If we replace �0 by �01 in this case, then

�01 =
αλS0(h3 + βγ )

h1h2h3
.

Obviously, �01 < �0, thus incomplete treatment (efficient treatment) causes increase
(decrease) in the TB infection.

Next we use Theorem 2 in [30] to present the result below.

Theorem 3.1 The DFE (ξ ) of our proposed model is locally asymptotically stable (LAS) if
�0 < 1, but for �0 > 1 it is unstable.

Proof The system of equations of model (2) at equilibrium state is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π – λS(I + βT) – ηS = 0,

λS(I + βT) – h1E + (1 – p)θT = 0,

αE – h2I = 0,

γ I – h3T = 0,

pθT – ηR = 0.

(3)
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The Jacobian matrix of the above system at DFE state is

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–η 0 –λS0 –λβS0 0
0 –h1 λS0 λβS0 0
0 α –h2 0 0
0 0 γ –h3 0
0 0 0 pθ –η

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A characteristic equation of the above matrix with eigenvalues μ is

det(J – μI) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(η + μ) 0 –λS0 –λβS0 0
0 –(h1 + μ) λS0 λβS0 0
0 α –(h2 + μ) 0 0
0 0 γ –(h3 + μ) 0
0 0 0 pθ –(η + μ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

After performing some simplification, we get

det(J – μI) = (η + μ)2 det

⎛

⎜
⎝

–(h1 + μ) λS0 λβS0

α –(h2 + μ) 0
0 γ –(h3 + μ)

⎞

⎟
⎠ = 0.

Thus

(η + μ)2 = 0 ⇒ μ1 = μ2 = –η,

or

det

⎛

⎜
⎝

–(h1 + μ) λS0 λβS0

α –(h2 + μ) 0
0 γ –(h3 + μ)

⎞

⎟
⎠ = 0. (4)

To determine the nature of the eigenvalues in (4), we use the Routh–Hurwitz criteria. To
do this, we obtain the characteristic equation of (4)

μ3 + a1μ
2 + a2μ + a3 = 0, (5)

where

a1 = h1 + h2 + h3,

a2 = h1h2 + h2h3 + h1h3 – αλS0,

a3 = h1h2h3 – αγ (1 – p)θ – αλ(h3 + γβ)S0.

Clearly, a1 > 0 and a3 = (h1h2h3 – αγ (1 – p)θ )(1 – �0) > 0 as �0 < 1, also it is obvious that
a1a2 > a3.
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Therefore the Routh–Hurwitz criterion is satisfied. Hence we have obtained that either
all the roots of the characteristic equation are negative or have negative real part. Thus
the required result is obtained. �

The biological implication of the above theorem is that TB can be completely controlled
when �0 < 1. It is indispensable to disclose that the DFE is globally asymptotically stable
(GAS) in order to guarantee that the eradication of TB is independent of the initial size of
population. Thus, we obtain the following result.

Theorem 3.2 The DFE of model (2) is GAS in � if �0 < 1.

Proof Assume that

� = A1E + A2I + A3T

is a Lyapunov function, where A1 = αh3, A2 = h1h3 and A3 = α(λβS + (1 – p)θ ).
The derivative of the above Lyapunov function gives

�̇ = A1Ė + A2 İ + A3Ṫ . (6)

Using the values of Ė, İ , Ṫ in (6), we obtain

�̇ = A1
[
λS(I + βT) – h1E + (1 – p)θT

]
+ A2[αE – h2I] + A3[γ I – h3T].

Now, taking into account the values of A1, A2, and A3, we get

�̇ = (A1λS – A2h2 + A3γ )I

≤ (A1λS0 – A2h2 + A3γ )I

≤ (
h1h2h3 – αγ

(
λβS0 + (1 – p)θ

))
(

λα(h3 + βγ )S0

h1h2h3 – (1 – p)θαγ
– 1

)

=
(
h1h2h3 – αγ

(
λβS0 + (1 – p)θ

))
(�0 – 1).

Thus �̇ < 0 if �0 < 1. Therefore the singleton set ξ is the largest compact invariant set
in � . Thus, by LaSalle’s invariance principle [16], the DFE is GAS in � . �

The above statement indicates that a population can get rid of the TB infection if and
only if �0 < 1.
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4 Endemic equilibrium (EE)
4.1 Existence
Let � = (S∗, E∗, I∗, T∗, R∗) be the EE of model (2). We obtain the expressions for EE of
proposed model (2) as given below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = π
xI∗+η

,

E∗ = h2I∗
α

,

T∗ = γ I∗
h3

,

R∗ = pθγ

ηh3
I∗,

I∗ = η

x (�0 – 1),

(7)

where x = λ(h3+βγ )
h3

.
It is obvious that a unique positive EE exists if �0 > 1. The above results are summarized

in the lemma given below.

Lemma 4.1 The proposed TB model (2) has a unique positive EE provided �0 > 1.

4.2 Global stability (GS)
Here, we present an important result regarding the GS of the EE. This result is presented
in the form of a theorem stated and proved below.

Theorem 4.2 Let �0 > 1. Then the EE � = (S∗, E∗, I∗, T∗, R∗) of system (2) is GAS.

Proof To show that the EE is GAS, a Lyapunov function as given in [14, 31, 32] is consid-
ered here as follows:

� =
(

S – S∗ – S∗ ln

(
S
S∗

))

+
(

E – E∗ – E∗ ln

(
E
E∗

))

+ A
(

I – I∗ – I∗ ln

(
I
I∗

))

+ B
(

T – T∗ – T∗ ln

(
T
T∗

))

,

here positive constants A and B are to be evaluated later. Further, the EE � = (S∗, E∗, I∗,
T∗, R∗) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π = λS∗(I∗ + βT∗) + ηS∗,

h1E∗ = λS∗(I∗ + βT∗) + (1 – p)θT∗,

h2I∗ = αE∗,

h3T∗ = γ I∗.

(8)

On differentiating �, we get

�̇ =
(

1 –
S∗

S

)

Ṡ +
(

1 –
E∗

E

)

Ė + A
(

1 –
I∗

I

)

İ + B
(

1 –
T∗

T

)

Ṫ .
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Placing the values of Ṡ, Ė, İ , and Ṫ , we get

�̇ =
(
1 – S∗/S

)(
λS∗(I∗ + βT∗) + ηS∗ – λS(I + βT) – ηS

)

+
(
1 – E∗/E

)(
λ(I + βT) – h1E + (1 – p)θT

)

+ A
(
1 – I∗/I

)
(αE – h2I) + B

(
1 – T∗/T

)
(γ I – h3T).

After simplification, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�̇ = – η

S (S – S∗)2 + λS∗I∗(2 – S∗
S – S

S∗
I

I∗
E∗
E )

+ λβS∗T∗(2 – S∗
S – S

S∗
T

T∗
E∗
E ) + I(λS∗ – Ah2 + Bγ )

+ T(λβS∗ + (1 – p)θ – Bh3) + E(Aα – h1) + (1 – p)θT∗(1 – T
T∗

E∗
E )

+ AαE∗(1 – E
E∗

I∗
I ) + Bγ I∗(1 – I

I∗
T∗
T ).

(9)

We choose positive constants A and B such that

⎧
⎪⎪⎨

⎪⎪⎩

λS∗ – Ah2 + Bγ = 0,

λβS∗ + (1 – p)θ – Bh3 = 0,

Aα – h1 = 0.

(10)

The solution of the above equations gives

⎧
⎨

⎩

A = h1
α

,

B = βh1h3+α(1–p)θ
α(h3+βγ ) .

Now, using the above results in (9), we get

⎧
⎪⎪⎨

⎪⎪⎩

�̇ = – η

S (S – S∗)2 + λS∗I∗(2 – S∗
S – S

S∗
I

I∗
E∗
E )

+ λβS∗T∗(2 – S∗
S – S

S∗
T

T∗
E∗
E ) + (1 – p)θT∗(1 – T

T∗
E∗
E )

+ AαE∗(1 – E
E∗ I∗

I ) + Bγ I∗(1 – I
I∗

T∗
T ).

(11)

Making use of the second equation in (8) and multiplying E∗ to the third equation in (10)
yields

h1E∗ = λS∗(I∗ + βT∗) + (1 – p)θT∗,

h1E∗ = AαE∗.

Hence, on comparison it follows that

–λS∗(I∗ + βT∗) – (1 – p)θT∗ + AαE∗ = 0.

Now, consider a function g1(X) where X = (m1, m2, m3, m4) and m1 = S
S∗ , m2 = E

E∗ , m3 = I
I∗ ,

m4 = T
T∗ . Multiplying g1(X) with the above equation, we obtain

–λS∗(I∗ + βT∗)g1(X) – (1 – p)θT∗g1(X) + AαE∗g1(X) = 0. (12)
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Multiplying B to the fourth equation in (8) and T∗ to the second equation in (10) yields

λβS∗T∗ + (1 – p)θT∗ = Bh3T∗,

Bγ I∗ = Bh3T∗.

Comparing the above equations, we get

λβS∗T∗ + (1 – p)θT∗ – Bγ I∗ = 0.

Also, consider a function g2(X), where X = (m1, m2, m3, m4) and m1 = S
S∗ , m2 = E

E∗ , m3 = I
I∗ ,

m4 = T
T∗ . Multiplying g2(X) with the above equation, we obtain

λβS∗T∗g2(X) + (1 – p)θT∗g2(X) – Bγ I∗g2(X) = 0. (13)

On plugging equation (12) and equation (13) into equation (11), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�̇ = – η

S (S – S∗)2 + λS∗I∗(2 – S∗
S – S

S∗
I

I∗
E∗
E – g1(X))

+ λβS∗T∗(2 – S∗
S – S

S∗
T

T∗
E∗
E – g1(X) + g2(X))

+ (1 – p)θT∗(1 – T
T∗

E∗
E – g1(X) + g2(X))

+ AαE∗(1 – E
E∗

I∗
I + g1(X)) + Bγ I∗(1 – I

I∗
T∗
T – g2(X)).

(14)

Now, we choose the functions g1(X) and g2(X) to get zero coefficients of E∗ and I∗. So we
have

g1(X) =
E
E∗

I∗

I
– 1,

g2(X) = 1 –
I
I∗

T∗

T
.

Using these values of g1(X) and g2(X) along with making use of variables m1, m2, m3, and
m4 in (14), we obtain

�̇ = –
η

S
(
S – S∗)2 + λS∗I∗

(

3 –
1

m1
–

m1m3

m2
–

m2

m3

)

+ λβS∗T∗
(

4 –
1

m1
–

m1m4

m2
–

m2

m3
–

m3

m4

)

(15)

+ (1 – p)θT∗
(

3 –
m4

m2
–

m2

m3
–

m3

m4

)

.

As

1
m1

· m1m3

m2
· m2

m3
= 1,

1
m1

· m1m4

m2
· m2

m3
· m3

m4
= 1,

m4

m2
· m2

m3
· m3

m4
= 1.
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Since, for real numbers v1, v2, v3, . . . , vn ≥ 0, the following inequality holds:

v1 + v2 + v3 + · · · + vn ≥ n n√v1 · v2 · v3 · · · · · vn.

As a special case, when

v1 · v2 · v3 · · · · · vn = 1,

then

v1 + v2 + v3 + · · · + vn ≥ n.

Using the above inequality, we have

3 –
1

m1
–

m1m3

m2
–

m2

m3
≤ 0

4 –
1

m1
–

m1m4

m2
–

m2

m3
–

m3

m4
≤ 0

3 –
m4

m2
–

m2

m3
–

m3

m4
≤ 0.

Thus from (15) we get

�̇ ≤ 0.

Therefore LaSalle’s invariance principle [33] ensures that EE is GAS provided �0 > 1.
Hence the required result is obtained. �

5 Numerical simulation
Here, we are going to demonstrate the behavior of the proposed TB infection model
through numerical simulation. System (2) is further used to determine the impact of some
intervention strategies to control the TB infection from spread. The iterative scheme RK-4
is utilized to solve the system, while the simulation is conducted through the MATLAB
software. The parameter values for simulations are either from Ronoh et al. [34] or rea-
sonably chosen estimates. To do this, consider the parametric values as follows:

π = 0.2, λ = 0.7, α = 0.25, η = 0.1, δ1 = 0.15,

δ2 = 0.05, γ = 0.2, θ = 0.1000, β = 0.1, p = 0.9,

and the calculated value of �0 is

�0 = 2.4950 > 1.

The initial conditions are as follows:

S(0) = 7, E(0) = 2, I(0) = 1, T(0) = 0, R(0) = 0,
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Figure 1 The plot shows the dynamics of all classes when �0 = 2.4950 > 1

at the initial level not treated or recovered population is considered. Using the above data,
the resulting graph is presented in Fig. 1. From this figure, it can be seen that the trajecto-
ries of the solutions of model (2) converge to the EE point, this indicates that the disease
persists in the host population if �0 > 1, which provides justification to our statement that
EE is GAS if �0 > 1.

Moreover, to assess the role of effective contact rate and treatment rate on TB transmis-
sion, we decrease the contact rate λ and increase the treatment rate γ . In this case, the
parameter values are as follows:

π = 0.2, λ = 0.35, α = 0.25, η = 0.1, δ1 = 0.15,

δ2 = 0.05, γ = 0.5, θ = 0.1000, β = 0.1, p = 0.9,

and the calculated value of �0 is

�0 = 0.8484 < 1.

Using the above data with the same initial conditions, we present the resulting graph in
Fig. 2. From this figure, it can be seen that the trajectories of the solutions of model (2) con-
verge to the DFE point. This indicates that the disease will die out in the host population
if �0 < 1, which provides justification to our statement that DFE is GAS if �0 < 1.

6 Conclusions
This paper is focused on the analysis of a mathematical model to assess the TB transmis-
sion in a host population. The threshold quantity �0 is obtained using the next-generation
method. It is shown that there are two possible equilibria of the model, one is DFE which
exists and is locally and globally asymptotically stable if �0 < 1, in this case the TB disease
dies out. The other is EE which exists and is GAS if �0 > 1, in this case TB becomes en-
demic. Moreover, it is investigated that incomplete treatment causes increase in the TB
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Figure 2 The plot shows the dynamics of all classes when �0 = 0.8484 < 1

infection. The numerical results also show that decrease in the effective contact rate and
increase in treatment coverage can minimize the spread of the TB infection.
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