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Abstract
Recently, Hoffman (Commun. Number Theory Phys. 13:529–567, 2019), Kaneko and
Tsumura (Tsukuba J. Math. (in press), 2020) introduced and systematically studied two
variants of multiple zeta values of level two, i.e., multiple t-values and multiple
T -values, respectively. In this paper, by the contour integration and residue theorem,
we establish two general identities, which further reduce to the expressions of the
alternating double t-values and T -values. Some examples are also provided.
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1 Introduction and notations
For positive integers n and p, let H (p)

n and H (p)
n stand for the nth generalized harmonic

number and the nth generalized alternating harmonic number defined by

H (p)
n :=

n∑

k=1

1
kp and H̄ (p)

n :=
n∑

k=1

(–1)k–1

kp ,

respectively. If p > 1 (or resp. p > 0), the generalized harmonic number H (p)
n (or resp. H̄n)

converges to the (Riemann) zeta value ζ (p) (or resp. alternating zeta value ζ̄ (p)):

lim
n→∞ H (p)

n = ζ (p)
(

or resp. lim
n→∞ H̄ (p)

n = ζ̄ (p)
)

.

When k = 1, H (1)
n ≡ Hn (resp. H (1)

n ≡ Hn) is the classical harmonic number (resp. the clas-
sical alternating harmonic number). The empty sums H (p)

0 and H̄ (p)
0 are conventionally

understood to be zero.
For positive integers p1, . . . , pk with p1 > 1, the multiple zeta value (MZV for short) is

defined by

ζ (p1, p2, . . . , pk) :=
∑

n1>···>nk≥1

1
np1

1 np2
2 · · ·npk

k
. (1.1)

The study of multiple zeta values began in the early 1990s with the works of Hoffman
[4] and Zagier [16]. The study of multiple zeta values have attracted numerous research
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interests in the area in the last two decades. For detailed history and applications, please
see the book of Zhao [17].

Let h(p)
n be the nth odd harmonic number, which is defined for n ∈N0 and p ∈N by

h(p)
n :=

n∑

k=1

1
(k – 1/2)p , h(p)

0 := 0, hn := h(1)
n . (1.2)

If p > 1, the generalized harmonic number h(p)
n converges to the t̃-value:

lim
n→∞ h(p)

n = t̃(p) =
∞∑

k=1

1
(k – 1/2)p . (1.3)

A twin sibling of the odd harmonic number is called alternating odd harmonic number,
defined by

h̄(p)
n :=

n∑

k=1

(–1)k–1

(k – 1/2)p , h̄(p)
0 := 0, h̄n := h̄(1)

n , (1.4)

which was introduced in [14]. When taking the limit n → ∞ in above, we get the so-called
alternating t̄-value

t̄(p) :=
∞∑

k=1

(–1)k–1

(k – 1/2)p (p ≥ 1). (1.5)

Note that from [3], for nonnegative integer k, we have the generating function of t̄(2k + 1)

π

cos(πs)
= 2

∞∑

k=0

t̄(2k + 1)s2k =
∞∑

k=0

(–1)kE2kπ
2k+1

(2k)!
s2k ,

where E2k is the Euler number. Thus, we compute

t̄(2k + 1) =
(–1)kE2kπ

2k+1

2(2k)!
(k ≥ 0).

In a recent paper [5], Hoffman introduced and studied the more general multiple t-
values

t(p1, p2, . . . , pk) :=
∑

n1>···>nk≥1
ni odd

1
np1

1 np2
2 · · ·npk

k

=
∑

n1>···>nk≥1

1
(2n1 – 1)p1 (2n2 – 1)p2 · · · (2nk – 1)pk

. (1.6)

As the normalized version,

t̃(p1, p2, . . . , pk) := 2p1+···+pk t(p1, p2, . . . , pk), (1.7)

we call them multiple t̃-values.
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Kaneko and Tsumura [6, 7] introduced and studied a new kind of multiple zeta values
of level two:

T(p1, p2, . . . , pk) := 2k
∑

m1>m2>···>mk >0
mi≡k–i+1 mod 2

1
mp1

1 mp2
2 · · ·mpk

k

= 2k
∑

n1>n2>···>nk >0

1
(2n1 – k)p1 (2n2 – k + 1)p2 · · · (2nk – 1)pk

, (1.8)

which were called multiple T-values (MTVs). As the normalized version,

T̃(p1, p2, . . . , pk) := 2p1+···+pk –kT(p1, p2, . . . , pk), (1.9)

we call them multiple T̃-values.
In (1.1) and (1.6)–(1.9), we put a bar on the top of pj (j = 1, . . . k) if there is a sign (–1)nj

appearing in the denominator on the right. These with one or more pj barred are called the
alternating MZVs, alternating multiple t-values, alternating multiple t̃-values, alternating
multiple T-values, and alternating multiple T̃-values, respectively. For example,

ζ (p1, p̄2, p3, p̄4) =
∑

n1>n2>n3>n4>0

(–1)n2+n4

np1
1 np2

2 np3
3 np4

4
,

t(p̄1, p̄2, p3, p4) =
∑

n1>n2>n3>n4>0

(–1)n1+n2

(2n1 – 1)p1 (2n2 – 1)p2 (2n3 – 1)p3 (2n4 – 1)p4
,

T(p̄1, p2, p̄3, p4) = 24
∑

n1>n2>n3>n4>0

(–1)n1+n3

(2n1 – 4)p1 (2n2 – 3)p2 (2n3 – 2)p3 (2n4 – 1)p4
.

In all of these definitions, we call k the “depth” and p1 + · · · + pk the “weight”.
The motivation for this paper arises from the results of Flajolet and Salvy’s paper [2] and

Wang and Xu’s papers [12, 14]. In [2], Flajolet and Salvy used the methods of contour in-
tegration and residue theorem to determine the reducibility of some classical Euler sums.
Similarly, in [12, 14], Wang and Xu used the contour integration and residue theorem to
evaluate (alternating) Euler sums and Euler T-sums. There have been numerous contribu-
tions on the theory of Euler sums in the last two decades, for example, see [1, 8, 9, 11, 13, 15]
and the references therein.

The main purpose of this paper is to study the four (alternating) double t-values

t̃(q, p),̃ t(q, p̄),̃ t(q̄, p̄),̃ t(q̄, p)

and the four (alternating) double T-values

T̃(q, p), T̃(q, p̄), T̃(q̄, p̄), T̃(q̄, p)

by using the methods of contour integration and residue theorem.

2 Double t-values and T-values
In this section, we give explicit evaluations for some (alternating) double t-values and T-
values. We will prove these results in Sect. 4.
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Theorem 2.1 For positive integers p and q > 1,

(
1 – (–1)p+q)

∞∑

n=1

h(p)
n–1

(n – 1/2)q

=
(
1 – (–1)p+q)̃t(q, p)

= (–1)p+q̃t(p + q) – (–1)p(1 + (–1)q)̃t(p)̃t(q)

– (–1)p
p–1∑

k=0

(
(–1)k – 1

)(p + q – k – 2
q – 1

)
t̃(k + 1)ζ (p + q – k – 1)

+ 2(–1)p
∑

2k1+k2=q+1,
k1,k2≥1

(
k2 + p – 2

p – 1

)
t̃(2k1)ζ (k2 + p – 1), (2.1)

(
1 + (–1)p+q)

∞∑

n=1

h̄(p)
n–1

(n – 1/2)q

= –
(
1 + (–1)p+q)̃t(q, p̄)

= –(–1)p+qt̄(p + q) + (–1)p(1 + (–1)q)t̄(p)̃t(q)

– (–1)p
p–1∑

k=0

(
(–1)k + 1

)(p + q – k – 2
q – 1

)
t̄(k + 1)ζ (p + q – k – 1)

– 2(–1)p
∑

2k1+k2=q+2,
k1,k2≥1

(
k2 + p – 2

p – 1

)
t̄(2k1 – 1)ζ̄ (k2 + p – 1), (2.2)

(
1 – (–1)p+q)

∞∑

n=1

h̄(p)
n–1

(n – 1/2)q (–1)n–1

=
(
1 – (–1)p+q)̃t(q̄, p̄)

= (–1)p+q̃t(p + q) + (–1)p(1 – (–1)q)t̄(p)t̄(q)

+ (–1)p
p–1∑

k=0

(
(–1)k – 1

)(p + q – k – 2
q – 1

)
t̃(k + 1)ζ̄ (p + q – k – 1)

– 2(–1)p
∑

2k1+k2=q+1,
k1,k2≥1

(
k2 + p – 2

p – 1

)
t̃(2k1)ζ̄ (k2 + p – 1), (2.3)

(
1 + (–1)p+q)

∞∑

n=1

h(p)
n–1

(n – 1/2)q (–1)n–1

= –
(
1 + (–1)p+q)̃t(q̄, p)

= –(–1)p+qt̄(p + q) – (–1)p(1 – (–1)q)̃t(p)t̄(q)

+ (–1)p
p–1∑

k=0

(
(–1)k + 1

)(p + q – k – 2
q – 1

)
t̄(k + 1)ζ̄ (p + q – k – 1)

+ 2(–1)p
∑

2k1+k2=q+1,
k1,k2≥1

(
p + k2 – 2

p – 1

)
t̄(2k1 – 1)ζ (p + k2 – 1), (2.4)

where ζ (1) := –2 log(2) and t̃(1) := 0.
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Remark 2.2 Note that formulas (2.1) and (2.4) can also be found in Xu and Wang [14].

Example 2.1 We have

t̃(3, 1̄) =
1
2

t̄(4) –
7
8
πζ (3) –

1
4
π3 log(2),

t̃(2, 2̄) =
1
2

t̄(4) – 3ζ (2)t̄(2) +
7
4
πζ (3),

t̃(2̄, 1̄) = 3ζ (2) log(2) –
7
2
ζ (3),

t̃(3̄, 1) =
1
2

t̄(4) –
1
2

log(2)π3 +
7
8
πζ (3),

t̃(3̄, 2̄) = –
31
2

ζ (5) +
1
4
π3 t̄(2) –

27
4

ζ (2)ζ (3).

Theorem 2.3 For positive integers p and q > 1,

(
1 – (–1)p+q)

∞∑

n=1

h(p)
n

nq

=
(
1 – (–1)p+q)T̃(q, p)

= –(–1)p(1 + (–1)q)̃t(p)ζ (q) – (–1)p
(

p + q – 1
p – 1

)
t̃(p + q)

– (–1)p
p–1∑

k=0

(
(–1)k – 1

)(p + q – k – 2
q – 1

)
t̃(k + 1)̃t(p + q – k – 1)

+ (–1)p
∑

k1+k2=q+1,
k1,k2≥1

(
1 + (–1)k1

)(k2 + p – 2
p – 1

)
ζ (k1)̃t(k2 + p – 1)), (2.5)

(
1 + (–1)p+q)

∞∑

n=1

h̄(p)
n

nq

= –
(
1 + (–1)p+q)T̃(q, p̄)

= (–1)p(1 + (–1)q)t̄(p)ζ (q) + (–1)p
(

p + q – 1
p – 1

)
t̄(p + q)

– (–1)p
p–1∑

k=0

(
(–1)k + 1

)(p + q – k – 2
q – 1

)
t̄(k + 1)̃t(p + q – k – 1)

+ (–1)p
∑

k1+k2=q+1,
k1,k2≥1

(
1 + (–1)k1

)(k2 + p – 2
p – 1

)
ζ̄ (k1)t̄(k2 + p – 1)), (2.6)

(
1 + (–1)p+q)

∞∑

n=1

h̄(p)
n

nq (–1)n–1

= –
(
1 + (–1)p+q)T̃(q̄, p̄)

= (–1)p(1 + (–1)q)t̄(p)ζ̄ (q) – (–1)p
(

p + q – 1
p – 1

)
t̄(p + q)
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– (–1)p
p–1∑

k=0

(
(–1)k – 1

)(p + q – k – 2
q – 1

)
t̃(k + 1)t̄(p + q – k – 1)

+ (–1)p
∑

k1+k2=q+1,
k1,k2≥1

(
1 + (–1)k1

)(k2 + p – 2
p – 1

)
ζ (k1)t̄(k2 + p – 1)), (2.7)

(
1 – (–1)p+q)

∞∑

n=1

h(p)
n

nq (–1)n–1

=
(
1 – (–1)p+q)T̃(q̄, p)

= –(–1)p(1 + (–1)q)̃t(p)ζ̄ (q) + (–1)p
(

p + q – 1
p – 1

)
t̃(p + q)

– (–1)p
p–1∑

k=0

(
(–1)k + 1

)(p + q – k – 2
q – 1

)
t̄(k + 1)t̄(p + q – k – 1)

+ (–1)p
∑

k1+k2=q+1,
k1,k2≥1

(
1 + (–1)k1

)(k2 + p – 2
p – 1

)
ζ̄ (k1)̃t(k2 + p – 1)), (2.8)

where ζ (1) := –2 log(2) and t̃(1) := 0.

Remark 2.4 Note that the explicit evaluation of T(q, p) with odd weight was also proved
by Kanenko and Tsumura [6, 7] by another method.

Example 2.2 We have

T̃(4, 1) =
31
2

ζ (5) – 7ζ (2)ζ (3),

T̃(3, 2) = –62ζ (5) + 35ζ (2)ζ (3),

T̃(3, 1̄) =
1
2

t̄(4) +
1
2
ζ (2)t̄(2) –

7
2
πζ (3),

T̃(2, 2̄) = –
3
2

t̄(4) –
3
2
ζ (2)t̄(2) + 7πζ (3),

T̃(3̄, 1̄) = –
1
2

t̄(4) + ζ (2)t̄(2),

T̃(2̄, 2̄) =
3
2

t̄(4) –
9
2
ζ (2)t̄(2),

T̃(4̄, 1) =
1
2
π t̄(4) –

31
2

ζ (5) –
7
2
ζ (2)ζ (3),

T̃(3̄, 2) = –
3
2
π t̄(4) + 62ζ (5) + 7ζ (2)ζ (3).

3 Notations and related expansions
In this section, we give some basic notations, definitions, and lemmas. Let A := {ak},
–∞ < k < ∞ be a sequence of complex numbers with ak = o(kα) (α < 1) if k → ±∞. For
convenience, let A1 and A2 denote the constant sequence {(1)k} and the alternating se-
quence {(–1)k}, respectively.
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3.1 Notations and definitions
Now, we give three definitions.

Definition 3.1 With A defined above, we define the parametric digamma function
Φ(–s; A) by

Φ(–s; A) :=
a0

s
+

∞∑

k=1

(
ak

k – 1/2
–

ak

k – s

)
. (3.1)

Definition 3.2 For nonnegative integers j ≥ 1 and n, we define

D(A)(j) :=
∞∑

k=1

ak

kj , E(A)
n (j) :=

n∑

k=1

an–k

kj , E(A)
0 (j) := 0,

F (A)
n (j) =

⎧
⎨

⎩

∑∞
k=1

ak+n–ak
k , j = 1,

∑∞
k=1

ak+n
kj , j > 1,

−→
Fn

(A)(j) =

⎧
⎨

⎩

∑∞
k=1( ak+n

k – ak
k–1/2 ), j = 1,

F (A)
n (j), j > 1,

Ē(A)
n (j) :=

n∑

k=1

ak–n–1

kj , Ē(A)
0 (j) := 0, Ê(A)

n (j) :=
n∑

k=1

an–k

(k – 1/2)j , Ê(A)
0 (j) := 0,

F̄ (A)
n (j) =

⎧
⎨

⎩

∑∞
k=1

ak–n–ak
k , j = 1,

∑∞
k=1

ak–n
kj , j > 1,

F̂ (A)
n (j) =

⎧
⎨

⎩

∑∞
k=1

ak+n–ak
k–1/2 , j = 1,

∑∞
k=1

ak+n
(k–1/2)j , j > 1,

Ẽ(A)
n (j) :=

n∑

k=1

ak–n–1

(k – 1/2)j , Ẽ(A)
0 (j) := 0, F̃ (A)

n (j) =

⎧
⎨

⎩

∑∞
k=1

ak–n–ak
k–1/2 , j = 1,

∑∞
k=1

ak–n
(k–1/2)j , j > 1,

G(A)
n (j) := E(A)

n (j) – Ē(A)
n–1(j) –

a0

nj , G(A)
0 (j) := 0, L(A)

n (j) := F (A)
n (j) + (–1)jF̄ (A)

n (j),

M(A)
n (j) := E(A)

n (j) + (–1)j−→Fn
(A)(j), N (A)

n (j) := Ê(A)
n (j) + (–1)jF̂ (A)

n–1(j),

N̄ (A)
n (j) := F̃ (A)

n (j) – Ẽ(A)
n–1(j), R(A)

n (j) := G(A)
n (j) + (–1)jL(A)

n (j),

with D(A)(1) :=
−→
F0

(A)(1). Clearly, D(A1)(1) := –2 log(2) and D(A2)(1) := – log(2) + π
2 .

Remark 3.1 It should be emphasized that many notations in Definition 3.2 were intro-
duced in the reference [12].

Obviously,

−→
Fn

(A1)(1) = –2 log(2),
−→
Fn

(A2)(1) = (–1)n–1 log(2) +
π

2
.

Clearly, if we let A = A1 or A2 in Definition 3.2, elementary calculations yield

M(A1)
n (j) = H (j)

n + (–1)j

⎧
⎨

⎩
–2 log(2), j = 1,

ζ (j), j > 1,

M(A2)
n (j) = (–1)n–1H̄ (j)

n + (–1)j

⎧
⎨

⎩
(–1)n–1 log(2) + π

2 , j = 1,

(–1)n–1ζ̄ (j), j > 1,
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N (A1)
n (j) = h(j)

n + (–1)j̃t(j), t̃(1) := 0,

N (A2)
n (j) = (–1)n–1h̄(j)

n + (–1)j

⎧
⎨

⎩
((–1)n + 1)t̄(1), j = 1,

(–1)nt̄(j), j > 1,

N̄ (A1)
n (j) = t̃(j) – h(j)

n–1, t̃(1) := 0,

N̄ (A2)
n (j) = (–1)nh̄(j)

n–1 +

⎧
⎨

⎩
((–1)n–1 + 1)t̄(1), j = 1,

(–1)n–1 t̄(j), j > 1,

R(A1)
n (j) =

(
1 + (–1)j)ζ (j), R(A2)

n (j) = (–1)n–1(1 + (–1)j)ζ̄ (j).

Definition 3.3 ([12, Def. 1.2]) Define the cotangent function with sequence A by

π cot(πs; A) =
a0

s
– 2s

∞∑

k=1

ak

k2 – s2 . (3.2)

It is clear that if we let A = A1 and A2 in (3.2), respectively, then it becomes

cot(πs; A1) = cot(πs) and cot(πs; A2) = csc(πs).

3.2 Several identities among Φ-functions
Proposition 3.2 Let p ≥ 1 and n be nonnegative integers, if |s – n + 1/2| < 1, then

Φ (p–1)(–s; A)
(p – 1)!

=
∞∑

j=1

(–1)j–1
(

j + p – 2
p – 1

)
N (A)

n (j + p – 1)(s – n + 1/2)j–1. (3.3)

Proposition 3.3 Let p ≥ 1 and n be nonnegative integers, if |s – n| < 1 with s �= n, then

Φ (p–1)(–s; A)
(p – 1)!

=
1

(s – n)p

{
an –

∞∑

j=1

(–1)j
(

j + p – 2
p – 1

)
M(A)

n (j + p – 1)(s – n)j+p–1

}
. (3.4)

If we set n = 0, then for any |s| < 1 with s �= 0,

Φ (p–1)(–s; A)
(p – 1)!

=
a0

sp + (–1)p
∞∑

j=1

(
j + p – 2

j – 1

)
D(A)(j + p – 1)sj–1. (3.5)

Proposition 3.4 Let p and n be positive integers, if |s + n – 1/2| < 1, then

Φ (p–1)(–s; A)
(p – 1)!

= (–1)p
∞∑

j=1

(
j + p – 2

p – 1

)
N̄ (A)

n (j + p – 1)(s + n – 1/2)j–1. (3.6)

The method of the proofs of identities (3.3)–(3.6) is completely similar to that in [12,
Theorems 2.1–2.3]. Thus, we omit it.

3.3 Lemmas
We define tan(s; A) := cot(π/2 – s; A). It is clear that tan(s; A1) = tan(s) and tan(s; A2) = sec(s).
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Lemma 3.5 ([12, Thm. 2.3]) With cot(πs; A) defined above, if |s – n| < 1 with s �= n (n ∈ Z),
then

π cot(πs; A) =
a|n|

s – n
–

∞∑

j=1

(–σn)jR(A)
|n| (j)(s – n)j–1, (3.7)

where σn is defined by the symbol of n, namely

σn :=

⎧
⎨

⎩
1, n ≥ 0,

–1, n < 0.

Hence, an elementary calculation yields

π tan(πs; A) = –
a|n–1|

s – n + 1/2
+

∞∑

j=1

σ
j
n–1R(A)

|n–1|(j)(s – n + 1/2)j–1 (3.8)

for |s – n + 1/2| < 1 with s �= n – 1/2 (n ∈ Z),
Let B := {bk}, –∞ < k < ∞ be a sequence of complex numbers with bk = o(kβ ) (β < 1) if

k → ±∞. Define a kernel function ξ (s) by the two requirements: 1. ξ (s) is meromorphic
in the whole complex plane. 2. ξ (s) satisfies ξ (s) = o(s) over an infinite collection of circles
|s| = ρk with ρk → ∞. Applying these two conditions of kernel function ξ (s), Flajolet and
Salvy showed the following residue theorem.

Lemma 3.6 ([2]) Let ξ (s) be a kernel function, and let r(s) be a rational function which is
O(s–2) at infinity. Then

∑

α∈O

Res
[
r(s)ξ (s), s = α

]
+

∑

β∈S

Res
[
r(s)ξ (s), s = β

]
= 0, (3.9)

where S is the set of poles of r(s) and O is the set of poles of ξ (s) that are not poles of r(s).
Here Res [r(s), s = α] denotes the residue of r(s) at s = α.

4 Two general theorems
In this section, we prove two general theorems which will be used to obtain the explicit
evaluations of (alternating) double t-values and (alternating) double T-values.

Theorem 4.1 For positive integers p and q > 1,

–
∞∑

n=1

N (B)
n (p)

(n – 1/2)q an–1 – (–1)p+q
∞∑

n=1

N̄ (B)
n (p)

(n – 1/2)q an

– (–1)p
p–1∑

k=0

(–1)k

k!

(
p + q – k – 2

q – 1

) ∞∑

n=1

bn

np+q–k–1 lim
s→n

dk

dsk

(
π tan(πs; A)

)

+ Res
[
f1(s; A, B), s = 0

]
= 0, (4.1)
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where

dk

dsk

(
π tan(πs; A)

)
=

⎧
⎨

⎩
(1 – (–1)k)k !̃t(k + 1), A = A1,

(–1)n(1 + (–1)k)k!t̄(k + 1), A = A2,
(4.2)

Res
[
f1(s; A1, B), s = 0

]

= b0
(
1 + (–1)p+q)̃t(p + q)

+ 2(–1)p
∑

2k1+k2=q+1,
k1,k2≥1

(
k2 + p – 2

p – 1

)
t̃(2k1)D(B)(k2 + p – 1), (4.3)

Res
[
f1(s; A2, B), s = 0

]

= b0
(
1 – (–1)p+q)t̄(p + q)

+ 2(–1)p
∑

2k1+k2=q+2,
k1,k2≥1

(
k2 + p – 2

p – 1

)
t̄(2k1 – 1)D(B)(k2 + p – 1). (4.4)

Proof Apply the kernel function

π tan(πs; A)
Φ (p–1)(–s; B)

(p – 1)!

to the base function r(s) = s–q. Namely, we need to compute the residue of the function

f1(s; A, B) := π tan(πs; A)
Φ (p–1)(–s; B)

(p – 1)!sq .

Clearly, f1(s; A, B) only has poles at s = 0,±(n – 1/2) and n (n is a positive integer). With the
help of identities (3.3)–(3.6), we deduce the following residues:

Res[f1, s = n – 1/2] = –
N (B)

n (p)
(n – 1/2)q an–1,

Res[f1, s = 1/2 – n] = –(–1)p+q N̄ (B)
n (p)

(n – 1/2)q an,

Res[f1, s = n] = –(–1)p
p–1∑

k=0

(–1)k

k!

(
p + q – k – 2

q – 1

)
bn

np+q–k–1 lim
s→n

dk

dsk

(
π tan(πs; A)

)

and (4.2)–(4.4). Applying Lemma 3.6 yields the desired result. �

Proof of Theorem 2.1 Setting A, B ∈ {A1, A2} in Theorem 4.1 yields the four desired eval-
uations. �
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Theorem 4.2 For positive integers p and q > 1,

–
∞∑

n=1

N (B)
n (p)
nq an–1 – (–1)p+q

∞∑

n=1

N̄ (B)
n+1(p)
nq an+1

– (–1)p
p–1∑

k=0

(–1)k

k!

(
p + q – k – 2

q – 1

) ∞∑

n=0

bn

(n + 1/2)p+q–k–1 lim
s→n

dk

dsk

(
π tan(πs; A)

)

– (–1)pa1

(
p + q – 1

p – 1

)
W (B)(p + q)

+ (–1)p
∑

k1+k2=q+1,
k1,k2≥1

(
k2 + p – 2

p – 1

)
Z(A)(k1)W (B)(k2 + p – 1) = 0, (4.5)

where

W (B)(j) := F̂ (B)
–1 (j) =

⎧
⎨

⎩

∑∞
k=1

ak–1–ak
k–1/2 , j = 1,

∑∞
k=1

ak–1
(k–1/2)j , j > 1,

(4.6)

and

Z(A)(j) := (–1)jR(A)
1 (j) =

∞∑

k=1

ak+1 + (–1)jak–1

kj . (4.7)

Proof Apply the kernel function

π tan(πs; A)
Φ (p–1)(–s; B)

(p – 1)!

to the base function r(s) = (s + 1/2)–q. Namely, we need to compute the residues of the
function

f2(s; A, B) := π tan(πs; A)
Φ (p–1)(–s; B)

(p – 1)!(s + 1/2)q .

Clearly, f2(s; A, B) only has poles at 0, n and ±(n – 1/2) (n is a positive integer). With the
help of identities (3.3)–(3.6), these residues are

Res[f2, s = n – 1/2] = –
N (B)

n (p)
nq an–1 (n ≥ 1),

Res[f2, s = 1/2 – n] = –(–1)p+q N̄ (B)
n (p)

(n – 1)q an (n ≥ 2),

Res[f2, s = n]

= –(–1)p
p–1∑

k=0

(–1)k

k!

(
p + q – k – 2

q – 1

)
bn

(n + 1/2)p+q–k–1 lim
s→n

dk

dsk

(
π tan(πs; A)

)
(n ≥ 0),

Res[f2, s = –1/2]

= –(–1)pa1

(
p + q – 1

p – 1

)
W (B)(p + q)
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+ (–1)p
∑

k1+k2=q+1,
k1,k2≥1

(
k2 + p – 2

p – 1

)
Z(A)(k1)W (B)(k2 + p – 1)

= 0.

Then summing these four contributions and using Lemma 3.6, we may easily deduce the
desired evaluation. �

Proof of Theorem 2.3 Setting A, B ∈ {A1, A2} in Theorem 4.2 yields the four desired eval-
uations. �

It is possible that closed form representations of some other similar infinite series can
be proved using techniques of the present paper.

Remark 4.3 It should be emphasized that Xu [12] defined another parametric digamma
function Ψ (–s; A). Very recently, Wang and Xu [10] used the parametric digamma function
Ψ (–s; A) to define several new kernel functions. Then they used the methods of contour
integration and residue theorem to prove two general theorems (using the two theorems,
they obtained Theorems 2.1 and 2.3), which are similar to Theorems 4.1 and 4.2. Moreover,
they also showed many other types of results.
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