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Abstract
In this paper, we discuss a nonlinear fractional order boundary value problem with
nonlocal Erdélyi–Kober and generalized Riemann–Liouville type integral boundary
conditions. By using Mawhin continuation theorem, we investigate the existence of
solutions of this boundary value problem at resonance. It is shown that the boundary
value problem

cDqx(t) = f (t, x(t), x′(t)), t ∈ [0, T ], 1 < q ≤ 2,

x(0) = αIγ ,δ
η x(ζ ), x(T ) = βρ Ipx(ξ ),

has at least one solution under some suitable conditions, where α,β ∈ R, 0 < ζ ,ξ < T .

Keywords: Boundary value problem; Resonance; Integral conditions

1 Introduction
In this paper, we intend to discuss the following boundary value problem at resonance:

{
cDqx(t) = f (t, x(t), x′(t)), t ∈ [0, T],
x(0) = αIγ ,δ

η x(ζ ), x(T) = βρIpx(ξ ), 0 < ζ ,η ≤ T ,
(1)

where cDq is the Caputo fractional derivative of order 1 < q ≤ 2, Iγ ,δ
η is a Erdélyi–Kober

type integral of order δ > 0 with η > 0 and γ ∈ R, ρIp denotes the generalized Riemann–
Liouville type integral of order p > 0, ρ > 0, and α,β ∈R.

Boundary value problems at resonance have aroused people’s interest these days (see [5,
6, 8, 9, 14, 16, 17, 19–21, 25, 29–33, 35, 40, 41, 43]). For instance, in [17], Jiang and Qiu
studied the existence of solutions for the following (k, n – k) conjugate boundary value
problem at resonance:

(–1)n–ky(n)(t) = f
(
t, y(t), y′(t), . . . , y(n–1)(t)

)
, t ∈ [0, 1],
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y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k – 1, 0 ≤ j ≤ n – k – 2,

y(n–1)(1) =
m∑

i=1

αiy(n–1)(ξi),

where 1 ≤ k ≤ n – 1, 0 < ξ1 < ξ2 < · · · < ξm < 1. Integral boundary value problems have
also gained many people’s attention and have been applied to many fields, such as physics,
chemistry, and engineering, see [11, 13, 22, 29–31, 35]. Besides, the subject of fractional
differential equations has attracted much attention, see [1–5, 7, 10, 12, 15, 23, 24, 27,
28, 32–34, 36–39, 42]. For example, in [5], Zhang and Bai investigated the existence of
solutions for the following m-point boundary value problems:

Dα
0+ u(t) = f

(
t, u(t), Dα–1

0+ u(t)
)

+ e(t), t ∈ (0, 1),α ∈ (1, 2],

Iα
0+ u(t)

∣∣
t=0 = 0, Dα–1

0+ u(1) =
m–2∑
i=1

βiDα–1
0+ u(ηi)

by using the coincidence degree theory of Mawhin. Very recently, in [2], the authors con-
sidered boundary value problem (1) under the nonresonance condition v1v4 + v2v3 �= 0.
They established the existence and uniqueness results of BVP (1) by using the standard
fixed point theorems.

Inspired by the work above, in this paper, we intend to discuss the boundary value prob-
lem (1) under the resonance condition v1v4 + v2v3 = 0. We shall study resonant BVP (1)
in three different cases of dim ker L = 1. Different from the above results, the boundary
conditions we study are nonlocal Erdélyi–Kober type integral and generalized Riemann–
Liouville type integral. To the best of our knowledge, it is innovative to study the boundary
value problem with the nonlocal Erdélyi–Kober type integral and generalized Riemann–
Liouville type integral by using the method of Mawhin continuation theorem.

The organization of this paper is as follows. In Sect. 2, we provide some definitions,
lemmas, and Mawhin continuation theorem which will be used to prove the main results.
In Sect. 3, we will give our main results and the proof, some lemmas will also be given to
prove the solvability of BVP (1).

2 Preliminaries
Firstly, for the convenience of the reader, we recall some definitions and lemmas.

Definition 2.1 ([2, 18]) The fractional integral of order q with the lower limit zero for a
function f is defined by

Jqf (t) =
1


(q)

∫ t

0

f (s)
(t – s)1–q ds, t > 0, q > 0,

provided the right-hand side is point-wise defined on [0,∞), 
(·) is the gamma function.

Definition 2.2 ([2]) The generalized fractional integral of order q > 0 and ρ > 0 for a func-
tion f (t) is defined by

ρIqf (t) =
ρ1–q


(q)

∫ t

0

sρ–1f (s)
(tρ – sρ)1–q ds, t ∈ (0,∞),

provided the right-hand side is point-wise defined on (0,∞).
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Definition 2.3 ([2]) The Erdélyi–Kober fractional integral of order δ > 0 with η > 0 and
γ ∈R of a continuous function f (t) is defined as

Iγ ,δ
η f (t) =

ηt–η(δ+γ )


(δ)

∫ t

0

sηγ +η–1f (s)
(tη – sη)1–δ

ds, t ∈ (0,∞),

provided the right-hand side is point-wise defined on R+.

Definition 2.4 ([2, 18]) The Riemann–Liouville fractional derivative of order q > 0,
n – 1 < q < n, n ∈N can be written as

Dq
0+ f (t) =

1

(n – q)

(
d
dt

)n ∫ t

0
(t – s)n–q–1f (s) ds,

where the function f (t) has absolutely continuous derivative up to order (n – 1).

Definition 2.5 ([2, 18]) The Caputo derivative of order q for a function f : [0,∞) → R is
defined as

cDqf (t) = Dq
0+

(
f (t) –

n–1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n – 1 < q < n.

Lemma 2.1 ([18]) Given that x ∈ C1[0, 1] with a fractional derivative of order q (1 < q < 2)
that belongs to C(0, 1) ∩ L(0, 1), then

JqDqx(t) = x(t) – x(0) – x′(0)t.

Lemma 2.2 ([2]) Let δ,η > 0, γ , q ∈R, then we can get

Iγ ,δ
η tq =

tq
(γ + q
η

+ 1)

(γ + q

η
+ δ + 1)

.

Lemma 2.3 ([2]) Let q, p > 0, then we have

ρIqtp =

( p+ρ

ρ
)


( p+ρq+ρ

ρ
)

tp+ρq

ρq .

Definition 2.6 ([26]) Assume that X and Y are real Banach spaces, L : dom L ⊂ X → Y is
a Fredholm operator of index zero if the following conditions hold:

(1) Im L is a closed subspace of Y ;
(2) dim Ker L = co dim Im L < ∞.

Let X, Y be real Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator of index
zero, and N : X → Y be a nonlinear continuous map. P : X → X, Q : Y → Y are continuous
projectors such that

Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P, Y = Im L ⊕ Im Q.
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It follows that

L|dom L∩Ker P : dom L ∩ ker P → Im L

is invertible, and the inverse of the mapping is denoted by KP (generalized inverse operator
of L). Let � be an open bounded subset of X with dom L ∩ � �= ∅, the mapping N : X → Y
will be called L-compact on � if QN(�) is bounded and KP(I – Q)N : � → X is compact.

Theorem 2.1 (Mawhin continuation theorem [26]) Let L : dom L ⊂ X → Y be a Fredholm
operator of index zero and N be L-compact on �. The equation Lϕ = Nϕ has at least one
solution in dom L ∩ � if the following conditions are satisfied:

(1) Lx �= λNx for every (x,λ) ∈ [(dom L \ ker L) ∩ ∂�] × (0, 1);
(2) Nx /∈ Im L for every x ∈ ker L ∩ ∂�;
(3) deg(QN |ker L,�∩ ker L, 0) �= 0, where Q : Y → Y is a projection such that Im L = ker Q.

Let Y = C[0, T] with the norm ‖x‖∞ = maxt∈[0,1] |x(t)| and X = C1[0, T] with the norm
‖x‖ = max{‖x‖∞,‖x′‖∞}. Obviously, X and Y are Banach spaces.

An operator L is defined as L : Lx(t) = cDqx(t) with

dom L =
{

x ∈ X : cDqx ∈ Y , x(0) = αIγ ,δ
η x(ζ ), x(T) = βρIpx(ξ )

}
.

Define the operator N : X → Y as follows:

(Nx)(t) = f
(
t, x(t), x′(t)

)
.

So problem (1) becomes Lx = Nx.
Let

v1 = 1 – α

(γ + 1)


(γ + δ + 1)
, v2 = αζ


(γ + 1
η

+ 1)

(γ + 1

η
+ δ + 1)

,

v3 = 1 – β
ξρq

ρq
1


(q + 1)
, v4 = T – β

ξρq+1

ρq


( 1+ρ

ρ
)


( 1+ρq+ρ

ρ
)
,

then we consider the following three resonant conditions:
(A1) v1 = v3 = 0, v2 �= 0, v4 �= 0;
(A2) v2 = v4 = 0, v1 �= 0, v3 �= 0;
(A3) vi �= 0 (i = 1, 2, 3, 4), v1v4 + v2v3 = 0.

Lemma 2.4 Assume that (A1) holds. Then there exists z ∈ Y such that

v2
(
βρIpJqz(ξ ) – Jqz(T)

)
+ αv4Iγ ,δ

η Jqz(ζ ) = 1. (2)

Proof We define two linear functionals B1, B2 : X →R as follows:

B1x = x(0) – αIγ ,δ
η x(ζ ), x ∈ X,

B2x = x(T) – βρIpx(ξ ), x ∈ X.
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Let ϕ(t) = 1, ψ(t) = t. It follows from (A1) and Lemmas 2.2 and 2.3 that

B1ϕ = ϕ(0) – αIγ ,δ
η ϕ(ζ ) = v1 = 0, B1ψ = ψ(0) – αIγ ,δ

η ψ(ζ ) = –v2,

B2ϕ = ϕ(T) – βρIpϕ(ξ ) = v3 = 0, B2ψ = ψ(T) – βρIpψ(ξ ) = v4.
(3)

So, (2) can be rewritten by

B1ψ · B2
(
Jqz

)
– B2ψ · B1

(
Jqz

)
= 1.

For convenience, set

Bx = B1ψ · B2(x) – B2ψ · B1(x). (4)

If there is z̃ ∈ Y such that B̃z �= 0 and, as a result, z = z̃
B̃z ∈ Y with Bz = 1. Assume the

contrary. Then B(Jqz) = 0 for all z ∈ Y , and, in particular, for integer n ≥ 2,


(n + 1)

(n – q + 1)

B
(
Jqtn–q) = B

(
tn) = 0.

By (3), B(1) = B(t) = 0. Therefore, B(g) = 0 for every polynomial g . Note that B �= 0 on all of
X, there exists x0 ∈ X such that Bx0 �= 0. Thus, there exists a sequence of polynomials gn

such that ‖x0 – gn‖X < 1
n . So, we deduce that

0 �= |Bx0| =
∣∣B(x0 – gn) + Bgn

∣∣ =
∣∣B(x0 – gn)

∣∣ ≤ ‖B‖‖x0 – gn‖X <
‖B‖

n

for all integer n, which is a contradiction. Thus, there exists z ∈ Y satisfying (2). Thus the
lemma holds. �

Similar to the proof of Lemma 2.4, we also get the following lemmas.

Lemma 2.5 Assume that (A2) holds. Then there exists z1 ∈ Y such that

Jqz1(T) – βρIpJqz1(ξ ) = 1.

Lemma 2.6 Assume that (A3) holds. Then there exists z2 ∈ Y such that

v2
(
βρIpJqz2(ξ ) – Jqz2(T)

)
+ αv4Iγ ,δ

η Jqz2(ζ ) = 1.

Remark 2.1 The main idea of Lemmas 2.4, 2.5, and 2.6 comes from [16, 19, 20].

3 Main results
Assume that the following conditions hold in this paper:

(H1) f : [0, 1] ×R
2 →R is a continuous function.

(H2) There exist nonnegative functions u, v, w ∈ C[0, T] such that

∣∣f (t, x1, x2)
∣∣ ≤ u(t)|x1| + v(t)|x2| + w(t), t ∈ [0, T], x1, x2 ∈R.
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(H3) There exists a constant M > 0 such that if |x(t)| + |x′(t)| > M for all t ∈ [0, T], then

v2
(
βρIpJqNx(ξ ) – JqNx(T)

)
+ αv4Iγ ,δ

η JqNx(ζ ) �= 0.

(H3′) There exists a constant M > 0 such that if |x′(t)| > M for all t ∈ [0, T], then

βρIpJqNx(ξ ) – JqNx(T) �= 0.

(H4) There is a constant D > 0 such that either

cv2
(
βρIpJqNφ1(ξ ) – JqNφ1(T)

)
+ cαv4Iγ ,δ

η JqNφ1(ζ ) > 0 (5)

or

cv2
(
βρIpJqNφ1(ξ ) – JqNφ1(T)

)
+ cαv4Iγ ,δ

η JqNφ1(ζ ) < 0 (6)

holds if |c| > D, where φ1(t) = c.
(H4′) There is a constant D > 0 such that either

cβρIpJqNφ2(ξ ) – cJqNφ2(T) > 0

or

cβρIpJqNφ2(ξ ) – cJqNφ2(T) < 0

holds if |c| > D, where φ2(t) = ct.
(H4′′) There is a constant D > 0 such that either

cv2
(
βρIpJqNφ3(ξ ) – JqNφ3(T)

)
+ cαv4Iγ ,δ

η JqNφ3(ζ ) > 0

or

cv2
(
βρIpJqNφ3(ξ ) – JqNφ3(T)

)
+ cαv4Iγ ,δ

η JqNφ3(ζ ) < 0

holds if |c| > D, where φ3(t) = c(1 + kt), k = v1
v2

.
Then we can present the following theorem.

Theorem 3.1 Suppose that (A1) and (H1)–(H4) are satisfied, then there must be at least
one solution of problem (1) in X provided that 2Tq‖u‖∞ + 2Tq–1‖v‖∞ < 
(q).

To prove the theorem, we need the following lemmas.

Lemma 3.1 Assume that (A1) holds, then L : dom L ⊂ X → Y is a Fredholm operator with
index zero. And a linear continuous projector P : X → X can be defined by

(Px)(t) = x(0).
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Furthermore, define the linear operator Kp : Im L → dom L ∩ ker P as follows:

(Kpy)(t) =
1


(q)

∫ t

0
(t – s)q–1y(s) ds –

αIγ ,δ
η Jqy(ζ )

v2
· t

such that Kp = (L|dom L∩ker P)–1.

Proof Let ϕ(t) = 1, ψ(t) = t. From (A1) and Lemma 2.4, we can easily get

ker L = {c, c ∈R}.

Moreover, we can obtain that

Im L =
{

y ∈ Y : v2
(
βρIpJqy(ξ ) – Jqy(T)

)
+ αv4Iγ ,δ

η Jqy(ζ ) = 0
}

.

On the one hand, suppose y ∈ Im L, then there exists x ∈ dom L such that

y = Lx ∈ Y .

Then we have

x(t) = Jqy(t) + c0 + c1t =
1


(q)

∫ t

0
(t – s)q–1y(s) ds + c0 + c1t, (7)

where c0, c1 ∈R. Furthermore, for x ∈ dom L,

x(0) = αIγ ,δ
η x(ζ ) = αIγ ,δ

η Jqy(ζ ) + c0αIγ ,δ
η ϕ(ζ ) + c1αIγ ,δ

η ψ(ζ )

= αIγ ,δ
η Jqy(ζ ) + c0 + c1v2,

and

x(0) = Jqy(t) + c0 + c1t
∣∣
t=0 = c0.

The above two equalities imply that

αIγ ,δ
η Jqy(ζ ) + c1v2 = 0. (8)

Using (3) and (7), we get the system

x(T) = βρIpx(ξ ) = βρIpJqy(ξ ) + c0β
ρIpϕ(ξ ) + c1β

ρIpψ(ξ )

= βρIpJqy(ξ ) + c0 + c1(T – v4),

x(T) = Jqy(t) + c0 + c1t
∣∣
t=T = Jqy(T) + c0 + c1T .

From this together with the second boundary value condition of (1), we can get

βρIpJqy(ξ ) – Jqy(T) = c1v4. (9)
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By using the eliminated element method, equalities (8) and (9) are changed into the equal-
ity

v2
(
βρIpJqy(ξ ) – Jqy(T)

)
+ αv4Iγ ,δ

η Jqy(ζ ) = 0.

So we obtain that

Im L ⊂ {
y ∈ Y : v2

(
βρIpJqy(ξ ) – Jqy(T)

)
+ αv4Iγ ,δ

η Jqy(ζ ) = 0
}

.

On the other hand, if y ∈ Y satisfies v2(βρIpJqy(ξ ) – Jqy(T)) + αv4Iγ ,δ
η Jqy(ζ ) = 0, we let

x(t) = Jqy(t) –
αIγ ,δ

η Jqy(ζ )
v2

· t.

Then we conclude that

Lx(t) = cDqx(t) = y(t),

and

x(0) = 0,

αIγ ,δ
η x(ζ ) = αIγ ,δ

η Jqy(ζ ) –
αIγ ,δ

η Jqy(ζ )
v2

· αIγ ,δ
η ψ(ζ )

= αIγ ,δ
η Jqy(ζ ) –

αIγ ,δ
η Jqy(ζ )

v2
· v2 = 0.

Besides,

x(T) = Jqy(T) –
αIγ ,δ

η Jqy(ζ )
v2

· T ,

βρIpx(ξ ) = βρIpJqy(ξ ) –
αIγ ,δ

η Jqy(ζ )
v2

· βρIpψ(ξ )

= βρIpJqy(ξ ) –
αIγ ,δ

η Jqy(ζ )
v2

· (T – v4)

= –
αv4Iγ ,δ

η Jqy(ζ )
v2

+ Jqy(T) –
αIγ ,δ

η Jqy(ζ )
v2

· (T – v4)

= Jqy(T) –
αIγ ,δ

η Jqy(ζ )
v2

· T ,

therefore

x(0) = αIγ ,δ
η x(ζ ), x(T) = βρIpx(ξ ).

That is, x ∈ dom L, then y ∈ Im L. In conclusion,

Im L =
{

y ∈ Y : v2
(
βρIpJqy(ξ ) – Jqy(T)

)
+ αv4Iγ ,δ

η Jqy(ζ ) = 0
}

.



Sun et al. Advances in Difference Equations  (2018) 2018:243 Page 9 of 16

We define the linear operator P : X → X as

(Px)(t) = x(0).

It is obvious that P2x = Px and Im P = ker L. For any x ∈ X, together with x = (x – Px) + Px,
we have X = ker P + ker L. It is easy to obtain that ker L ∩ ker P = ∅, which implies

X = ker P ⊕ ker L.

Next the operator Q : Y → Y is defined as follows:

(Qy)(t) =
(
v2

(
βρIpJqy(ξ ) – Jqy(T)

)
+ αv4Iγ ,δ

η Jqy(ζ )
)
z(t)

= B
(
Jqy

)
z(t),

where B is given by (4) and z ∈ Y satisfying B(Jqz) = 1.
Obviously, Q is a projection operator such that ker Q = Im L and Im L = {cz(t) : c ∈ R}.

For any y ∈ Y , because y = (y – Qy) + Qy, we have Y = Im L + Im Q. Moreover, by a simple
calculation, we can get Im Q ∩ Im L = ∅. Above all, Y = Im L ⊕ Im Q.

To sum up, we can get that Im L is a closed subspace of Y ; dim ker L = co dim Im L < +∞;
that is, L is a Fredholm operator of index zero.

We now define the operator Kpy : Y → X as follows:

(Kpy)(t) = Jqy(t) –
αIγ ,δ

η Jqy(ζ )
v2

· t

=
1


(q)

∫ t

0
(t – s)q–1y(s) ds –

αIγ ,δ
η Jqy(ζ )

v2
· t.

For any y ∈ Im L, we have

(Kpy)(0) = αIγ ,δ
η (Kpy)(ζ ), (Kpy)(T) = βρIp(Kpy)(ξ ),

then (Kpy)(t) ∈ dom L. In addition, (Kpy)(0) = 0, which means Kpy ∈ ker P. Therefore

Kpy ∈ dom L ∩ ker P, y ∈ Im L.

Next we will prove that Kp is the inverse of L|dom L∩ker P . It is clear that

(LKpy)(t) = y(t), y ∈ Im L.

By Lemma 2.1, for each x ∈ dom L ∩ ker P, we have x(0) = 0 and

(KpLx)(t) = JqDqx(t) –
αIγ ,δ

η JqDqx(ζ )
v2

· t

= x(t) – x(0) – x′(0)t –
αIγ ,δ

η x(ζ ) – x(0)αIγ ,δ
η ϕ(ζ ) – x′(0)αIγ ,δ

η ψ(ζ )
v2

· t

= x(t) – x(0) – x′(0)t –
x(0) – x(0)αIγ ,δ

η ϕ(ζ ) – x′(0)αIγ ,δ
η ψ(ζ )

v2
· t
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= x(t) – x′(0)t + x′(0)t

= x(t).

This implies that KpLx = x. So Kp = (L|dom L∩ker P)–1. Thus the lemma holds. �

Lemma 3.2 N is L-compact on � if dom L∩� �= ∅, where � is a bounded open subset of X.

Proof It follows from the continuity of f in condition (H1) and z ∈ Y that (I – Q)N(�) is
bounded. In addition,

{
1


(q)

∫ t

0
(t – s)q–1y(s) ds –

αIγ ,δ
η Jqy(ζ )

v2
· t : y ∈ (I – Q)N(�)

}

and

{
1


(q – 1)

∫ t

0
(t – s)q–2y(s) ds –

αIγ ,δ
η Jqy(ζ )

v2
: y ∈ (I – Q)N(�)

}

are equi-continuous and uniformly bounded. By Ascoli–Arzela theorem, we get
Kp(I – Q)N : � → X is compact. Thus, N is L-compact. The proof is completed. �

Lemma 3.3 The set �1 = {x ∈ dom L \ ker L : Lx = λNx,λ ∈ [0, 1]} is bounded if (H1)–(H3)
are satisfied.

Proof Take x ∈ �1, then x /∈ ker L, so λ �= 0 and Nx ∈ Im L. Thus we have

(
v2

(
βρIpJqNx(ξ ) – JqNx(T)

)
+ αv4Iγ ,δ

η JqNx(ζ )
)
z(t) = 0,

where z ∈ Y satisfying B(Jqz) = 1. So we get

v2
(
βρIpJqNx(ξ ) – JqNx(T)

)
+ αv4Iγ ,δ

η JqNx(ζ ) = 0. (10)

According to (H3), there exists at least a point t0 ∈ [0, T] such that

∣∣x(t0)
∣∣ +

∣∣x′(t0)
∣∣ ≤ M.

Using the Newton–Leibnitz formula, we have

‖x‖∞ = max
t∈[0,T]

∣∣x(t)
∣∣ = max

t∈[0,T]

∣∣∣∣x(t0) +
∫ t

t0

x′(s) ds
∣∣∣∣ ≤ M + T

∥∥x′∥∥∞. (11)

In addition, for Lx = λNx and x ∈ dom L, we have

x(t) =
λ


(q)

∫ t

0
(t – s)q–1f

(
s, x(s), x′(s)

)
ds + x(0) + x′(0)t

and

x′(t) =
λ


(q – 1)

∫ t

0
(t – s)q–2f

(
s, x(s), x′(s)

)
ds + x′(0). (12)
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Take t = t0 in (12), we get

x′(t0) =
λ


(q – 1)

∫ t0

0
(t0 – s)q–2f

(
s, x(s), x′(s)

)
ds + x′(0).

This together with |x′(t0)| ≤ M and (11) implies that

∣∣x′(0)
∣∣ ≤ ∣∣x′(t0)

∣∣ +
λ


(q – 1)

∫ t0

0
(t0 – s)q–2∣∣f (s, x(s), x′(s)

)∣∣ds

≤ M +
λ


(q – 1)

∫ t0

0
(t0 – s)q–2[u(s)

∣∣x(s)
∣∣ + v(s)

∣∣x′(s)
∣∣ + w(s)

]
ds

≤ M +
Tq–1


(q)
(‖u‖∞‖x‖∞ + ‖v‖∞

∥∥x′∥∥∞ + ‖w‖∞
)

≤ M +
Tq–1


(q)
(‖u‖∞

(
M + T

∥∥x′∥∥∞
)

+ ‖v‖∞
∥∥x′∥∥∞ + ‖w‖∞

)

= M +
Tq–1


(q)
(
M‖u‖∞ + ‖w‖∞

)
+

Tq‖u‖∞ + Tq–1‖v‖∞

(q)

∥∥x′∥∥∞.

Then we conclude that

∣∣x′(t)
∣∣ ≤ λ


(q – 1)

∫ t

0
(t – s)q–2∣∣f (s, x(s), x′(s)

)∣∣ds +
∣∣x′(0)

∣∣
≤ Tq–1


(q)
(‖u‖∞‖x‖∞ + ‖v‖∞

∥∥x′∥∥∞ + ‖w‖∞
)

+ M +
Tq–1


(q)
(
M‖u‖∞ + ‖w‖∞

)
+

Tq‖u‖∞ + Tq–1‖v‖∞

(q)

∥∥x′∥∥∞

≤ Tq–1


(q)
(‖u‖∞

(
M + T

∥∥x′∥∥∞
)

+ ‖v‖∞
∥∥x′∥∥∞ + ‖w‖∞

)

+ M +
Tq–1


(q)
(
M‖u‖∞ + ‖w‖∞

)
+

Tq‖u‖∞ + Tq–1‖v‖∞

(q)

∥∥x′∥∥∞

= M + 2
Tq–1


(q)
(
M‖u‖∞ + ‖w‖∞

)
+ 2

Tq‖u‖∞ + Tq–1‖v‖∞

(q)

∥∥x′∥∥∞.

Therefore, we can obtain that

∥∥x′∥∥∞ ≤ M
(q) + 2MTq–1‖u‖∞ + 2Tq–1‖w‖∞

(q) – 2Tq‖u‖∞ – 2Tq–1‖v‖∞

= M1.

Combining this with (11), we have

‖x‖∞ ≤ M + T
∥∥x′∥∥∞ ≤ M + TM1.

Then �1 is bounded. The proof of the lemma is completed. �

Lemma 3.4 The set �2 = {x : x ∈ ker L, Nx ∈ Im L} is bounded if (H1), (H4) hold.
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Proof Let x ∈ �2, then x(t) ≡ c and Nx ∈ Im L, so we can get

v2
(
βρIpJqNx(ξ ) – JqNx(T)

)
+ αv4Iγ ,δ

η JqNx(ζ ) = 0.

According to (H4), we have |c| ≤ D, that is to say, �2 is bounded. We complete the proof. �

Lemma 3.5 The set �3 = {x ∈ ker L : λx + α(1 – λ)JQNx = 0,λ ∈ [0, 1]} is bounded if condi-
tions (H1), (H4) are satisfied, where J : Im Q → ker L is a linear isomorphism defined by

J(cz1) = c, c ∈R,

and

α =

{
–1, if (5) holds;
1, if (6) holds,

where z1 is introduced in Lemma 2.4.

Proof Suppose that x ∈ �3, we have x(t) = c and

λx + α(1 – λ)JQNx = 0,

thus we have

λc = –α(1 – λ)
(
v2

(
βρIpJqNx(ξ ) – JqNx(T)

)
+ αv4Iγ ,δ

η JqNx(ζ )
)
.

If λ = 0, by condition (H4) we have |c| ≤ D. If λ = 1, then c = 0. If λ ∈ (0, 1), we suppose
|c| > D, then

λc2 = –α(1 – λ)c
(
v2

(
βρIpJqNx(ξ ) – JqNx(T)

)
+ αv4Iγ ,δ

η JqNx(ζ )
)

< 0

which contradicts with λc2 > 0, so |c| ≤ D. Then the lemma holds. �

Theorem 3.1 can be proved now.

Proof of Theorem 3.1 Suppose that � ⊃ ⋃3
i=1 �i ∪{0} is a bounded open subset of X, from

Lemma 3.2 we know that N is L-compact on �. In view of Lemmas 3.3 and 3.4, we can
get:

(i) Lx �= λNx for every (x,λ) ∈ [(dom L \ ker L) ∩ ∂�] × (0, 1);
(ii) Nx /∈ Im L for every x ∈ ker L ∩ ∂�.

Set H(x,λ) = λJx + α(1 – λ)QNx. It follows from Lemma 3.5 that we have H(x,λ) �= 0 for
any x ∈ ∂� ∩ ker L. So, by the homotopic property of degree, we have

deg(JQN |ker L,� ∩ ker L, 0) = deg(αI,� ∩ ker L, 0) �= 0.

All the conditions of Theorem 2.1 are satisfied. So there must be at least one solution of
problem (1) in X. The proof of Theorem 3.1 is completed. �
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Theorem 3.2 Suppose that (A2) and (H1), (H2), (H3′), (H4′) are satisfied, then there must
be at least one solution of problem (1) in X provided that 2Tq‖u‖∞ + 2Tq–1‖v‖∞ < 
(q).

To prove the theorem, we need the following lemmas.

Lemma 3.6 Assume that (A2) holds, then L : dom L ⊂ X → Y is a Fredholm operator with
index zero. And the linear continuous projector P : X → X can be defined by

(Px)(t) =
x(T)

T
t.

Furthermore, define the linear operator Kp : Im L → dom L ∩ ker P as follows:

(Kpy)(t) =
1


(q)

∫ t

0
(t – s)q–1y(s) ds

such that Kp = (L|dom L∩ker P)–1.

Proof Let ϕ(t) = 1, ψ(t) = t. In view of (A2) we know

α = 0,

ϕ(0) – αIγ ,δ
η ϕ(ζ ) = 1, ψ(0) – αIγ ,δ

η ψ(ζ ) = 0,

ϕ(T) – βρIpϕ(ξ ) = v3, ψ(T) – βρIpψ(ξ ) = 0,

(13)

and we get

ker L = {ct, c ∈R}

and

Im L =
{

y ∈ Y : Jqy(T) = βρIpJqy(ξ )
}

.

Besides, operators P : X → X, Q : Y → Y can be defined as follows:

(Px)(t) =
x(T)

T
t

and

(Qy)(t) =
(
Jqy(T) – βρIpJqy(ξ )

)
z1(t),

where z1 ∈ Y satisfying Jqz1(T) – βρIpJqz1(ξ ) = 1. In addition, for each x ∈ dom L ∩ ker P,
we have x(0) = 0, x(T) = 0, then we get the generalized inverse operator of L as follows:

(Kpy)(t) = Jqy(t) =
1


(q)

∫ t

0
(t – s)q–1y(s) ds.

The detailed proof of Lemma 3.6 is similar to that of Lemma 3.1, so we omit it. �

Proof of Theorem 3.2 The proof of Theorem 3.2 is similar to that of Theorem 3.1, we omit
it. �
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Theorem 3.3 Suppose that (A3) and (H1), (H2), (H3), and (H4′′) are satisfied, then there
must be at least one solution of problem (1) in X provided that 2Tq‖u‖∞ + 2Tq–1‖v‖∞ <

(q).

To prove the theorem, we need the following lemmas.

Lemma 3.7 Assume that (A3) holds, then L : dom L ⊂ X → Y is a Fredholm operator with
index zero. And a linear continuous projector P : X → X can be defined by

(Px)(t) = x(0)(1 + kt),

where k = v1
v2

= – v3
v4

. Furthermore, define the linear operator Kpy : Im L → dom L ∩ ker P as
follows:

(Kpy)(t) =
1


(q)

∫ t

0
(t – s)q–1y(s) ds

such that Kp = (L|dom L∩ker P)–1.

Proof Let ϕ1(t) = 1 + kt. In view of (A3) we know

ϕ1(0) – αIγ ,δ
η ϕ1(ζ ) = 0, ϕ1(T) – βρIpϕ1(ξ ) = 0,

we can easily get

ker L =
{

c(1 + kt) : c ∈R
}

.

Moreover, we can obtain that

Im L =
{

y ∈ Y : v1
(
βρIpJqy(ξ ) – Jqy(T)

)
= αv3Iγ ,δ

η Jqy(ζ )
}

.

We define the linear operator P : X → X as

(Px)(t) = x(0)(1 + kt),

and the operator Q : Y → Y as

(Qy)(t) =
(
v1

(
βρIpJqy(ξ ) – Jqy(T)

)
– αv3Iγ ,δ

η Jqy(ζ )
)
z2(t),

where z2 ∈ Y satisfying v2(βρIpJqz2(ξ ) – Jqz2(T)) + αv4Iγ ,δ
η Jqz2(ζ ) = 1.

In addition, for each x ∈ dom L ∩ ker P, we have x(0) = 0, then we get the generalized
inverse operator of L as follows:

(Kpy)(t) = Jqy(t) –
αIγ ,δ

η Jqy(ζ )
v2

· t

=
1


(q)

∫ t

0
(t – s)q–1y(s) ds –

αIγ ,δ
η Jqy(ζ )

v2
· t.

The detailed proof of Lemma 3.7 is similar to that of Lemma 3.1, so we omit it. �
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Proof of Theorem 3.3 The proof of Theorem 3.3 is similar to that of Theorem 3.1, we omit
it. �
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