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1 Introduction
In the last few decades, the classical mathematical inequalities and their generalized ver-
sions for convex functions have recorded an exponential growth with significant impact in
modern analysis [9, 16, 21, 22, 2628, 30, 31, 33]. They have many applications in numeri-
cal quadrature, transform theory, probability, and statistical problems. Specially, they help
to establish the uniqueness of the solutions of boundary value problems [8]. In the applied
literature of mathematical inequalities, the Jensen inequality is a well-known, paramount
and extensively used inequality [2—4, 7, 13, 32]. This inequality is of pivotal importance, be-
cause other classical inequalities, such as Hermite—Hadamard’s, Ky—Fan’s, Beckenbach—
Dresher’s, Levinson’s, Minkowski’s, arithmetic—geometric, Young’s and Hoélder’s inequal-
ities, can be deduced from this inequality. The Jensen inequality and its generalizations,
refinements, extensions and converses etc. have many applications in different fields of
science, for example electrical engineering [11], mathematical statistics [23], financial eco-
nomics [24], information theory, guessing and coding [1, 5, 6, 10, 1215, 17-19, 25]. The
discrete Jensen inequality can be found in [20], which states that:

If T:[y1,y2] — R is a convex function and s; € [y1,)5], u; > 0 for i = 1,...,n with
Y i u;i=U,>0,then

1 & 1 &
T| — us; | < — u; T(s;).
%;”_w;,u

If the function T is concave then the reverse inequality holds in the above expression.
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To derive the main result, we need the following Green function defined on [y1, y»] x
1, 72l [29]:

e VZ)_(?C—VI)’ " <x=<z
Glz,x) = Y211 (1.1)
=y2)(z=11) <x<
r-rn -’ =72

This function G is continuous and convex with respect to the two variables z and x. Also,
the following identity for the function 7' e C2[y1, y2] holds, which is related to the Green
function (1.1) [29]:

T(z) = Y2 —
V2=

N T () + f " Gl T" () do. (1.2)
-N y

1

We organize the remaining paper as follows: In Sect. 2, we present a new bound for the
Jensen gap for functions whose absolute values of the second derivative are convex, fol-
lowed by a remark and a proposition presenting a converse of the Holder inequality. In
Sect. 3, we give applications of the main result for the Csiszar f-divergence functional,
the Kullback-Leibler divergence, the Bhattacharyya coefficient, the Hellinger distance, the
Rényi divergence, the x2-divergence, the Shannon entropy and triangular discrimination.

Section 4 is devoted to the conclusion of the paper.

2 Main result

We begin by presenting our main result.

Theorem 2.1 Let T € C*[yy, y»] be a function such that |T"| is convex and s; € [y1, ),
u;>0fori=1,...,nwithy . u;=U, >0, then

1 <& 1 ¢
Un lzzl u; T(s;) — T(m lzzl Mi5i>
3
_ TG = 1T () 1§
- 6(n-n) ( Z” K <U Z:m) )
T _ T n
N 72 (;l _J;J) (r2)l (L[i Z s2 — ( Zus,) ) (2.1)

=1

Proof Using (1.2) in uLn Yo uiT(s;) and T(uin Yo ussi), we get

UingjuiT(Si)
_1 Z (

"11

S$i—=¥ 72 "
T(y1) + T(y2)+/ G(s;,%)T" (x) dx (2.2)
V2= 7 V2—n v

1
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and

YV2o—n V2— N

1 Vo= o Doiq UiSi I Doy WiSi— Y1
T\ o Y wisi | = =S T + = T()

2 1 <& .
+/y G(F Zu,-si,x> T" (x) dx. (2.3)

Subtracting (2.3) from (2.2), we obtain
Ly ure)-1( =3
SN T -T =S s
U i=1 o Un i=1 l
ni1 < 1 &
= — u;G(s;,x) — G| — uispx | | T (%) dx. 2.4
/n <U21 (50:) (Uzl )) ® (2.4

Taking the absolute value of (2.4), we get

1 & 1 «
o ;uiT(Si) - T(m ;m&)

Y2 1 n 1 n
/ —ZuiG(si,x)—G —Zuis,»,x T (x) dx
n \Un i=1 Uy i=1

%) 1 n 1 n
< — u;G(s;,x) - G| — UiSi, X
AL

n
Using a change of variable we write x = ty; + (1 — t)y», ¢ € [0, 1]. Also, as G(z,x) is convex,

‘ T”(x)| dx. (2.5)

so from (2.5) we have

1 n
— > uiT(s;)) - T(s)

1 n
<(n- V1)/0 (Lli Z%’G(Si,f)ﬁ +(1-1)y2) -G(5 01+ (1- f))’z))

=1

X ’T”(tyl +(1- t))/g) ‘ dt, (2.6)

<_ 1 n .
where s = T D i Uisi.
Since |T"| is a convex function, (2.6) becomes

1 n
— > uiT(s;)) - T(s)
0, %

1 n
<(r- V1)/0 (ui > wiG(sptyr + (1= t)y) - G(5,t0 + (1 - t))/z))

"1

x (| T" ()| + A =0)|T"()|) dt

1 n
=(V2—7/1)/0 (UL ZuiG(Si:tVI +(1-0)2)t|T" ()]

=1
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1 n
+ U Z MiG(S,', t)/l + (1 — t))/z)(l — t)|T”()/2)| — G(E, t)/l + (1 — t))/Q)
Tzl
x | T"(n)| - G(5, 831 + (1 - £)y2) (1 - 1) T”(yz)l) dt
1 & 1
=0 - 7/1)(|T//()/1)| A Z”i/ 1G(sityr + (L= t)yn) dt
moiz1 0
1 « !
+|T (Vz)!m ;Mi/() (1-0G(sityr + (1 —t)yr) dt
1
= |T"(n)| / 1G(5,ty1 + (L—t)y) dt
0
1
—|T"(n)| / 1-0)G(s,ty1 + (1 - 1)) dt)
0
1 & !
=0 - 7/1)<|T ()| o ;Mij; 1G(sity1 + (L - t)yn) dt
" 1 ¢ !
+ |T (Vz)‘m ;l/ll/o G(Si, t]/l + (1 — t)]/z) dt
! 1 . !
= |T"(n)| o ;Mi/o 1G(sityr + (1 —t)ya) dt
1
~1T00] [ 166+ (- 0)
0
1
—|T"()| / G(s,ty1 + (1= t)yy) dt
0
1
+ |T”(y2)| / tG(E, tyr + (1 - t)yz) dt). (2.7)
0
Now by using the change of variable x = ty; + (1 — t)y, for t € [0, 1], we obtain

1
/ 1G(siytyr + (1= t)y) dt
0

1 visi s 5vnst vvis vy st yist
= — —_— = —_ —_ + _—
n-r)2\ 6 6 6 2 6 2 2
2.2 3 3
VaV1 | VaSi 3 ViYs
= c—— ). 2.8
+ 5 + 3 + 128; 3 ) (2.8)
Replacing s; by 5 in (2.8), we get
1
/ tG(s, ey + (1= 1)) dt
0
o1 s 1B’ 5nE)°  pnris pr . 1 72(6)?
(n-»n3P\ 6 6 6 2 6 2
2(3)2 2.2 3< 3
75 (8) YWyl VS -3 N3
-2 A e mparen) 2.9
5 Tyt Y2(5) 3 (2.9)
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Also,

(S? — VoSi — ViSi + V1V2)

1
G(sity1 + 1 —t)y,) dt = (2.10)
fo (st ) 2(r2=n1)
Replacing s; by s in (2.10), we get
1 A2 5T
f G5ty + (1 - )yn) dt = (©" = yf 9§+ nys) 2.11)
0 2(y2 - 1)

Substituting the values from (2.8)—(2.11) in (2.7) and simplifying, we get the required result
(2.1). O

Remark 2.2 If we use the Green functions G;—G, as given in [29] instead of G in Theo-

rem 2.1, we obtain the same result (2.1).

As an application of the above result, we derive a converse of the Holder inequality in

the following proposition.

Proposition 2.3 Letg>1, p € R* —{(2,3) U (0, 1]} such that é + % = 1. Also, let [y1, y»] be
Yo aibi
Yiib

a positive interval and (ay, .. .,a,), (b1,...,by,) be two positive n-tuples such that

_q
ab;’ €y, vl fori=1,...,n, then

(5 5
i=1 i=1 i=1

Po-D -1 s g 1 <« i
S( 6(r2— 1) S quﬂibg - S bqZﬂlbz

ST

=170 =1 =170 =1

R A R SRR RS
+ Zn bq Zai i

2(]/2_)/1) =19 4

n 2 % n
1
Y (LI A b, (2.12)
(z 7L ))) 2

=17 =1

Proof Let T(x) = x”, x € [y1,¥2], then T"(x) = p(p — )x”"2 > 0 and |T"|"(x) = p(p — 1)(p —
2)(p — 3)x7~* > 0. This shows that T and |T”| are convex functions, therefore, using (2.1)

_4
for T(x) =&, u; = b7 and s; = a;b, * , we derive

<<Zl“p) (Z b?)p_l _ (Z . bi)”),%

po-DWA -y (1 & 108 Y
S( 6(]/2—7/1) Zn quﬂjbi - Zn bl Zﬂzbl

i=1%i =1 =1 j=1
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“D(py? -yt 1 -1
=D = ] ><Z” oY

2()/2—)/1) =170 =1

2 1

1 n p n q

N\ = Zaibl) )) > bl (2.13)
<Zi-1 bi i=1 i=1

By utilizing the inequality x* — y* < (x — )%, 0 <y <x, o € [0,1] for x = (Z:’zlcf?) X

(L by y = (L aibiy and « = 1, we obtain

1 1
(Z af) p <Z blq) | ) Zaibi
i=1 i=1 i=1

Now using (2.14) in (2.13), we get (2.12). a

3 Applications in information theory

Definition 3.1 (Csiszdr f-divergence) Let [y1,y2] C R and f: [y1, 2] — R be a function,
then, forr=(ry,...,7,) e R” and w = (wy,...,w,) € R” such that ;—’l elyLyl (i=1,...,n),
the Csiszar f-divergence functional is defined as [17, 25]

D, (r,w) = Z wf(%)

i=1

Theorem 3.2 Let f € C*[yy, y»] be a function such that |f"| is convex and r = (r1,...,r,) €
R", w = (wy,...,w,) € R” such that %, vrv_l, €y, ymlfori=1,...,n, then

ot (E5)
Do Wi D Wi

=l (1 Z " ( IRy )3
6(7/2 - Vl) Zi:l Wi W‘2 Zi:l wi

Dc(r: w) _f<

=1 i
1 _ 1 1 n 2 n y 2
L "= nlf ()l k ZF_L ~ ( Zﬁzlr ) ' 3.1)
202 -71) Wi Wi \ i Wi
Proof The result (3.1) can easily be deduced from (2.1) by choosing T =f, s; = ‘:,—"l_, u; =
Wi D

n R4
i=1 Wi

Definition 3.3 (Rényi divergence) For two positive probability distributions r = (ry,...,
r4), W = (W1,...,w,) and a nonnegative real number u such that u # 1, the Rényi divergence
is defined as [17, 25]

1 n
D,(r,w) = log (Z rf‘w}“).
i-1

u—1
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Corollary 3.4 Let [y1,y2] S R*. Also letr = (r1,...,7,), W = (W1,...,w,) be positive proba-
bility distributions and p > 1 such that ), wi(:L)H, (%)“‘1 €y, ylfori=1,...,n. Then

1 « i\
Dre ) - il —
(r,w) M_IZr og(W)

i=1 ‘

1+72 4 i\ . 1 ’
i wo 1-p
<— E ril — - E riw;
6(1 - I‘L)ylzyzz i=1 l<wi) ( i=1 ! ! )
2 2 n 2(u-1)
Y{ tVivat+ Vs (Vi) M 1#
+ = E ri| — E r; . (3.2)
2Au =Dyt (z‘l A\wi ( ) )

Proof Let T(x) = =5 logx, x € [y1, 2], then T"(x) = =5 > 0 and |T”|"(x) =
0. This shows that T and |T”| are convex functlons, therefore using (2.1) for T(x)

(u— 1
—ﬁ logx, u; =r;and s; = (‘:—"i)"‘l, we derive (3.2). O

Definition 3.5 (Shannon entropy) For a positive probability distribution w = (w1, ..., w,),
the Shannon entropy (information divergence) is defined as [17, 25]

E,(w)=- Z w; log w;.
i=1

Corollary 3.6 Let [y1, 2] CR* and w = (wy,...,w,) be a positive probability distribution
such that WL €lyuylfori=1,...,n. Then

2 2 n n
Vit Viva + V. 1 Y1ty 1
IOng—Es(W)S%(E ;—Vlz)— 12 22<E ﬁ—}’ls). (33)
l

2y17; i1 6yivs \‘o7 Wi

Proof Let f(x) = —logx, x € [y1,¥2], then f”(x) = é >0and |[f""(x) = x% > 0. This shows
that f and |f”| are convex functions, therefore using (3.1) for f(x) = —logx and (1, ..., 7,) =
(1,...,1), we get (3.3). O

Definition 3.7 (Kullback-Leibler divergence) For two positive probability distributions
r=(ry,...,7,) and w = (w1, ..., w,), the Kullback-Leibler divergence is defined as [17, 25]

Dy(r,w Z 7 log —

Corollary 3.8 Let [y1,y2] CR* andr = (ry,...,1,), W = (W1,...,w,) be positive probability
distributions such that % €lyLylfori=1,...,n. Then

Dy(r,w) < — Nty
2y1y2

r? 1 s
Z; —1> (ZW—’Z —1>. (3.4)

i=1

Proof Let f(x) = xlogx, x € [y1,y»], then f”(x) = }C >0 and |[f"|"(x) = % > 0. This shows
that f and |f”| are convex functions, therefore using (3.1) for f(x) = xlogx, we get (3.4). O

Page 7 of 11
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Definition 3.9 (x2-divergence) Letr = (r1,...,7,), W = (w1,...,w,) be positive probability
distributions, then y2-divergence is defined as [25]:
n 2
W
D,2(r,w) = Z %

i=1 g

Corollary 3.10 If [y1,2] SR and r = (r1,...,1y), W = (W1,...,W,) are two positive prob-
ability distributions such that % €yl fori=1,...,n, then

Dya(r,w) < (Z ;—2 - 1). (3.5)
=1 !

Proof Let f(x) = (x — 1)%, x € [y1, o), then f”(x) = 2> 0 and |f”'|"(x) = 0. This shows that f
and |f”'| are convex functions, therefore using (3.1) for f(x) = (x — 1), we obtain (3.5). [

Definition 3.11 (Bhattacharyya coefficient) Bhattacharyya coefficient for two positive
probability distributions r = (ry,...,r,) and w = (wy,...,w,,) is defined by [25]

n
Cp(r,w) = Z JTriw;.
i=1

The Bhattacharyya distance is given by D, (r, w) = —log Cy(r, w).

Corollary 3.12 Let [y1,y2] SR andr = (ry,...,1,), w = (w1,..., w,) be two positive prob-
ability distributions such that % €lyuylfori=1,...,n. Then

1-Cy(r,w)
N R T B
S (et M Z——l T N D ) (3.6)
§ W'Z % % Wi
24y vy (ya = 1) 8 vy (2 =) \i=l
Proof Let f(x) = —/%, x € [y1, 2], then f”(x) = =5 > 0 and |f”|"(x) = —= > 0. This shows

that f and |[f”| are convex functions, therefore usmg (3 1) for f(x) = ﬁ, we obtain (3.6). O

Definition 3.13 (Hellinger distance) For two positive probability distributions r = (r1, ...,
74), W = (wy,...,w,) the Hellinger distance is defined as [25]

Dhew) = 3 Y (-
i=1

Corollary 3.14 If[y1,y2] SR andr = (ry,...,ry), w = (wy,...,w,) are positive probability
distributions such that % €lyuylfori=1,...,n. Then

Dﬁ(r, w)

J/S—V% o V%—V
2 i 2 1
<—(§ _lz_ )+#

3 3 3
24y7 vy (o — 1) 8v1’ vy (2 — 1)

(3.7)

[ 1531
P
v

I
|
—_
\/
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Proof Letf(x) = 1(1 V%)%, x € [y1,¥2], then f"(x) = =5 > 0 and [f"|"(x) = i > 0. This
shows that f and |f”| are convex functions, therefore usmg (3.1) for f(x) = % 1 — /%)%, we
deduce (3.7). O

Definition 3.15 (Triangular discrimination) For two positive probability distributions r =

(r1,...,7), W= (wq,...,w,), the triangular discrimination is defined as [25]

n L '2
DA(LW):ZM.

ri+ Wi
=1t :

Corollary 3.16 Let [y, yz] CRYandr=(r,...,ry), W= (wi,...,w,) be positive probabil-
ity distributions such that € [y y2l fori=1,...,n. Then

U+ 1P -+ 1P (&7
Dp(r,w) < 30y + 1)3(y2 + 1)3(V2 -y (Z _12 ) 1)

4+ 1P -non+ 1) (-
(n+ 1D+ 13- n) ( 1)' e

Proof Let f(x) = (x+l , % € [y1, 2], then f"(x) = (x+l e > 0 and |f"|"(x) = W > 0. This

shows that f and |f”| are convex functions, therefore using (3.1) for f(x) = e 1)) , we get

(3.8). g

4 Conclusion

A growing interest in applying the notion of convexity to various fields of science has been
recorded, in the last few decades. Convex functions have some rational properties such as
differentiability, monotonicity and continuity, which help in their applications. The Jensen
inequality generalizes and improves the notion of classical convexity. This inequality and
its extensions, improvements, refinements and converses etc and bounds for its gap re-
solve some difficulties in the modeling of some physical phenomena. For such a purpose,
in this paper we have derived a new bound for the Jensen gap for functions whose abso-
lute value of second derivative are convex. Based on this bound, we have deduced a new
converse of the Holder inequality as well. Finally, we have demonstrated new bounds for
the Csiszar, Rényi, x 2 and Kullback-Leibler divergences etc. in information theory as ap-
plications of the main result. The idea and technique used in this paper may be extended
to other inequalities to reduce the number of difficulties in the applied literature of math-

ematical inequalities.
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