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Abstract
Quasi Bézier curves (or QB-curves, for short) possess the excellent geometric features
of classical Bézier curves and also have good shape adjustability. In this paper, an
algorithm for a multi-degree reduction of QB-curves based on L2 norm and by the
analysis of geometric characteristics of QB-curves is constructed. The approximating
approach for QB-curves of degree n + 1 by degreem (m≤ n) is also given. Secondly,
by solving the linear equations under the constraints of C0 and C1 and without
constraints, the explicit expression of the points of the approximating curve is
obtained, which minimizes the error between the original curve and the
approximating curve using the least square method. Some numerical examples of
degree reduction under different constraints are given, and the corresponding errors
are calculated as well. The results show that this method can be easily implemented,
is highly precise and very effective.

Keywords: Generalized Q-Bézier basis functions; Q-Bézier curve; Degree reduction;
L2 norm; Least squares approximation

1 Introduction
A parametric curve, such as Bézier curve, is a fundamental tool and research content in
the field of Computer Aided Geometric Design (CAGD)/Computer Aided Manufactur-
ing (CAM). It plays a major role in geometric modeling of various products, shape de-
signing, sketching, etc. It has also become one of the most significant schemes for repre-
senting curves in Computer Aided Design (CAD)/CAM systems due to straightforward,
instinctive construction and several significant characteristics of a Bézier curve. In engi-
neering applications and modeling the shape of a Bézier curve is not sufficient because
it is uniquely determined by the control points. Researchers introduced a rational Bézier
curve for modification or adjustment of the shape of curves without changing the con-
trol points with the help of weight factor to overcome this shortcoming. However, many
problems occur when we solve these rational factors such as computational complexity,
repeated derivation, inconvenient integration, and so on [1–9].

To defeat these problems and to get better approximation to real curves, researchers
have introduced many Bézier curves in non-rational form (including trigonometric, poly-
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nomial, and hybrid trigonometric Bézier curves) with shape parameters [10–29]. In [25],
generalized Bernstein basis functions were used to construct a QB-curve with multiple
shape parameters. The curve of this kind also possesses several significant geometric char-
acteristics of classical Bézier curves, and it also has bendable shape modification, i.e., the
shape of a curve can be adjusted by altering the values of shape parameters to construct
more complicate curves of the same degree. This makes QB-curves extensively used in dif-
ferent modelings and CAD/CAM systems and has certain application value in describing
curves and surfaces. Hu et al. presented the continuity conditions of the smooth splicing
of two adjacent QB-curves G1 and G2 and analyzed the result of shape parameters on the
shape of the combined curves after splicing [30]. In [31], the continuity constraints for QB
surfaces of degree (m, n) are studied by using the end point properties of generalized QB
basis functions. As far as we are aware, the research on a QB curve regarding its degree
reduction has not been reported before.

For the degree of curves, different CAD/CAM systems have different requirements. It is
necessary to reduce the degree of curves to realize the data conversion and transmission
between curves of different degree. There are two types of methods for degree reduction
of curves: (a) first is the geometric method which is based on control points. The inverse
process of degree elevation is used to solve the control points of degree reduction curves
in [32]. Young et al. used the geometric properties of a Bézier curve and combined them
with generalized inverse matrix and least squares theory to achieve degree reduction ap-
proximation [33, 34]. (b) The second type is the algebraic method which is based on basis
transformation. The degree reduction of a Bézier curve is achieved by Chebyshev-basis
transformation [35, 36], and the best approximation degree reduction problem is studied
by using Legendre polynomial theory [37]. Xu et al. presented a method for degree re-
duction of a Bézier curve based on constrained Jacobi polynomials [38]. Li et al. [39] con-
structed some geometric continuity conditions for the generalized cubic H-Bézier model
for the purpose of constructing shape-controlled complex curves and surfaces in engi-
neering. The authors in [40, 41] constructed generalized trigonometric Bézier curves with
shape parameters for the purpose of constructing some complex curves and surface ap-
plications in engineering. The basis functions proposed in [39–41] are different from the
basis functions utilized in this study.

In this paper, based on L2-norm, the least square of mth-degree QB-curves is used to
approximate n + 1th-degree QB-curves. The degree reduction without constraints and
under C0, and C1 constraints is considered. The specific expression for calculating the
degree reduction of curves control points is given.

2 The definition of QB-curves
Let Pi ∈ R

d , i = 0, 1, . . . , n and d = 2, 3, be the set of control points, and its corresponding
polynomial curve with shape parameters {λi}n

i=1 of degree n is called QB curve, which can
be defined as follows:

r(θ ) =
n∑

i=0

Pibi,n(θ ), (1)
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where nth-degree basis function {b0,n(θ ), b1,n(θ ), . . . , bn,n(θ )} is the nth-degree QB basis
functions with shape parameters {λi}n

i=1, the specific form is [25]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0,n(θ ) = (1 – θ )n(1 – λ1θ ),

bi,n(θ ) = θ i(1 – θ )n–i(( n
i
)

+ λi – λiθ – λi+1θ
)
, i = 1, 2, . . . , [ n

2 ] – 1,

b[ n
2 ](θ ) = θ [ n

2 ](1 – θ )n–[ n
2 ]

(( n
[ n

2 ]

)
+ λ[ n

2 ] – λ[ n
2 ]θ + λ[ n

2 ]+1θ
)

,

bi,n(θ ) = θ i(1 – θ )n–i(( n
i
)

– λi + λiθ + λi+1θ
)
, i = [ n

2 ] + 1, . . . , n – 1,

bn,n(θ ) = θn(1 – λn + λnθ )

(2)

with

λi ∈
[

–

(
n
i

)
,

(
n

i – 1

)]
, i = 1, 2, . . . ,

[
n
2

]
,

λi ∈
[

–

(
n

i – 1

)
,

(
n
i

)]
, i =

[
n
2

]
+ 1, . . . , n.

Here

[
n
2

]
=

⎧
⎨

⎩

n
2 , if n is even,
n+1

2 , if n is odd,
θ ∈ [0, 1].

3 Problem description
Problem 1 Let us consider that the n+1th-degree QB curve determined by control points
{P∗

i }n+1
i=0 ∈R

d , d = 2, 3, has the following form:

r∗(θ ) =
n+1∑

i=0

P∗
i bi,n+1(θ ), (3)

where {bi,n+1(θ )}n+1
i=0 are n + 1th degree QB basis functions. The degree reduction of the

so-called QB curve refers to finding the low mth-degree QB curve (m ≤ n) whose control
points are {Pi}m

i=0 ∈R
d , d = 2, 3,

r(θ ) =
m∑

i=0

Pibi,m(θ ) (4)

such that the distance between the two curves is minimized under a certain distance func-
tion d(r∗(θ ), r(θ )).

In order to obtain the explicit expression of an approximating QB curve, we choose
to use the L2-norm to measure the degree of the approximating curve before and after
reduction as a whole, and define its “distance” as follows:

d2(r∗(θ ), r(θ )
)

=
∫ 1

0

∥∥r∗(θ ) – r(θ )
∥∥2

2 dθ . (5)
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The above equation is a vector function, and the labels r∗(θ ) = (r∗
1(θ ), r∗

2(θ ), . . . , r∗
s (θ ))

and r(θ ) = (r1(θ ), r2(θ ), . . . , rs(θ )) are introduced to transform the vector function into the
minimized component function

d2(r∗
j (θ ), rj(θ )

)
=

∫ 1

0

[
r∗

j (θ ) – rj(θ )
]2 dθ , j = 1, 2, . . . , s. (6)

Thus, Eq. (5) can be determined by Eq. (7)

d
(
r∗(θ ), r(θ )

)
=

[ s∑

j=1

d2(r∗
j (θ ), rj(θ )

)
]1/2

. (7)

Therefore, when each component distance function d(r∗
j (θ ), rj(θ )) gets the minimum

value, d(r∗(θ ), r(θ )) reaches the minimum value. In this paper, we only discuss the min-
imum problem in the form of component function and introduce the problem of degree
reduction from the solution problem.

Problem 2 Let {P∗
i }n+1

i=0 be the sequence of real numbers, and its corresponding n + 1th-
degree QB function can be defined as follows:

r∗(θ ) =
n+1∑

i=0

P∗
i bi,n+1(θ ). (8)

Then we will seek real numbers {Pi}m
i=0 corresponding to the mth-degree QB function

(m ≤ n)

r(θ ) =
m∑

i=0

Pibi,m(θ ) (9)

such that d2(r∗(θ ), r(θ )) =
∫ 1

0 [r∗(θ ) – r(θ )]2 dθ minimizes by least square distance.

In order to determine the coefficients of the approximating function r(θ ), the next main
purpose is to solve the unknowns {Pi}m

i=0.

4 Least squares degree reduction of QB-curves
4.1 Degree reduction of QB-curves under unconstrained conditions
Theorem 1 If the coefficients {Pi}m

i=0 are the solutions of Problem 2, then vector P =
(P0, P1, . . . , Pm)T satisfies the linear equation AP = b, where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = (ai,j)m+1,m+1,

b = (b1, . . . , bm+1)T ,

ai+1,j+1 =
∫ 1

0 bi,m(θ )bj,m(θ ) dθ ,

bj+1 =
∫ 1

0 [
∑n+1

i=0 P∗
i bi,n+1(θ )]bj,m(θ ) dθ ,

(i, j = 0, 1, 2, . . . , m). (10)

Proof From Problem 2, we can get

S = d2(r∗(θ ), r(θ )
)

=
∫ 1

0

[
r∗(θ ) – r(θ )

]2 dθ =
∫ 1

0

[ n+1∑

i=0

P∗
i bi,n+1(θ ) –

m∑

j=0

Pjbj,m(θ )

]2

dθ .



Hu et al. Advances in Difference Equations        (2020) 2020:413 Page 5 of 16

Let ∂S/∂Pj, j = 0, 1, 2, . . . , m, the above equation can be reduced to

m∑

i=0

Pi

∫ 1

0
bi,m(θ )bj,m(θ ) dθ =

∫ 1

0

[ n+1∑

i=0

P∗
i bi,n+1(θ )

]
bj,m(θ ) dθ , j = 0, 1, 2, . . . , m. (11)

Further, Eq. (11) is expressed in a matrix form by calculation given as follows:

AP = b, (12)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = (ai,j)m+1,m+1,

b = (b1, . . . , bm+1)T ,

ai+1,j+1 =
∫ 1

0 bi,m(θ )bj,m(θ ) dθ ,

bj+1 =
∫ 1

0 [
∑n+1

i=0 P∗
i bi,n+1(θ )]bj,m(θ ) dθ ,

(i, j = 0, 1, 2, . . . , m). (13)

Let ej+1 = (a1,j+1, . . . , am+1,j+1)T (j = 0, 1, 2, . . . , m), set

m∑

j=0

cj+1ej+1 = c1

⎡

⎢⎢⎢⎢⎣

a1,1

a2,1
...

am+1,1

⎤

⎥⎥⎥⎥⎦
+ c2

⎡

⎢⎢⎢⎢⎣

a1,2

a2,2
...

am+1,2

⎤

⎥⎥⎥⎥⎦
+ · · · + cm+1

⎡

⎢⎢⎢⎢⎣

a1,m+1

a2,m+1
...

am+1,m+1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
...
0

⎤

⎥⎥⎥⎥⎦
, (14)

that is,

m∑

j=0

cj+1ai+1,j+1 =
∫ 1

0

[ m∑

j=0

cj+1bj,m(θ )

]
bi,m(θ ) dθ = 0, i = 0, 1, 2, . . . , m. (15)

It can be obtained as follows:

∫ 1

0

[ m∑

j=0

cj+1bj,m(θ )

]2

dθ =
∫ 1

0

[ m∑

j=0

cj+1bj,m(θ )

][ m∑

i=0

ci+1bi,m(θ )

]
dθ

=
m∑

i=0

ci+1

∫ 1

0

[ m∑

j=0

cj+1bj,m(θ )

]
bi,m(θ ) dθ

= 0. (16)

Therefore
∑m

j=0 cj+1bj,m(θ ) = 0. Since {b0,m(θ ), . . . , bm,m(θ )} are linearly independent on
θ ∈ [0, 1], cj+1 ≡ 0 (j = 0, 1, 2, . . . , m), that is, vector {e1, . . . , em+1} is linearly independent.
Therefore, the solution of linear Eq. (12) exists and is unique. �

4.2 Degree reduction of QB-curves by C0 continuity conditions
To reduce the degree of the curves, if the C0 continuity is satisfied, that is, the first and last
points of the two curves coincide, then there are

P0 = P∗
0, Pm = P∗

n+1.
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The remaining m – 1 points are calculated according to Theorem 2.

Theorem 2 If coefficients {Pi}m
i=0 are the solutions of Problem 2 and keep C0 continuous,

then vector P = (P1, . . . , Pm–1)T satisfies the linear equation AP = b except for P0 = P∗
0 and

Pm = P∗
n+1, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = (ai,j)m–1,m–1,

b = (b1, . . . , bm–1)T ,

ai,j =
∫ 1

0 bi,m(θ )bj,m(θ ) dθ ,

bj =
∫ 1

0 [
∑n+1

i=0 P∗
i bi,n+1(θ )]bj,m(θ ) dθ

–
∫ 1

0 (P∗
0b0,m(θ ) + P∗

n+1bm,m(θ ))bj,m(θ ) dθ ,

(i, j = 1, 2, . . . , m – 1). (17)

Proof f ∗(0) = f (0) and f ∗(1) = f (1) are known from the continuity condition of C0. Then

P0 = P∗
0, Pm = P∗

n+1.

According to Problem 2, there are

S = d2(r∗, r
)

=
∫ 1

0

[
r∗(t) – r(t)

]2 dt

=
∫ 1

0

[ n+1∑

i=0

P∗
i bi,n+1(t) –

m∑

j=0

Pjbj,m(t)

]2

dt.

Let ∂S/∂Pj = 0, j = 1, 2, . . . , m – 1, the above equation can be reduced to

m–1∑

i=1

Pi

∫ 1

0
bi,m(θ )bj,m(θ ) dθ

=
∫ 1

0

[ n+1∑

i=0

P∗
i bi,n+1(θ ) – P∗

0b0,m(θ ) – P∗
n+1bm,m(θ )

]
bj,m(θ ) dθ . (18)

In addition, Eq. (18) is expressed in a matrix form by calculation as follows:

AP = b, (19)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = (ai,j)m–1,m–1,

b = (b1, . . . , bm–1)T ,

ai,j =
∫ 1

0 bi,m(θ )bj,m(θ ) dθ ,

bj =
∫ 1

0 [
∑n+1

i=0 P∗
i bi,n+1(θ )]bj,m(θ ) dθ

–
∫ 1

0 (P∗
0b0,m(θ ) + P∗

n+1bm,m(θ ))bj,m(θ ) dθ ,

(i, j = 1, 2, . . . , m – 1). (20)
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Let ej = (a1,j, . . . , am–1,j)T (j = 1, 2, . . . , m – 1), set

m–1∑

j=1

cjej = c1

⎡

⎢⎢⎢⎢⎣

a1,1

a2,1
...

am–1,1

⎤

⎥⎥⎥⎥⎦
+ c2

⎡

⎢⎢⎢⎢⎣

a1,2

a2,2
...

am–1,2

⎤

⎥⎥⎥⎥⎦
+ · · · + cm–1

⎡

⎢⎢⎢⎢⎣

a1,m–1

a2,m–1
...

am–1,m–1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
...
0

⎤

⎥⎥⎥⎥⎦
, (21)

that is,

m–1∑

j=1

cjai,j =
∫ 1

0

[m–1∑

j=1

cjbj,m(θ )

]
bi,m(θ ) dθ = 0 (i = 1, 2, . . . , m – 1). (22)

Since {b1,m(θ ), . . . , bm–1,m(θ )} are linearly independent on θ ∈ [0, 1], similar to Theorem 1,
it is easy to prove that {e1, . . . , em–1} also satisfy the linear independence condition. There-
fore, the solution of linear Eq. (18) exists and is unique, and thus is also the solution of
Problem 2, and satisfies the C0 continuity. �

4.3 Degree reduction of QB-curves by C1 continuity conditions
To reduce the degree of the curves, if the C1 continuity is required, that is, the first and
last points of two curves have C1 continuity interpolation, then there are

P0 = P∗
0, Pm = P∗

n+1,

P1 = P∗
0 +

n + 1 + λ1

m + λ1

(
P∗

1 – P∗
0
)
, Pm–1 = P∗

n+1 –
n + 1 + λn+1

m + λn+1

(
P∗

n+1 – P∗
n
)
.

The remaining m – 3 points are calculated according to Theorem 3.

Theorem 3 If the coefficients {Pi}m
i=0 are the solutions of Problem 2 and keep C1 continuous,

then vector P = (P2, . . . , Pm–2)T satisfies the linear equation AP = b except for the following
four endpoints:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P0 = P∗
0,

P1 = P∗
0 + n+1+λ1

m+λ1
(P∗

1 – P∗
0),

Pm–1 = P∗
n+1 – n+1+λn+1

m+λn+1
(P∗

n+1 – P∗
n),

Pm = P∗
n+1,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = (ai–1,j–1)m–3,m–3,

b = (b1, . . . , bm–3)T ,

ai–1,j–1 =
∫ 1

0 bi,m(θ )bj,m(θ ) dt,

bj–1 =
∫ 1

0 [
∑n+1

i=0 P∗
i bi,n+1(θ ) – P0b0,m(θ )

– P1b1,m(θ )]bj,m(θ ) dθ

–
∫ 1

0 (Pm–1bm–1,m(θ ) + Pmbm,m(θ ))bj,m(θ ) dθ ,

(i, j = 2, . . . , m – 2). (23)
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Proof According to the continuity conditions of C1, we have

⎧
⎨

⎩
r∗(0) = r(0),

r∗(1) = r(1),

⎧
⎨

⎩

d[r∗(θ )]
dθ

|θ=0 = d[r(θ )]
dθ

|θ=0,
d[r∗(θ )]

dθ
|θ=1 = d[r(θ )]

dθ
|θ=1.

Then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P0 = P∗
0,

P1 = P∗
0 + n+1+2λ

m+2λ
(P∗

1 – P∗
0),

Pm–1 = P∗
n+1 – n+1+2λ

m+2λ
(P∗

n+1 – P∗
n),

Pm = P∗
n+1.

According to Problem 2, there are

S = d2(r∗, f
)

=
∫ 1

0

[
r∗(θ ) – r(θ )

]2 dθ

=
∫ 1

0

[ n+1∑

i=0

P∗
i bi,n+1(θ ) –

m∑

j=0

Pjbj,m(θ )

]2

dθ . (24)

Let ∂S/∂Pj = 0, j = 2, . . . , m – 2, the above equation can be reduced to

m–2∑

i=2

Pi

∫ 1

0
bi,m(θ )bj,m(θ ) dθ

=
∫ 1

0

[ n+1∑

i=0

P∗
i bi,n+1(θ )

]
bj,m(θ ) dθ

–
∫ 1

0

(
P0b0,m(θ ) + P1b1,m(θ ) + Pm–1bm–1,m(θ ) + Pmbm,m(θ )

)
bj,m(θ ) dθ . (25)

Further, Eq. (25) is expressed in a matrix form by calculation as follows:

AP = b, (26)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = (ai–1,j–1)m–3,m–3,

b = (b1, . . . , bm–3)T ,

ai–1,j–1 =
∫ 1

0 bi,m(θ )bj,m(θ ) dθ ,

bj–1 =
∫ 1

0 [
∑n+1

i=0 P∗
i bi,n+1(θ ) – P0b0,m(θ )

– P1b1,m(θ )]bj,m(θ ) dθ

–
∫ 1

0 (Pm–1bm–1,m(θ ) + Pmbm,m(θ ))bj,m(θ ) dθ

(i, j = 2, . . . , m – 2). (27)
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Let ej = (a1,j, . . . , am–3,j)T (j = 1, 2, . . . , m – 3), set

m–3∑

j=1

cjej = c1

⎡

⎢⎢⎢⎢⎣

a1,1

a2,1
...

am–3,1

⎤

⎥⎥⎥⎥⎦
+ c2

⎡

⎢⎢⎢⎢⎣

a1,2

a2,2
...

am–3,2

⎤

⎥⎥⎥⎥⎦
+ · · · + cm–3

⎡

⎢⎢⎢⎢⎣

a1,m–3

a2,m–3
...

am–3,m–3

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
...
0

⎤

⎥⎥⎥⎥⎦
, (28)

that is,

m–3∑

j=1

cjai,j =
∫ 1

0

[m–3∑

j=1

cjbj+1,m(θ )

]
bi+1,m(θ ) dθ = 0

(i = 1, 2, . . . , m – 3). (29)

Since {b2,m(θ ), . . . , bm–2,m(θ )} are linearly independent on θ ∈ [0, 1], similar to Theorem 1,
it can be proved that {e1, . . . , em–3} also satisfy the linear independence condition. There-
fore, the solution of linear Eq. (25) exists and is unique, and thus is also the solution of
Problem 2, and satisfies the C1 continuity. �

5 Examples of degree reduction curves
In this paper, a wide numerical study has been carried out for the verification of correct-
ness of the algorithm. The following is a numerical example of the application of the algo-
rithm to QB-curves, in which the square distance formula

d2(r∗
n+1(θ ), rm(θ )

)
=

∫ 1

0

[
r∗

n+1(θ ) – rm(θ )
]2 dθ (30)

is used to determine the error between the curves before and after reduction.

Example 5.1 Given the shape parameters

λ∗
1 = 1, λ∗

2 = 1, λ∗
3 = 2, λ∗

4 = 0, λ∗
5 = 0, λ∗

6 = 0

and the control point coordinates

{
P∗

0 = (–5, 0), P∗
1 = (–7, 3), P∗

2 = (–3, 6), P∗
3 = (2, 7),

P∗
4 = (6, 6), P∗

5 = (9, 2.5), P∗
6 = (7, 0)

}

to construct six QB-curves (blue solid lines) without constraints and under the constraint
of C0 and C1, the curves are reduced to quartic QB-curves (red dashed lines). Here we
give two different shape parameters to the reduced quartic QB curve. That is,

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 0;

λ1 = 1, λ2 = 2, λ3 = 2, λ4 = 0.
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Figure 1 Degree reduction of Q-Bézier curve of degree six (λ∗
1 = 1, λ∗

2 = 1, λ∗
3 = 2, λ∗

4 = 0, λ∗
5 = 0, λ∗

6 = 1)

The curves before and after reduction are shown in Fig. 1, and the control points and
errors after reduction are shown in Tables 1 and 2, respectively.
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Table 1 Control points and errors for Q-Bézier curve of degree six to degree quartic (λ1 = 1, λ2 = 1,
λ3 = 2, λ4 = 0)

Constraint condition Control points Error

Under unrestricted condition P0 = (–5.0207, 0.007382),
P1 = (–7.6988, 4.167), P2 = (3.0487, 8.14),
P3 = (9.8918, 3.853), P4 = (7.0179, –0.01358)

d2(r∗
6(θ ), r4(θ )) = 0.50153× 10–4

Under C0 constraint condition P0 = (–5, 0), P1 = (–7.7184, 4.1712),
P2 = (3.0507, 8.1466), P3 = (9.9157, 3.8302),
P4 = (7, 0)

d2(r∗
6(θ ), r4(θ )) = 0.97175× 10–4

Under C1 constraint condition P0 = (–5, 0), P1 = (–7.8, 4.2),
P2 = (3.0613, 8.1701), P3 = (10.0, 3.75),
P4 = (7, 0)

d2(r∗
6(θ ), r4(θ )) = 0.8934× 10–3

Table 2 Control points and errors for Q-Bézier curve of degree six to degree quartic (λ1 = 1, λ2 = 2,
λ3 = 2, λ4 = 0)

Constraint condition Control points Error

Under unrestricted condition P0 = (–4.9736, 0.02432), P1 = (–7.9384, 4.08),
P2 = (2.3687, 7.887), P3 = (10.202, 3.969),
P4 = (6.971, –0.03129)

d2(r∗
6(θ ), r4(θ )) = 0.13928× 10–3

Under C0 constraint condition P0 = (–5, 0), P1 = (–7.9148, 4.1),
P2 = (2.3725, 7.8947), P3 = (10.16, 3.9215),
P4 = (7, 0)

d2(r∗
6(θ ), r4(θ )) = 0.28678× 10–3

Under C1 constraint condition P0 = (–5, 0), P1 = (–7.8, 4.2),
P2 = (2.3841, 7.921), P3 = (10.0, 3.75),
P4 = (7, 0)

d2(r∗
6(θ ), r4(θ )) = 0.31312× 10–2

Example 5.2 Given the following shape parameters:

λ∗
1 = 1, λ∗

2 = 0, λ∗
3 = 0, λ∗

4 = 1,

λ∗
5 = 0, λ∗

6 = 1, λ∗
7 = 0, λ∗

8 = 0

and the control point coordinates

{
P∗

0 = (–5, 0), P∗
1 = (–8, 3), P∗

2 = (–6.5, 7),

P∗
3 = (–1, 10), P∗

4 = (6, 11), P∗
5 = (13, 10),

P∗
6 = (18.5, 7), P∗

7 = (20, 3), P∗
8 = (17, 0)

}

to construct eight QB-curves (blue solid lines) without constraints and under the con-
straint of C0 and C1, the curve is reduced to quintic QB-curves (red dashed lines).
Here we give two different shape parameters to the reduced quintic QB curve. That
is,

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 1, λ5 = 0;

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0, λ5 = 0.

The curves before and after reduction are shown in Fig. 2, and the control points and
errors after reduction are shown in Tables 3 and 4, respectively.
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Figure 2 Degree reduction of Q-Bézier curve of degree eight (λ∗
1 = 1, λ∗

2 = 0, λ∗
3 = 0, λ∗

4 = 1, λ∗
5 = 0, λ∗

6 = 1,
λ∗
7 = 0, λ∗

8 = 0).

Example 5.3 Given the shape parameters

λ∗
1 = 1, λ∗

2 = –1, λ∗
3 = 0, λ∗

4 = 1, λ∗
5 = 2,

λ∗
6 = 1, λ∗

7 = 1, λ∗
8 = 1
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Table 3 Control points and errors for Q-Bézier curve of degree eight to degree quintic (λ1 = 1,
λ2 = 0, λ3 = 0, λ4 = 1, λ5 = 0)

Constraint condition Control points Error

Under unrestricted condition P0 = (–5.0124, 0.01278), P1 = (–9.4306, 4.405),
P2 = (–1.5228, 12.21), P3 = (13.877, 11.79),
P4 = (22.01, 4.775), P5 = (16.975, 0.003712)

d2(r∗
8(θ ), r5(θ )) = 0.29699× 10–4

Under C0 constraint condition P0 = (–5, 0), P1 = (–9.4415, 4.4265),
P2 = (–1.5404, 12.185), P3 = (13.92, 11.801),
P4 = (21.957, 4.7767), P5 = (17, 0)

d2(r∗
8(θ ), r5(θ )) = 0.59456× 10–4

Under C1 constraint condition P0 = (–5, 0), P1 = (–9.5, 4.5),
P2 = (–1.5514, 1.076), P3 = (14.081, 11.83),
P4 = (21.8, 4.8), P5 = (17, 0)

d2(r∗
8(θ ), r5(θ )) = 0.54881× 10–3

Table 4 Control points and errors for Q-Bézier curve of degree eight to degree quintic (λ1 = 1,
λ2 = 0, λ3 = 0, λ4 = 0, λ5 = 0)

Constraint condition Control points Error

Under unrestricted condition P0 = (–5.0035, 0.005137),
P1 = (–9.4843, 4.451), P2 = (–1.301, 12.02),
P3 = (13.294, 12.29), P4 = (21.945, 4.831),
P5 = (16.984, –0.003849)

d2(r∗
8(θ ), r5(θ )) = 0.93321× 10–5

Under C0 constraint condition P0 = (–5, 0), P1 = (–9.4828, 4.4623),
P2 = (–1.3226, 11.995), P3 = (13.335, 12.312),
P4 = (21.909, 4.8191), P5 = (17, 0)

d2(r∗
8(θ ), r5(θ )) = 0.18475× 10–4

Under C1 constraint condition P0 = (–5, 0), P1 = (–9.5, 4.5),
P2 = (–1.3747, 11.916), P3 = (13.483, 12.374),
P4 = (21.8, 4.8), P5 = (17, 0)

d2(r∗
8(θ ), r5(θ )) = 0.17728× 10–3

and the control point coordinates

{
P∗

0 = (–5, 0), P∗
1 = (–8, 3), P∗

2 = (–6.5, 7), P∗
3 = (–1, 10), P∗

4 = (6, 11), P∗
5 = (13, 10),

P∗
6 = (18.5, 7), P∗

7 = (20, 3), P∗
8 = (17, 0)

}

to construct eight QB-curves (blue solid lines) without constraints and under the con-
straint of C0 and C1, the curve is reduced to quartic QB-curves (red dashed lines). Here
we give two different shape parameters to the reduced quartic QB curve. That is,

λ1 = 1, λ2 = –1, λ3 = 0, λ4 = 1;

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 1.

The curves before and after reduction are shown in Fig. 3, and the control points and
errors after reduction are shown in Tables 5 and 6, respectively.

6 Conclusions
In this paper, the least square degree reduction approximation problem for QB-curves
based on L2-norm without constrains and under the C0 and C1 constraints is stud-
ied. An algorithm for control points of approximating curves is also given. Three prac-
tical examples and their specific errors under three conditions reveal that the method
achieves one-time reduction and multi-degree least square approximation of QB curve
under various constraints. That is to say, this method is applicable for the system of
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Figure 3 Degree reduction of Q-Bézier curve of degree eight (λ∗
1 = 1, λ∗

2 = –1, λ∗
3 = 0, λ∗

4 = 1, λ∗
5 = 2, λ∗

6 = 1,
λ∗
7 = 1, λ∗

8 = 1)

CAD/CAM modeling. The degree reduction for QB surfaces will be studied in future
work.
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Table 5 Control points and errors for Q-Bézier curve of degree eight to degree quartic (λ1 = 1,
λ2 = –1, λ3 = 0, λ4 = 1)

Constraint condition Control points Error

Under unrestricted condition P0 = (–4.9809, 0.02524), P1 = (–10.503, 5.207),
P2 = (6.0274, 16.48), P3 = (22.471, 5.225),
P4 = (16.987, 0.02064)

d2(r∗
8(θ ), r4(θ )) = 0.13315× 10–2

Under C0 constraint condition P0 = (–5, 0), P1 = (–10.484, 5.2502),
P2 = (6.0191, 16.414), P3 = (22.463, 5.2641),
P4 = (17, 0)

d2(r∗
8(θ ), r4(θ )) = 0.11689× 10–3

Under C1 constraint condition P0 = (–5, 0), P1 = (–10.4, 5.4),
P2 = (5.9985, 16.14), P3 = (22.4, 5.4),
P4 = (17, 0)

d2(r∗
8(θ ), r4(θ )) = 0.13315× 10–2

Table 6 Control points and errors for Q-Bézier curve of degree eight to degree quartic (λ1 = 1,
λ2 = 0, λ3 = 0, λ4 = 1)

Constraint condition Control points Error

Under unrestricted condition P0 = (–4.9836, 0.03464), P1 = (–10.505, 5.127),
P2 = (5.9596, 16.49), P3 = (22.447, 5.298),
P4 = (16.991, 0.01223)

d2(r∗
8(θ ), r4(θ )) = 0.5008× 10–4

Under C0 constraint condition P0 = (–5, 0), P1 = (–10.487, 5.1792),
P2 = (5.9488, 16.427), P3 = (22.443, 5.3304),
P4 = (17, 0)

d2(r∗
8(θ ), r4(θ )) = 0.1153× 10–3

Under C1 constraint condition P0 = (–5, 0), P1 = (–10.4, 5.4),
P2 = (5.9059, 16.149), P3 = (22.4, 5.4),
P4 = (17, 0)

d2(r∗
8(θ ), r4(θ )) = 0.1863× 10–2
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