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Abstract
This paper is concerned with the existence of solutions of an inverse discrete problem
with sign-changing nonlinearity. This kind of problems includes, as a particular case,
nth order difference equations coupled with suitable conditions on the boundary of
the interval of definition. It would be valid for the case in which the related Green’s
function is positive on a subset of its rectangle of definition.
The existence results follow from spectral theory, as an application of the

Krein–Rutman theorem and by means of degree theory.
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1 Introduction
During the last years, many authors discussed the existence of solutions for boundary
value problems by using various topological methods. However, there are just a few results
with sign-changing nonlinearities. Usually, in order to obtain positive solutions of semi-
positone problems for ordinary differential or difference equations, by using fixed point
methods, the nonlinearity terms need to be bounded from below and ultimately positive.
For example, in [2] the authors studied the following problem:

⎧
⎨

⎩

(p(t)u′)′ + λg(t, u) = 0, t ∈ (a, b),

γ1u(a) – γ2p(a)u′(a) = 0, γ3u(b) – γ4p(b)u′(b) = 0,

where g : [a, b] ×R
+ →R is continuous, bounded from below (i.e., g(t, z) + M > 0 for some

M > 0) and limz→∞ f (t,z)
z = ∞ uniformly for t ∈ [α,β] ⊂ (a, b). Later, Bai and Xu [4] dis-

cussed its discrete analog and it also required boundedness from below on the nonlinear-
ity term, as well as a superlinear condition at ∞. We also refer the reader to [9, 11, 12],
where the authors used topological methods to deduce, under a similar hypothesis, the
existence results to a discrete fractional semipositone boundary value problem.

By using Guo–Krasnosel’skii’s fixed point theorem, Bai, Henderson, and Zeng [3] ob-
tained the existence of positive solutions of the discrete Neumann boundary value prob-
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lem
⎧
⎨

⎩

–�2u(k – 1) = f (k, u(k)), k ∈ [1, T]Z,

0 = �u(0) = �u(T),

where the nonlinearity term f : [1, T]Z ×R
+ →R is a continuous sign-changing function,

for which there exist a function h : [1, T]Z → R
+, with h �≡ 0 on [1, T]Z, and a constant

L > 0 such that f (t, z) + Lz + h(t) ≥ 0, (t, z) ∈ [1, T]Z ×R
+.

In [17], using Krein–Rutman theorem, Zhang studied the fourth order singular bound-
ary value problem

⎧
⎨

⎩

u(4)(t) = h(t)f (u(t)), t ∈ (0, 1),

0 = u(0) = u(1) = u′(0) = u′(1),

under some suitable conditions concerning the first characteristic value corresponding to
the relevant linear operator. Here, h is allowed to be singular at both t = 0 and t = 1. In
particular, f : R → R may be a sign-changing and unbounded function from below, and
the existence of a control from below function related to f is not assumed. The existence
results of nontrivial solutions and positive-negative solutions are given by the topological
degree theory and the fixed point index theory, respectively.

A similar idea can be found in a very recent paper [18], where under suitable conditions
concerning the first eigenvalue corresponding to the relevant linear problem, the authors
established the existence of nontrivial solutions for boundary value problems of the fol-
lowing fourth order difference equation with a sign-changing nonlinearity:

⎧
⎨

⎩

�4u(k – 2) = f (k, u(k)), k ∈ [2, T]Z,

0 = u(1) = u(T + 1) = �2u(0) = �2u(T),
(1)

where T ≥ 5 is an integer and f : [2, T]Z × R → R is a continuous function. The results
are based on the topological degree theory and generalize some previous results obtained
for this problem. It is important to point out that our results generalize some ones given
in that reference, in fact, as we will see in Example 9, Theorems 3.2 and 3.1 in [18] are
particular cases (respectively) of Theorems 5 and 6 in this work.

Our aim is to extend these results as we study the following nth order boundary value
problem:

(P)

⎧
⎨

⎩

u(k + n) +
∑n–1

i=0 pi(k)u(k + i) = f (k, u(k)), k ∈ I ≡ [a, b]Z,

Liu = 0, i = 1, . . . , n.

Here, f : I ×R→ R is a continuous function, b – a ≥ 2, and

Li : Rb–a+1 →R, i = 1, . . . , n,

are linear operators, for which the following conditions for the related Green’s function
G(k, s) are fulfilled:



Cabada and Dimitrov Advances in Difference Equations        (2019) 2019:450 Page 3 of 16

(G1) G(k, s) ≥ 0 for all k ∈ I and s ∈ I .
(G2) G(k, s) is symmetric for all k ∈ I and s ∈ I , i.e., G(k, s) = G(s, k).
(G3) There is k0 ∈ I such that G(k0, s) > 0 for all s ∈ I .

Remark 1 Notice that condition (G2) implies that all the eigenvalues of the matrix
(G(k, s))k,s∈I are real and that its associated Jordan matrix is diagonal. As a consequence,
all its eigenvalues are zero if and only if G is identically zero which, from (G3), is not true.
So we deduce that the spectral radius is strictly positive.

There are several papers in the literature, where the related Green’s function of the stud-
ied difference equation verifies previous properties for a suitable value of parameters, see,
for instance, [1, 6, 7] (and in [5] for order four), where the nth order Problem (P) with
periodic conditions, i.e.,

Lix := x(i – 1) – x(N + i – 1), i = 1, . . . , n,

has been studied.
The Neumann conditions were considered in [8].
So, with this idea in mind, we study a more general problem that includes the difference

equations as particular cases. That is, we consider the general inverse discrete problem

u(k) :=
b∑

s=a
G(k, s)f

(
s, u(s)

)
, k ∈ I, (2)

where G satisfies conditions (G1)–(G3), but it is not necessarily the Green’s function of a
related linear operator.

To deduce the existence results of equation (2), we will work with spectral and degree
theory. To this end, define the space E as the collection of all maps from I to R equipped
with the norm ‖u‖ = maxk∈I |u(k)|. Clearly, E is a Banach space.

Now, we recall some definitions that will be useful in the sequel. Let X be a Banach space.
We say that K ⊂ X is a cone if K is a closed convex set such that λK ⊂ K for all λ ≥ 0 and
K ∩ (–K) = {0}. If K – K = X, i.e., the set {u – v | u, v ∈ K} is dense in X, then K is called a
total cone. If K –K = X, K is called a reproducing cone. If a cone has nonempty interior K0,
then it is called a solid cone. Any solid cone has the property that K – K = X; in particular,
it is total.

Let us recall Krein–Rutman theorem.

Theorem 2 (Krein–Rutman, [10, Theorem 19.2]) Let X be a Banach space, K ⊂ X be a
total cone, and T : X → X be a compact linear operator that is positive (i.e., T(K) ⊂ K ) with
positive spectral radius r(T). Then r(T) is an eigenvalue with an eigenvector u ∈ K\{0}, i.e.,
Tu = r(T)u.

Now we introduce two useful results using the properties of the topological degree,
which can be found in [13].
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Lemma 3 Let X be a Banach space and Ω be a bounded open set in X. Suppose that A :
Ω → X is a continuous compact operator. If there exists u0 ∈ X\{0} such that

u – Au �= μu0 for all u ∈ ∂Ω and μ ≥ 0,

then the topological degree deg(I – A,Ω , 0) = 0.

Lemma 4 Let X be a Banach space and Ω be a bounded open set in X with 0 ∈ Ω . Suppose
that A : Ω → X is a continuous compact operator. If

Au �= μu for all u ∈ ∂Ω and μ ≥ 1,

then the topological degree deg(I – A,Ω , 0) = 1.

The paper is scheduled as follows: In the next section we deduce the main properties
of the kernel G. Section 3 is devoted to nonlinear problem (2). In it, under suitable as-
sumptions on the nonlinearity f , which is allowed to change its sign, related to the first
eigenvalue of the linear problem, the existence of a nontrivial solution is proved. The pa-
per ends with some examples where the applicability of the results is pointed out.

2 Kernel properties
In this section we present some additional assumptions on the kernel G, and we deduce
some suitable properties.

Define the cone K on E as follows:

K :=
{

u ∈ E : u(k) ≥ 0, k ∈ I
}

.

To the end of the paper, let Bρ = {u ∈ E : ‖u‖ < ρ} for ρ > 0, ∂Bρ = {u ∈ E : ‖u‖ = ρ}, and
Bρ = {u ∈ E : ‖u‖ ≤ ρ}.

Define the operator T : E → E as follows:

Tu(k) :=
b∑

s=a
G(k, s)f

(
s, u(s)

)
, k ∈ I. (3)

By definition, we have that the solutions of problem (2) coincide with the fixed points of
operator T .

Now, define the operator

(Lu)(k) :=
b∑

s=a
G(k, s)u(s), k ∈ I. (4)

From Remark 1, we have that r(L), the spectral radius of operator L, is such that r(L) > 0.
Thus, since the compactness and the continuity properties are equivalent on finite dimen-
sional spaces, we can apply Krein–Rutman theorem to operator L. So, it follows that

b∑

s=a
G(k, s)v(s) = r(L)v(k), (5)

where v(k) ≥ 0 on I , v �≡ 0 on I , is the corresponding eigenfunction.
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Notice that if v(k0) = 0, from condition (G3) we arrive at the following contradiction:

0 <
b∑

s=a
G(k0, s)v(s) = r(L)v(k0) = 0.

Moreover, since G is symmetric, we have

b∑

k=a

( b∑

s=a
G(k, s)u(s)

)

v(k) =
b∑

k=a

( b∑

s=a
G(k, s)v(s)

)

u(k). (6)

In the sequel, we introduce the following functions:

l1(k) := min
σ∈I,s∈I
G(σ ,s) �=0

G(k, s)
G(σ , s)

, k ∈ I, (7)

and

ϕ(s) := max
σ∈I

{
G(σ , s)

}
, s ∈ I. (8)

It is clear, from (G1), that l1 ≥ 0 on I and, by condition (G3), that l1(k0) > 0. From (G1)
and (G3) we have that ϕ(s) > 0 for all s ∈ I . Moreover, the following inequalities hold:

l1(k)G(σ , s) ≤ G(k, s) ≤ ϕ(s) for all k, s,σ ∈ I. (9)

3 Nonlinear problem
This section is devoted to proving the existence of a nontrivial solution of Problem (2)
which, as we have noted in previous sections, is equivalent to finding a fixed point of op-
erator T defined on (3). The proofs follow similar arguments to the ones developed by
Zhang, O’Regan, and Fu in [18] for equation (1).

So, we present some assumptions about the nonlinearity f :
(H0) f : I ×R →R is a continuous function on I ×R.
(H1) limu→0+ inf f (k,u)

u > 1
r(L) , limu→0– sup f (k,u)

u < 1
r(L) for all k ∈ I .

(H2) lim|u|→∞ sup |f (k,u)|
|u| < 1

r(L) for all k ∈ I .
Our first main result is as follows.

Theorem 5 Suppose that (H0)–(H2) hold. Then Problem (2) has at least one nontrivial
solution.

Proof From (H1) there exist ε0 ∈ (0, 1
r(L) ) and r > 0 such that

f (k, u) ≥
(

1
r(L)

+ ε0

)

u for all u ∈ [0, r] and k ∈ I

and

f (k, u) ≥
(

1
r(L)

– ε0

)

u for all u ∈ [–r, 0] and k ∈ I.
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Using the above two inequalities, one can obtain that

f (k, u) ≥
(

1
r(L)

+ ε0

)

u for all u ∈ [–r, r] and k ∈ I (10)

and

f (k, u) ≥
(

1
r(L)

– ε0

)

u for all u ∈ [–r, r] and k ∈ I. (11)

Now, taking into account that

δ :=
b∑

k=a

l1(k)v(k) ≥ l1(k0)v(k0) > 0,

we introduce the following cone:

K1 :=

{

u ∈ K
∣
∣
∣

b∑

k=a

u(k)v(k) ≥ δ‖u‖
}

.

We claim that L(K) ⊂ K1. Indeed, using the definition of L, for all u ∈ K , Lu ≥ 0 on I . So,
for any σ ∈ I , we have that

b∑

k=a

(Lu)(k)v(k) =
b∑

k=a

( b∑

s=a
G(k, s)u(s)

)

v(k)

≥
b∑

k=a

(

l1(k)
b∑

s=a
G(σ , s)u(s)

)

v(k)

=

( b∑

k=a

l1(k)v(k)

)

(Lu)(σ ).

Thus,

b∑

k=a

(Lu)(k)v(k) ≥ δ‖Lu‖.

Notice that, since v = Lv
r(L) it follows that v ∈ K1.

Now, we claim that u – Tu �= μv for all u ∈ ∂Br and μ ≥ 0. Assume, on the contrary, that
there exist u1 ∈ ∂Br and μ1 ≥ 0 such that

u1 – Tu1 = μ1v. (12)

Using (10) and (12), we have that

u1(k) ≥
(

1
r(L)

+ ε0

) b∑

s=a
G(k, s)u1(s) =

(
1

r(L)
+ ε0

)

Lu1(k), k ∈ I. (13)
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Multiplying both sides of the above inequality by v(k), summing from a to b, and using
(5) and (6), we obtain that

b∑

k=a

u1(k)v(k) ≥
(

1
r(L)

+ ε0

) b∑

k=a

( b∑

s=a
G(k, s)u1(s)

)

v(k)

=
(

1
r(L)

+ ε0

) b∑

k=a

( b∑

s=a
G(k, s)v(s)

)

u1(k)

=
(
1 + ε0r(L)

)
b∑

k=a

u1(k)v(k),

whence
∑b

k=a u1(k)v(k) ≤ 0.
On the other hand, from (12) we have, for any k ∈ I ,

u1(k) –
(

1
r(L)

– ε0

)

(Lu1)(k)

= (Tu1)(k) –
(

1
r(L)

– ε0

)

(Lu1)(k) + μ1v(k)

=
b∑

s=a
G(k, s)f

(
s, u1(s)

)
–

(
1

r(L)
– ε0

) b∑

s=a
G(k, s)u1(s) + μ1v(k)

=
b∑

s=a
G(k, s)

(

f
(
s, u1(s)

)
–

(
1

r(L)
– ε0

)

u1(s)
)

+ μ1v(k).

Now, using the latter together with L(K) ⊂ K1, v ∈ K1, and (11), gives us that u1 – ( 1
r(L) –

ε0)Lu1 ∈ K1.
Hence, from (5) and (6), we deduce

∥
∥
∥
∥u1 –

(
1

r(L)
– ε0

)

Lu1

∥
∥
∥
∥ ≤ 1

δ

b∑

k=a

(

u1(k) –
(

1
r(L)

– ε0

)

(Lu1)(k)
)

v(k)

=
1
δ

( b∑

k=a

u1(k)v(k) –
(

1
r(L)

– ε0

) b∑

k=a

r(L)u1(k)v(k)

)

=
r(L)ε0

δ

b∑

k=a

u1(k)v(k)

≤ 0.

The above inequality implies that

u1 =
(

1
r(L)

– ε0

)

Lu1,

which, together with ( 1
r(L) – ε0)–1 > r(L), implies that u1 = 0, which contradicts the fact that

u1 ∈ ∂Br .
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Thus, (12) is false and, from Lemma 3, it follows that

deg(I – T , Br , 0) = 0.

From (H2) there exist ε1 ∈ (0, 1
r(L) ) and c1 > 0 such that

∣
∣f (k, u)

∣
∣ ≤

(
1

r(L)
– ε1

)

|u| + c1 for all k ∈ I and u ∈R. (14)

Let

X :=
{

u ∈ E | u = λTu,λ ∈ [0, 1]
}

.

Now, we will show that X is bounded in E.
To this end, as a direct consequence of [16, (57d)], we have that for any 0 < α < 1

r(L) , its
corresponding Neumann series converges in the operator norm:

(I – αL)–1 =
∞∑

n=0

(αL)n.

In addition, since it is a sum of positive operators, we have that (I – αL)–1 is a positive
operator on E.

On the other hand, using (14), we have that the following inequalities are fulfilled for all
u ∈ X:

∣
∣u(k)

∣
∣ = λ

∣
∣(Tu)(k)

∣
∣ ≤

b∑

s=a
G(k, s)

∣
∣f

(
s, u(s)

)∣
∣

≤
b∑

s=a
G(k, s)

((
1

r(L)
– ε1

)
∣
∣u(s)

∣
∣ + c1

)

.

Clearly, the previous inequality is of the form |u| ≤ αL|u| + v, with 0 < α = 1
r(L) – ε1 < 1

r(L)
and v =

∑b
s=a G(k, s)c1.

As a consequence, from the positiveness of (I – αL)–1 on E, we deduce that |u| ≤ (I –
αL)–1v, u is bounded, i.e., X is bounded.

Now, one can choose R > max{supu∈X ‖u‖, r} for r defined by (10). Then, λTu �= u for all
u ∈ ∂BR and λ ∈ [0, 1]. From Lemma 4 it follows that deg(I – T , BR, 0) = 1.

Using the latter one, together with deg(I – T , Br , 0) = 0, gives us

deg(I – T , BR\Br , 0) = deg(I – T , BR, 0) – deg(I – T , Br , 0) = 1.

Therefore, operator T has at least one fixed point in BR\Br , which is a nontrivial solution
of (2). �

Before formulating our second main result, let us introduce the following conditions
about the nonlinearity:
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(H3) There exist two constants a1 > 0, b1 > 0 and a function Φ ∈ C(R,R+) such that

f (k, u) ≥ –a1 – b1Φ(u) for all u ∈ R and k ∈ I.

(H4) lim|u|→+∞ Φ(u)
|u| = 0.

(H5) lim|u|→+∞ inf f (k,u)
|u| > 1

r(L) for all k ∈ I .

(H6) lim|u|→0 sup |f (k,u)|
|u| < 1

r(L) for all k ∈ I .
The result is the following.

Theorem 6 Suppose that (H0) and (H3)–(H6) hold. Then Problem (2) has at least one
nontrivial solution.

Proof From (H5) there exist ε2 > 0 and N1 > 0 such that

f (k, u) ≥
(

1
r(L)

+ ε2

)

|u| for all k ∈ I and |u| > N1.

For any given ε2 > b1ε3, using (H4), there exists N2 > N1 such that

Φ(u) ≤ ε3|u| for all u with |u| > N2.

From (H3), since a1 > 0, b1 > 0 and Φ is a nonnegative function, we have

f (k, u) ≥
(

1
r(L)

+ ε2

)

|u| – a1 – b1Φ(u) ≥
(

1
r(L)

+ ε2

)

|u| – a1 – b1ε3|u|

for all u with |u| > N2.
Let us denote c2 = ( 1

r(L) + ε2 – b1ε3)N2 + maxk∈I,|u|≤N2 |f (k, u)|, c3 = c2 + a1, and Φ∗ =
max|u|≤N2 Φ(u). Then

f (k, u) ≥
(

1
r(L)

+ ε2 – b1ε3

)

|u| – c3 for all k ∈ I and u ∈R.

Note that ε3 can be chosen arbitrarily small, and let us set

R1 =
(c3 + b1Φ

∗) maxk∈I l1(k)
∑b

s=a ϕ(s)
1 – b1ε3 maxk∈I l1(k)

∑b
s=a ϕ(s)

,

R2 =
(c3 + b1Φ

∗)((ε2 – b1ε3)(1 + maxk∈I l1(k)) + 1
r(L) )

∑b
s=a ϕ(s)

(ε2 – b1ε3)(1 – b1ε3 maxk∈I l1(k)
∑b

s=a ϕ(s)) – ( 1
r(L) + ε2 – b1ε3)b1ε3

∑b
s=a ϕ(s)

,

and

R > max{R1, R2}.

Now, we will prove that

u – Tu �= μv for every u ∈ ∂BR and μ > 0. (15)
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Notice that, if the equality holds for μ = 0, we have proved the existence of the fixed
point of T .

Define the cone K2 as follows:

K2 :=
{

u ∈ K : u(k) ≥ l1(k)‖u‖, k ∈ I
}

.

Using (9), we have that L(K) ⊂ K2. Moreover, v = 1
r(L) Lv ∈ K2.

Let ũ(k) =
∑b

s=a G(k, s)(a1 + b1Φ(u2) + c2). Then, for all k ∈ I , the following inequalities
hold:

ũ(k) ≤
b∑

s=a
G(k, s)

(
c3 + b1ε3|u2| + b1Φ

∗) ≤ l1(k)
(
c3 + b1ε3R + b1Φ

∗)
b∑

s=a
ϕ(s). (16)

Therefore,

‖̃u‖ ≤ max
k∈I

l1(k)
(
c3 + b1ε3R + b1Φ

∗)
b∑

s=a
ϕ(s). (17)

Note that from the definition of R, since R > R1, we have ‖̃u‖ < R.
Assume, on the contrary, that there exist u2 ∈ ∂BR and μ2 > 0 such that

u2 – Tu2 = μ2v. (18)

From

u2(k) + ũ(k) = ũ(k) + (Tu2)(k) + μ2v(k)

=
b∑

s=a
G(k, s)

(
f
(
s, u2(s)

)
+ b1Φ

(
u2(s)

)
+ a1 + c2

)
+ μ2v(k),

using (H3), L(K) ⊂ K2, and v ∈ K2, we deduce that u2 + ũ ∈ K2.
As a result, we obtain that, for all k ∈ I ,

ũ(k) + (Tu2)(k) =
b∑

s=a
G(k, s)

(
f
(
s, u2(s)

)
+ b1Φ

(
u2(s)

)
+ c3

)

≥
b∑

s=a
G(k, s)

((
1

r(L)
+ ε2 – b1ε3

)
∣
∣u2(s)

∣
∣ – c3 + b1Φ

(
u2(s)

)
+ c3

)

≥
(

1
r(L)

+ ε2 – b1ε3

) b∑

s=a
G(k, s)

∣
∣u2(s)

∣
∣

≥
(

1
r(L)

+ ε2 – b1ε3

) b∑

s=a
G(k, s)u2(s). (19)

Now, we claim that

(ε2 – b1ε3)
b∑

s=a
G(k, s)u2(s) ≥ 1

r(L)

b∑

s=a
G(k, s)̃u(s), (20)
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which is equivalent to

(ε2 – b1ε3)
b∑

s=a
G(k, s)

(
u2(s) + ũ(s)

) ≥
(

1
r(L)

+ ε2 – b1ε3

) b∑

s=a
G(k, s)̃u(s).

Since u2 + ũ ∈ K2, we have that u2(k) + ũ(k) ≥ l1(k)‖u2 + ũ‖ ≥ l1(k)(‖u2‖ – ‖̃u‖). Then

(ε2 – b1ε3)
b∑

s=a
G(k, s)

(
u2(s) + ũ(s)

) ≥ (ε2 – b1ε3)
(
R – ‖̃u‖)

b∑

s=a
G(k, s)l1(s).

From (17) and from the definition of R, since R > R2, we deduce

(ε2 – b1ε3)
(
R – ‖̃u‖) ≥ (ε2 – b1ε3)

(

R – max
k∈I

l1(k)
(
c3 + b1ε3R + b1Φ

∗)
b∑

s=a
ϕ(s)

)

≥
(

1
r(L)

+ ε2 – b1ε3

)
(
c3 + b1ε3R + b1Φ

∗)
b∑

s=a
ϕ(s).

Finally, from (16) we obtain

(ε2 – b1ε3)
b∑

s=a
G(k, s)

(
u2(s) + ũ(s)

)

≥ (ε2 – b1ε3)
(
R – ‖̃u‖)

b∑

s=a
G(k, s)l1(s)

≥
(

1
r(L)

+ ε2 – b1ε3

)
(
c3 + b1ε3R + b1Φ

∗)
b∑

s=a
G(k, s)l1(s)

b∑

j=a

ϕ(j)

≥
(

1
r(L)

+ ε2 – b1ε3

) b∑

s=a
G(k, s)̃u(s),

which proves our claim.
Now, using (20) it follows that

(
1

r(L)
+ ε2 – bε3

) b∑

s=a
G(k, s)u2(s) =

1
r(L)

b∑

s=a
G(k, s)

(
u2(s) + ũ(s)

)

–
1

r(L)

b∑

s=a
G(k, s)̃u(s)

+ (ε2 – b1ε3)
b∑

s=a
G(k, s)u2(s)

≥ 1
r(L)

b∑

s=a
G(k, s)

(
u2(s) + ũ(s)

)
. (21)
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From (19) and (21), we deduce

(Tu2)(k) + ũ(k) ≥ 1
r(L)

b∑

s=a
G(k, s)

(
u2(s) + ũ(s)

)
=

(L(u2 + ũ))(s)
r(L)

.

Then (18) gives us

u2 + ũ = Tu2 + ũ + μ2v ≥ L(u2 + ũ)
r(L)

+ μ2v ≥ μ2v.

Define μ∗ := sup{μ > 0 | u2 + ũ ≥ μv}. Note that μ2 ∈ {μ > 0 | u2 + ũ ≥ μv}. Thus μ∗ ≥ μ2

and u2 + ũ ≥ μ∗v. Using (5) we deduce that

L(u2 + ũ)
r(L)

≥ μ∗

r(L)
Lv = μ∗v

whence

u2 + ũ ≥ (
μ2 + μ∗)v,

which contradicts the definition of μ∗.
Then (15) holds and Lemma 3 gives us that deg(I – T , BR, 0) = 0.
On the other hand, from (H6), there exist ε4 ∈ (0, 1

r(L) ) and r ∈ (0, R) such that

∣
∣f (k, u)

∣
∣ ≤

(
1

r(L)
– ε4

)

|u| for all k ∈ I and |u| < r.

We will prove that

Tu �= μu for every u ∈ ∂Br and μ ≥ 1. (22)

Assume on the contrary that there exist u3 ∈ Br and μ3 ≥ 1 such that Tu3 = μ3u3. Then

∣
∣u3(k)

∣
∣ =

1
μ3

∣
∣(Tu3)(k)

∣
∣ ≤ ∣

∣(Tu3)(k)
∣
∣ =

∣
∣
∣
∣
∣

b∑

s=a
G(k, s)f

(
s, u3(s)

)
∣
∣
∣
∣
∣

≤
b∑

s=a
G(k, s)

∣
∣f

(
s, u3(s)

)∣
∣ ≤

(
1

r(L)
– ε4

) b∑

s=a
G(k, s)

∣
∣u3(s)

∣
∣,

and (I – ( 1
r(L) – ε4)L)|u3| ≤ 0.

So, arguing as in the proof of Theorem 5, with α = 1
r(L) – ε4, we deduce that u3(k) ≡ 0, in

contradiction with u3 ∈ ∂Br . Hence (22) holds and from Lemma 4 we deduce

deg(I – T , Br , 0) = 1.

Thus,

deg(I – T , BR\Br , 0) = deg(I – T , BR, 0) – deg(I – T , Br , 0) = –1.
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Therefore, operator T has at least one fixed point in BR\Br , which is a nontrivial solution
of (2). �

4 Examples
In this section we introduce a few examples where the applicability of the existence results
proved in the previous section is pointed out.

Example 7 Consider the second order problem with Dirichlet conditions

⎧
⎨

⎩

–�2u(k – 1) = f (k, u(k)), k ∈ J1 := {1, . . . , N – 1},
u(0) = 0 = u(N).

We have that this problem is equivalent to the operator equation

Tu(k) =
N–1∑

s=1

G(k, s)f
(
s, u(s)

)
= u(k) for k = {0, 1, . . . , N}

with

G(k, s) =
1
N

⎧
⎨

⎩

(N – s)k, 0 ≤ k ≤ s ≤ N – 1,

(N – k)s, 1 ≤ s ≤ k ≤ N .

Clearly, G(0, s) = 0 = G(N , s) for all s ∈ J1 and G(k, s) = G(s, k) > 0 for all (k, s) ∈ J1 × J1.
If we restrict the equation to the interval J1 and set the operator

T̃u(k) =
N–1∑

s=1

G(k, s)f
(
s, u(s)

)
for k ∈ J1,

we have that the Green’s function G(k, s) satisfies conditions (G1)–(G3) on J1 × J1.
Moreover, the smallest eigenvalue of the eigenproblem

⎧
⎨

⎩

–�2u(k – 1) = λu(k), k ∈ J1,

u(0) = 0 = u(N)

is λ1 = 4 sin2 π
2N and r1(L) = 1

λ1
= 1

4 sin2 π
2N

.
Similar results for the same second order problem with periodic conditions u(0) = u(N),

u(1) = u(N + 1) or with Neumann conditions u(0) = u(N), �u(0) = �u(N) might be ob-
tained.

Example 8 Now, consider the fourth order Lidstone problem

⎧
⎨

⎩

�4u(k – 2) + �2u(k – 1) = f (k, u(k)), k ∈ J2 := {2, . . . , N + 1},
u(1) = �2u(0) = u(N + 1) = �2u(N) = 0.

It is shown in [14] that the corresponding Green’s function G(k, s) is strictly positive and
symmetric on J2 × J2 and it also satisfies conditions (G1)–(G3).
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One can compute that in this case

λ2 = 16 sin4 π

2N
+ 4 sin2 π

2N
,

whence

r2(L) =
1
λ2

=
1

16 sin4 π
2N + 4 sin2 π

2N
.

Example 9 Consider now the fourth order Lidstone problem

⎧
⎨

⎩

�4u(k – 2) = f (k, u(k)), k ∈ J3 := {2, . . . , N + 1},
u(1) = �2u(0) = u(N + 1) = �2u(N) = 0.

One can verify (see [15, 18]) that the corresponding Green’s function G(k, s) is strictly
positive and symmetric on J3 × J3 and it also satisfies conditions (G1)–(G3). Moreover,

r3(L) =
1

16 sin4 π
2N

.

As a direct consequence, we have that the enunciations of Theorems 5 and 6 for this
problem coincide, respectively, with Theorems 3.2 and 3.1 in [18].

Example 10 Consider the inverse difference equation

u(k) =
N–1∑

s=1

f
(
s, u(s)

)
for k ∈ J4 := {1, . . . , N – 1},

which corresponds to the kernel

G(k, s) = 1, k, s ∈ J4.

It is immediate to verify that the eigenvalues of the matrix function G(k, s) are N – 1
and 0. So r4(L) = N – 1.

Example 11 Let N = 101 and consider the inverse difference equation

u(k) =
100∑

s=1

(k + s)2f
(
s, u(s)

)
for k ∈ J5 := {1, . . . , 100},

which corresponds to the kernel

G(k, s) = (k + s)2, k, s ∈ J5.

By numerical approach, one may verify that the nonzero eigenvalues of G are given by
1.45456 × 106, –107,101, and 5940.08. In consequence,

r5(L) ≈ 1.45456 × 106.
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For any of the previous examples, we can take

f (t, x) = p
∣
∣
∣
∣sin x +

x3

x2 + 1

∣
∣
∣
∣ – tq

(
1 – e–x), (t, x) ∈ I ×R,

with p > 1
ri(L) > |p – tq| for i = 1, 2, 3, 4 and t ∈ I .

Since

lim|x|→0

|f (t, x)|
|x| = |p – tq| and lim|x|→∞

f (t, x)
|x| = p,

it is clear that conditions (H0) and (H3)–(H6) hold.
We notice that a necessary condition on p and q is

0 < q <
2

N – 1
p.

From Theorem 6 it follows that all of the considered examples have at least one nontrivial
solution.

Moreover, choose

f (t, x) =

⎧
⎨

⎩

tp(sin x + x3

x2+1 ) + q tanh x, x ≥ 0,

t(p(sin x + x3

x2+1 ) – q 2x–1
ln 2 ), x ≤ 0

with

1
ri(L)

– q < p <
1

ri(L)(N – 1)
.

Due to the fact that

lim
x→0+

f (t, x)
x

= tp + q, lim
x→0–

f (t, x)
x

= t(p – q), and lim|x|→∞
|f (t, x)|

|x| = tp,

we deduce that conditions (H0)–(H2) hold and, from Theorem 5, we have that all of the
considered examples have at least one nontrivial solution.
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