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Abstract
In this article, nonlinear propagation of envelope gravity waves is studied in baroclinic
atmosphere. The classical (2 + 1) dimensional nonlinear Schrödinger (NLS) equation
can be derived by using the multiple-scale, perturbation method. Further, via the
semi-inverse method, the Euler–Lagrange equation and Agrawal’s method, the
time–space fractional (2 + 1) dimensional nonlinear Schrödinger (FNLS) equation is
obtained to describe the envelope gravity waves. Furthermore, the conservation laws
of time–space FNLS equation are discussed on the basis of Lie group analysis
method. Finally, the exact solutions to the equation are given by employing the
exp(–φ(ξ )) method. The results demonstrate that the nonlinear effect caused by the
fractional order leads to the change of the propagation characteristics of envelope
gravity waves, the construction of fractional model has far-reaching significance for
the research of nonlinear propagation of envelope gravity waves in actual
atmospheric and ocean movement.
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1 Introduction
It is well known that envelope gravity waves play an important role in atmospheric dy-
namics [1–5], the troposphere is excited by convection, topography and other excitation
processes to transfer energy and momentum from the source (e.g., mountains, thermal
forcing) to the middle and upper atmosphere [6–9]. Atmospheric parameters, such as den-
sity and temperature, oscillate with fluctuations due to the influence of envelope gravity
waves at the middle and upper atmosphere. In addition, the atmosphere is further achieved
through the wave process of envelope gravity waves in actual atmospheric movement. En-
velope gravity waves closely relate to the changes in the troposphere weather and climate,
such as topographic precipitation, deep convection and typhoon rainstorms [10, 11].

The problem of propagation of nonlinear wave in plasma and fluid can be described by
differential equations such as the KDV equation, the mKDV equation, the NLS equation,
and the Boussinesq equation [12–20]. The NLS equation describes the time–space evo-
lution of slow-changing envelopes, it has high theoretical value in quantum matters and
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has been extensively used in various branches of physics, such as optics, envelope gravity
waves etc. [21, 22]. However, most of these studies are based on the integer-order model
and the research on the fractional model is still relatively small. Fractional calculus is one
of the best tools to investigate various scientific, engineering and mathematical models
[23–25]. Numerous marine processes exhibit fractional dynamics, which are fractional
systems. The use of fractional model can better reveal the nature of the phenomenon and
behavior. Fractional calculus is the promotion of integral calculus. The study of fractional
systems [26–31] has a more universal meaning. Thus we discuss the influence of fractional
order for the propagation of envelope gravity waves by constructing the time–space frac-
tional (2 + 1) NLS equation.

Conservation laws are very important for the study of nonlinear physical phenomena,
symmetry and conservation laws [32–35] provide much information as regards systems
simulated by differential equations. Only a few scholars discuss the conservation laws of
fractional partial differential equation, for example, the generalizations of Noether’s theo-
rem [36], the new conservation theorem [37], the fractional generalized Noether operator
[38], therefore, the conservation laws of the time–space nonlinear FPDES need further
research. Moreover, there are many ways to solve differential equations such as the trial
function method [39], the subequation method [40], the function variable method [41],
the first integral method [42], etc. We can also get many other kinds of solutions, such as
lump-soliton solutions [43–46], which are also very important.

The organization of the article is as follows: in Section 2, the integer-order model is de-
rived by using the multiple-scale, perturbation method [47]. In Section 3, the fractional-
order model is obtained by employing the semi-inverse method, Euler–Lagrange equation
and Agrawal’s method [48, 49]. In Section 4, with the help of Lie group analysis method
[50–52], the conservation laws of time–space FNLS equation will be discussed. In Sec-
tion 5, we get the exact solutions to the above equation by using the exp(–φ(ξ )) method
[53]. In Section 6, some brief conclusions can be drawn.

2 Derivation of (2 + 1) dimensional NLS equation
Starting with the basic dynamic equations of atmospheric motion, they can be written in
the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + u ∂u

∂x + v ∂u
∂y + w ∂u

∂z = – 1
ρ0

∂p
∂x + fv,

∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z = – 1
ρ0

∂p
∂y – fu,

∂w
∂t + u ∂w

∂x + v ∂w
∂y + w ∂w

∂z = – 1
ρ0

∂p
∂z + gθ

θ0
,

∂θ
∂t + u ∂θ

∂x + v ∂θ
∂y + σw = 0,

∂ρ0u
∂x + ∂ρ0v

∂y + ∂ρ0w
∂z = 0,

(1)

where ρ0 denotes the density; θ0 is the temperature of the environmental flow field; σ = ∂θ0
∂z .

Introducing the dimensionless quantities

t = f –1(t∗), (x, y) = L
(
X∗, Y ∗), Z = D

(
z∗),

(u, v) = U
(
u∗, v∗), w =

U
L

D
(
w∗), ρ0 =

P
gH

(ρs),

θ = δθ
(
θ∗), δpx,y =

P
gH

fLU
(
p∗), δpz =

P
θ0H

δθ
(
p∗),

(2)

where the quantities with asterisk mean they are dimensionless.
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Assuming D ∼ H , U
fL ∼ o(1), δθ = δUD

fL and substituting Eqs. (2) into Eqs. (1) yields

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + u ∂u

∂x + v ∂u
∂y + w ∂u

∂z = – 1
ρs

∂p
∂x + v,

∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z = – 1
ρs

∂p
∂y – u,

∂w
∂t + u ∂w

∂x + v ∂w
∂y + w ∂w

∂z = ε–1(– 1
ρs

∂p
∂z + θ ),

∂θ
∂t + u ∂θ

∂x + v ∂θ
∂y + w = 0,

∂ρsu
∂x + ∂ρsv

∂y + ∂ρsw
∂z = 0,

(3)

where we omit the subscript asterisks for simplicity, ε = f 2

N2 and N2 = gθ

θ0
are the new pa-

rameters.
We suppose that the solution of Eq. (3) has the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u = U(y, z) + ε(u0 + εu1 + ε2u2) + · · · ,
v = V (y, z) + ε(v0 + εv1 + ε2v2) + · · · ,
w = ε(w0 + εw1 + ε2w2) + · · · ,
θ = 
(y, z) + ε(θ0 + εθ1 + ε2θ2) + · · · ,
p = P(y, z) + ε(p0 + εp1 + ε2p2) + · · · ,

(4)

where U represents the speed of the basic flow, 
 indicates the temperature field and P
denotes the air pressure.

We introduce the slow time and space scales for the purpose of addressing the effects of
nonlinearity and amplitude modulation of space,

T1 = εt, T2 = ε2t, X1 = εx, X2 = ε2x, Y = εy. (5)

We introduce a new set of variables,

ρsun = un, ρsvn = vn, ρswn = wn, ρsθn = θn, n = 0, 1, 2. (6)

Substituting Eqs. (4), (5) and (6) into Eqs. (1) one acquires the lowest-order approximate
equations of ε,

ε0 :

{
– 1

ρs
∂P
∂y – U = 0,

– 1
ρs

∂P
∂z + 
 = 0,

(7)

obviously, we will get

∂U
∂z

= –
∂


∂y
. (8)

Further, the first-order approximate equations of ε will be obtained,

ε1 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u0
∂t + U ∂u0

∂x + V ∂u0
∂y + (Uy – 1)v0 + Uzw0 + ∂p0

∂x = 0,
∂v0
∂t + U ∂v0

∂x + V ∂v0
∂y + ∂p0

∂y + u0 = 0,
∂p0
∂z – θ0 = 0,
∂θ0
∂t + U ∂θ0

∂x + V ∂θ0
∂y + 
yv0 + w0 = 0,

∂u0
∂x + ∂v0

∂y + ∂w0
∂z = 0.

(9)
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Eliminating the other variables except for p0 in Eqs. (9) yields the following equation:

M
(

∂p0

∂x

)

= 0, (10)

where

M =
∂2

∂y2 – (Uy – 1)
∂2

∂z2 + 2Uz
∂2

∂y ∂z
+

[

Uzz –
�y

�
– Uz

�z

�

]
∂

∂y

+
[

(Uy – 1)
�z

�
– Uz

�y

�

]
∂

∂z
–

1
U

[

Uzz –
�y

�
– Uz

�z

�

]

,

� = Uy – 1 + U2
z , �y =

∂�

∂y
, � =

∂�

∂y
.

(11)

Suppose Eq. (10) has the following solution in the form of separate variables:

p0 = p∗
0(y, z)A(T1, T2, X1, X2, Y ) exp

[
i(kx – ωt)

]
, (12)

where k represents the zonal wave number, ω indicates the frequency of the envelope
gravity waves and A denotes a slowly varying envelope complex amplitude.

Therefore, other solutions to Eqs. (9) are also given

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0 = u∗
0(y, z)A(T1, T2, X1, X2, Y ) exp[i(kx – ωt)],

v0 = v∗
0(y, z)A(T1, T2, X1, X2, Y ) exp[i(kx – ωt)],

w0 = w∗
0(y, z)A(T1, T2, X1, X2, Y ) exp[i(kx – ωt)],

θ0 = θ∗
0 (y, z)A(T1, T2, X1, X2, Y ) exp[i(kx – ωt)].

(13)

Next, the second-order approximate equations of ε will be given,

ε2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t + U ∂u1

∂x + V ∂u1
∂y + (Uy – 1)v1 + Uzw1 + ∂p1

∂x

= –[ ∂u0
∂T1

+ U ∂u0
∂X1

+ V ∂u0
∂Y + 1

ρs
(u0

∂u0
∂x + v0

∂u0
∂y + w0

∂u0
∂z ) + ∂p0

∂X1
] ≡ �u1 ,

∂v1
∂t + U ∂v1

∂x + V ∂v1
∂y + ∂p1

∂y + u1 + Vyv1 + Vzw1

= –[ ∂v0
∂T1

+ U ∂v0
∂X1

+ V ∂v0
∂Y + 1

ρs
(u0

∂v0
∂x + v0

∂v0
∂y + w0

∂v0
∂z ) + ∂p0

∂Y ] ≡ �v1 ,
∂p1
∂z – θ1 = –( ∂w0

∂t + U ∂w0
∂x + V ∂w0

∂y ) ≡ �w1 ,
∂θ1
∂t + U ∂θ1

∂x + V ∂θ1
∂y + 
yv1 + w1

= –[ ∂θ0
∂T1

+ U ∂θ0
∂X1

+ V ∂θ0
∂Y + 1

ρs
(u0

∂θ0
∂x + v0

∂θ0
∂y )] ≡ �θ1 ,

∂u1
∂x + ∂v1

∂y + ∂w1
∂z = –( ∂u0

∂X1
+ ∂v0

∂Y ) ≡ �p1 .

(14)

Substituting Eqs. (12) and (13) into Eqs. (14) one acquires

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φu1 = –[u∗
0AT1 + (Uu∗

0 + p∗
0)AX1 + Vu∗

0AY ] exp[i(kx – ωt)]
– 1

ρs
(ik(u∗

0)2 + v∗
0u∗

0y + w∗
0u∗

0z)|A|2 exp[2i(kx – ωt)],
φv1 = –[v∗

0AT1 + Uv∗
0AX1 + (Vv∗

0 + p∗
0)AY ] exp[i(kx – ωt)]

– 1
ρs

(iku∗
0v∗

0 + +v∗
0v∗

0y + w∗
0v∗

0z)|A|2 exp[2i(kx – ωt)],
φw1 = [iw∗

0(ω – kU) – Vw∗
0y]A exp[i(kx – ωt)],

φθ1 = –[θ∗
0 AT1 + Uθ∗

0 AX1 + Vθ∗
0 AY ] exp[i(kx – ωt)]

– 1
ρs

(iku∗
0θ

∗
0 + v∗

0θ
∗
0y)|A|2 exp[2i(kx – ωt)],

φp1 = –(u∗
0AX1 + v∗

0AY ) exp[i(kx – ωt)].

(15)
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Similarly, eliminating the other variables except for p1 in Eqs. (14) leads to the following
equation:

M
(

∂p1

∂x

)

= M1(φu1 ) + M2(φv1 ) + M3(φw1 ) + M4(φθ1 ), (16)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M1 = ∂
∂y + Uzz + Uz

∂
∂z + 1

U + 1
�

(�y + Uz�z),
M2 = – 1

U [ ∂
∂y + Uzz + Uz

∂
∂z – 1

�
(�y + Uy�z)],

M3 = 1
U [Uz

∂
∂y – (Uy – 1) ∂

∂z – 1
�

(Uy – 1)�z],
M4 = Uz

∂
∂y + Uz

U – (Uy – 1) ∂
∂z – �y

�
Uz – (Uy–1)

U
�z
�

.

(17)

In addition, for Eq. (16) the following solution in the form of separate variables exists by
analysis and assumptions:

p1 = p∗
1(y, z)

[
A exp

[
i(kx – ωt)

]
+ |A|2 exp

[
2i(kx – ωt)

]]
. (18)

Thus, other solutions to Eqs. (9) are also obtained

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1 = u∗
1(y, z)[AX1 exp[i(kx – ωt)] + |A|2 exp[2i(kx – ωt)]],

v1 = v∗
1(y, z)[AY exp[i(kx – ωt)] + |A|2 exp[2i(kx – ωt)]],

w1 = w∗
1(y, z)[AY exp[i(kx – ωt)] + |A|2 exp[2i(kx – ωt)]],

θ1 = θ∗
1 (y, z)[AX1 exp[i(kx – ωt)] + |A|2 exp[2i(kx – ωt)]],

(19)

and the third-order approximate equations of ε will be written as

ε3 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u2
∂t + U ∂u2

∂x + V ∂u2
∂y + (Uy – 1)v2 + Uzw2 + ∂p2

∂x

= –[ ∂u0
∂T2

+ U ∂u0
∂X2

+ U ∂u1
∂X1

+ V ∂u1
∂Y + ∂u1

∂T1
+ 1

ρs
(u0

∂u0
∂X1

+ v0
∂u0
∂Y + u1

∂u0
∂x

+ v1
∂u0
∂y + w1

∂u0
∂z + u0

∂u1
∂x + v0

∂u1
∂y + w0

∂u1
∂z ) + ∂p0

∂X2
+ ∂p1

∂X1
]

≡ �u2 ,
∂v2
∂t + U ∂v2

∂x + V ∂v2
∂y + ∂p2

∂y + u2 + Vyv2 + Vzw2

= –[ ∂v0
∂T2

+ U ∂v0
∂X2

+ U ∂v1
∂X1

+ V ∂v1
∂Y + ∂v1

∂T1
+ 1

ρs
(u0

∂v0
∂X1

+ v0
∂v0
∂Y + u1

∂v0
∂x

+ v1
∂v0
∂y + w1

∂v0
∂z + u0

∂v1
∂x + v0

∂v1
∂y + w0

∂v1
∂z ) + ∂p1

∂Y ]
≡ �v2 ,

∂p2
∂z – θ2 = –[ ∂w0

∂t1
+ U ∂w0

∂X1
+ V ∂w0

∂Y + U ∂w1
∂x + 1

ρs
(u0

∂w1
∂x + v0

∂w1
∂y

+ w0
∂w1
∂z ) + ∂w1

∂t ]
≡ �w2 ,

∂θ2
∂t + U ∂θ2

∂x + V ∂θ2
∂y + 
yv2 + w2

= –[ ∂θ0
∂T2

+ U ∂θ0
∂X2

+ U ∂θ1
∂X1

+ V ∂θ1
∂Y + ∂θ1

∂T1
+ 1

ρs
(u0

∂θ0
∂X1

+ v0
∂θ0
∂Y + u1

∂θ0
∂x

+ v1
∂θ0
∂y + w1

∂θ0
∂z + u0

∂θ1
∂x + v0

∂θ1
∂y + w0

∂θ1
∂z ) + ∂p1

∂Y ]
≡ �θ2 ,

∂u2
∂x + ∂v2

∂y + ∂w2
∂z = –( ∂u1

∂X1
+ ∂u0

∂X2
+ ∂v1

∂Y ) ≡ �p2 .

(20)
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Then substitute Eqs. (18) and (19) into Eq. (20) and we can get the following forms by
means of the secular-producing terms proportional to exp[i(kx – ωt)]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φu2 = u∗
0(AT2 + UAX2 ) + Uu∗

1AX1X1

+ 1
ρs

(3iku∗
ou∗

1 + u∗
oyu∗

1y + u∗
0zw∗

1 + v∗
0u∗

1y + w∗
0u∗

1z)|A|2A,
φv2 = v∗

0(AT2 + UAX2 ) + Vv∗
1AYY

+ 1
ρs

(iku∗
1v∗

0 + v∗
1v∗

oy + w∗
1v∗

0z + 2iku∗
0v∗

1 + v∗
0v∗

1y + w∗
0v∗

1z)|A|2A,
φw2 = w∗

0(AT1 + UAX1 ) + Vw∗
1AYY ,

φθ2 = θ∗
0 (AT2 + UAX2 ) + Uθ∗

1 AX1X1 + 1
ρs

(iku∗
1θ

∗
0 + v∗

1θ
∗
0y + 2iku∗

0θ
∗
1 + v∗

0θ
∗
1y)|A|2A,

φp2 = u∗
0AX2 + u∗

1AX1X1 + v∗
1AYY .

(21)

Meanwhile, eliminating the other variables except for p1 in Eq. (14) one obtains the fol-
lowing equation:

M
(

∂p2

∂x

)

= M1(φu2) + M2(φv2) + M3(φw2) + M4(φθ2 ). (22)

We adopt the following variable transformations:

X =
1
U

X1 =
1
U

X2, t = T1 = T2, (23)

and the (2 + 1) NLS equation will be obtained,

i
(

∂A
∂t

+
∂A
∂X

)

+ a1
∂2A
∂X2 – a2

∂2A
∂y2 + a3|A|2A = 0, (24)

where the coefficients are expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1 = –i(Uu∗
1 + u∗

1),
a2 = i(Vv∗

1 + Vw∗
1 + v∗

1),
a3 = 1

ρs
[3ku∗

0u∗
1 + ku∗

1v∗
0 + 2ku∗

0v∗
1 – i(u∗

0yv∗
1 + u∗

0zw∗
1

+ v∗
0u∗

1y + w∗
0u∗

1z + v∗
0yv∗

1 + w∗
1v∗

0z + v∗
0v∗

1y)].

(25)

According to [9], the corresponding transformation can be defined

x = X – t, (26)

so Eq. (24) is rewritten as follows:

i
∂A
∂t

+ a1
∂2A
∂x2 – a2

∂2A
∂y2 + a3|A|2A = 0. (27)

3 Formulation of time–space fractional (2 + 1) dimensional NLS equation
The semi-inverse method and the fractional variational principle are used to get the time–
space fractional (2 + 1) dimensional NLS equation as follows:

Defining a potential equation A(x, y, t) = u(x, y, t) + iv(x, y, t), where u(x, y, t) and v(x, y, t)
indicate real functions of x, y and t, and the potential equation of the classical (2 + 1)
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dimensional NLS equation (27) will be given,

–vt + a1uxx – a2uyy + a3u
(
u2 + v2) + i

[
ut + a1vxx – a2vyy + a3v

(
u2 + v2)] = 0. (28)

Further, the system of two second-order equations can be represented in the following
form:

–vt + a1uxx – a2uyy + a3u
(
u2 + v2) = 0, (29)

ut + a1vxx – a2vyy + a3v
(
u2 + v2) = 0. (30)

We will construct a trial-functional with the help of the semi-inverse method for getting
a variational principle for systems (29) and (30). Further, the system of two second-order
equations can be represented in the following form:

J(u, v) =
∫ [

utv –
a1

2
v2

x +
a2

2
v2

y +
a3

4
(
2u2v2 + v4) + H(u)

]

d�, (31)

where d� = dx dy dt and H(u) is an unknown function consisting of the derivatives of u
and u.

Considering the variation in Eq. (31) for u and we can get the Euler–Lagrange equation

–vt + a3uv2 +
δH
δu

= 0, (32)

where δH
δu means He’s variational differential [48] for u,

δH
δu

=
∂H
∂u

–
∂

∂t

(
∂H
∂ut

)

–
∂

∂x

(
∂H
∂ux

)

–
∂

∂y

(
∂H
∂uy

)

+
∂2

∂t2

(
∂H
∂utt

)

+
∂2

∂x2

(
∂H
∂uxx

)

+ · · · . (33)

In order to make equation (32) satisfy equation (29), we set

δH
δu

= vt – a3uv2 = a1uxx – a2uyy + a3u3, (34)

and H can also be defined as follows:

H = –
a1

2
u2

x +
a2

2
u2

y +
a3

4
u4. (35)

Further, we will obtain the final variational principle

J(u, v) =
∫ [

utv –
a1

2
(
u2

x + v2
x
)

+
a2

2
(
u2

y + v2
y
)

+
a3

4
(
u2 + v2)2

]

d�. (36)
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Substituting u = A+A∗
2 , v = i A–A∗

2 , where A∗ expresses the complex conjugate of A and
A∗ = u – iv, and we will obtain the following variational principle:

J(A) =
∫ [

i
4
(
A∗ – A

)
(

∂A
∂t

+
∂A∗

∂t

)

–
a1

2

(
∂A
∂x

∂A∗

∂x

)

+
a2

2

(
∂A
∂y

∂A∗

∂y

)

+
a3

4
(
AA∗)2

]

d�, (37)

from which we can identify the Lagrangian of (2 + 1) dimensional NLS equation,

L =
i
4
(
A∗ – A

)
(

∂A
∂t

+
∂A∗

∂t

)

–
a1

2

(
∂A
∂x

∂A∗

∂x

)

+
a2

2

(
∂A
∂y

∂A∗

∂y

)

+
a3

4
(
AA∗)2. (38)

Similarly, the Lagrangian of the time–space fractional (2 + 1) dimensional NLS equation
is written as

F =
i
4
(
A∗ – A

)(
Dα

t A + Dα
t A∗) –

a1

2
(
Dβ

x ADβ
x A∗) +

a2

2
(
Dγ

y ADγ
y A∗) +

a3

4
(
AA∗)2, (39)

here the fractional derivative Dα
t A shows the mRL fractional derivative defined in [54]

Dα
z f (z) =

1
�(1 – α)

d
dz

∫ z

a
dζ

[f (ζ ) – f (a)]
(z – ζ )α

, 0 ≤ α < 1. (40)

Next, the functional of the time–space fractional (2 + 1) dimensional NLS equation can
take the form

J
(
A∗) =

∫

X
(dx)β

∫

Y
(dy)γ

∫

T
(dt)αF

(
A∗, Dα

t A∗, Dβ
x A∗, Dγ

y A∗). (41)

Moreover, we have the following definition [54, 55]:

∫ t

a
(dt)α = α

∫ t

a
dτ (t – τ )αf (τ ). (42)

Integrating by parts according to the above relation [54, 55],

∫ b

a
(dz)αf (z)Dα

z g(z) = �(1 + α)
[
g(z)f (z)

]∣
∣b
a

–
∫ b

a
(dz)αg(z)Dα

z f (z), f (z), g(z) ∈ [a, b]. (43)

Further, by optimizing the variation of the functional δJF (A∗) = 0, the Euler–Lagrange
equation of the time–space fractional (2 + 1) dimensional NLS equation can be written

∂F
∂A∗ – Dα

t

(
∂F

∂Dα
t A∗

)

– Dβ
x

(
∂F

∂Dβ
x A∗

)

– Dγ
y

(
∂F

∂Dγ
y A∗

)

= 0. (44)

Finally, substituting the Lagrange defined by Eq. (5) into the Euler–Lagrange formula,
we can obtain the time–space fractional (2 + 1) dimensional NLS equation

iDα
t A + a1D2β

x A – a2D2γ
y A + a3A|A|2 = 0. (45)
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4 Conservation laws of time–space fractional (2 + 1) dimensional NLS equation
In the section, we present a time–space FPDE with three independent variables,

G
(
x, y, t, A, Dα

t A, D2β
x A, D2γ

y A, . . .
)

= 0, α > 0,β > 0,γ > 0. (46)

Introducing an one-parameter Lie group for infinitesimal transformations,

x → x + εξ (x, y, t, A) + o
(
ε2),

y → y + εζ (x, y, t, A) + o
(
ε2),

t → t + ετ (x, y, t, A) + o
(
ε2),

A → A + εη(x, y, t, A) + o
(
ε2),

Dα
t A → Dα

t A + εηα
t (x, y, t, A) + o

(
ε2),

D2β
x A → D2β

x A + εη2β
x (x, y, t, A) + o

(
ε2),

D2γ
y A → D2γ

y A + εη2γ
y (x, y, t, A) + o

(
ε2),

· · ·

(47)

where ξ , ζ , τ and η indicate infinitesimals and ε � 1 means a group parameter.
The extended infinitesimals [56] can be written

ηα
t = Dα

t (η) + ξDα
t (Ax) – Dα

t (ξAx) + ζDα
t (Ay) – Dα

t (ζAy) + Dα
t
(
Dt(τ )A

)

– Dα+1
t (τA) + τDα+1

t (A),

η2β
x = D2β

x (η) + Dβ
x
(
τDβ

x (At)
)

– D2β
x (τAt) + Dβ

x
(
ζDβ

x (Ay)
)

– D2β
x (ζAy) + D2β

x
(
Dx(ξ )A

)
– D2β+1

x (ξA) + Dβ
x
(
ξDβ+1

x (A)
)

+ ξD2β
x (Ax) + τD2β

x (At) + ζD2β
x (Ay),

η2γ
y = D2γ

y (η) + Dγ
y
(
τDγ

y (At)
)

– D2γ
y (τAt) + Dγ

y
(
ξDγ

y (Ax)
)

– D2γ
y (ξAx) + D2γ

y
(
Dy(ζ )A

)
– D2γ +1

y (ζA) + Dγ
y
(
ζDγ +1

y (A)
)

+ ξD2γ
y (Ax) + τD2γ

y (At) + ζD2γ
y (Ay),

(48)

where Dt , Dx and Dy represent the total derivative operator defined in the following form:

Dxj =
∂

∂xj
+ Aj

∂

∂A
+ Ajk

∂

∂Ak
+ · · · , j, k = 1, 2, 3, . . . . (49)

Obviously, x1 = t, x2 = x, x3 = y, Aj = ∂A
∂xj

and Ajk = ∂2

∂xj ∂xk
.

On the basis of the generalized Leibnitz rule [57] and the generalization of the chain rule
[58], we can get the expression of the extended symmetry operator ηα

t ,

ηα
t = Dα

t η +
(
ηA – αDt(τ )

)
Dα

t A – ADα
t ηA + μl

+
∞∑

n=1

[(
α

n

)

Dα
t ηA –

(
α

n + 1

)

Dn+1
t (τ )

]

Dα–n
t (A)

–
∞∑

n=1

(
α

n

)

Dn
t (ξ )Dα–n

t Ax –
∞∑

n=1

(
α

n

)

Dn
t (ζ )Dα–n

t Ay, (50)
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where

μl =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

r=0

(
l
n

)(
n
m

)(
k
r

)

× 1
r!

tn–l

�(n + 1 – l)
[–A]r ∂m

∂tm

[
Ak–r] ∂n–m+kη

∂tn–m ∂Ak , l = α,β ,γ . (51)

In the same way, the extended infinitesimal η
2β
x and η

2γ
y can also be defined as

η2β
x = D2β

x η +
(
ηA – βDx(ξ )

)
D2β

x A – AD2β
x ηA + μβ

+
∞∑

n=1

[(
2β

n

)

Dn
xηA –

(
2β

n + 1

)

Dn+1
x (ξ ) +

(
β

n + 1

)

Dn
x(ξ )

]

D2β–n
x A

+
∞∑

n=1

[(
β

n

)

–

(
2β

n

)]

Dn
x(τ )D2β–n

x (At) +
∞∑

n=1

[(
β

n

)

–

(
2β

n

)]

Dn
x(ζ )D2β–n

x (Ay)

+ ξD2β
x (Ax) + τD2β

x (At) + ζD2β
x (Ay), (52)

η2γ
y = D2γ

y η +
(
ηA – γ Dy(ζ )

)
D2γ

y A – AD2γ
y ηA + μγ

+
∞∑

n=1

[(
2γ

n

)

Dn
yηA –

(
2γ

n + 1

)

Dn+1
y (ζ ) +

(
γ

n + 1

)

Dn
y (ζ )

]

D2γ –n
y A

+
∞∑

n=1

[(
γ

n

)

–

(
2γ

n

)]

Dn
y (τ )D2γ –n

y (At) +
∞∑

n=1

[(
γ

n

)

–

(
2γ

n

)]

Dn
y (ξ )D2γ –n

y (Ax)

+ ξD2γ
y (Ax) + τD2γ

y (At) + ζD2γ
y (Ay). (53)

By the Lie symmetry theory, we will obtain the infinitesimal generator

X = ξ (x, y, t, A)
∂

∂x
+ ζ (x, y, t, A)

∂

∂y
+ τ (x, y, t, A)

∂

∂t
+ η(x, y, t, A)

∂

∂A
. (54)

The invariance criterion of system (46) can be given as follows:

P(n)
r V (�)

∣
∣
�=0 = 0, n = 1, 2, . . . , (55)

where � = G(x, y, t, A, Dα
t A, D2β

x A, Dγ
y A, . . .).

The invariance condition leads to

τ (x, y, t, A)
∣
∣
t=0 = 0. (56)

Using the second prolongation to Eq. (45), the following invariance criterion is ob-
tained:

iηα
t + a1η

2β
x – a2η

2γ
y + 2a3A∗Aη = 0. (57)
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Substituting (50), (52) and (53) into Eq. (57) yields the determining equations, from
which we identify

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
,

X4 = βy
∂

∂x
– γ x

∂

∂y
, X5 =

x
β

∂

∂x
+

y
γ

∂

∂y
+

2t
α

∂

∂t
– A

∂

∂A
.

(58)

With the help of Lie group analysis, we acquire the conservation laws of Eq. (45) defined
by the following form:

Dt(Ct) + Dx(Cx) + Dy(Cy) = 0, (59)

where Ct , Cx and Cy denote the conserved vectors.
A formal Lagrangian [59] for Eq. (45) is written as

L = ω(x, y, t)
(
iDα

t A + a1D2β
x A – a2D2γ

y A + a3A2A∗), (60)

where ω(x, y, t) indicates a new dependent variable.
The adjoint equation of Eq. (45) is given by

Q∗ =
δL
δA

, (61)

where the expression of the Euler–Lagrange operator δ
δA is defined as

δ

δA
=

∂

∂A
+

(
Dα

t
)∗ ∂

∂(Dα
t A)

+
(
Dβ

x
)∗ ∂

∂(Dβ
x A)

+
(
Dγ

y
)∗ ∂

∂(Dγ
y A)

+
∞∑

k=1

(–1)kDi1Di2 · · ·Dik
∂

∂Ai1i2···ik
. (62)

Here (Dα
t )∗ means the adjoint operator of Dα

t .
In addition, W = η – τAt – ξAx – ζAy is the Lie characteristic functions, we get

W1 = –Ax, W2 = –Ay, W3 = –At ,

W4 = –βyAx + γ xAy, W5 = –A –
x
β

Ax –
y
γ

Ay –
2t
α

At .
(63)

According to the fractional generalizations of the Noether operators [38], the compo-
nent of the conserved vector has the form

Cψ = ξψL +
n–1∑

k=0

(–1)kDl–1–k
ψ (W )Dk

ψ

∂L
∂Dl

ψA
– (–1)nJ

(

W , Dn
ψ

∂L
∂Dl

ψA

)

, (64)

where J(·) expresses the integral

J(f , g) =
1

�(n – α)

∫ t

0

∫ T

t

f (τ , x, y)g(μ, x, y)
(μ – τ )α+1–n dμdτ . (65)
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Let us take W5 as an example to calculate the conservation laws of Eq. (45) by using the
preceding formula,

Ct = τL + Dα–1
t (W5)

∂L
∂Dα

t A
+ J

(

W , Dt
∂L

∂Dα
t A

)

= iωDα–1
t

(

–A –
x
β

Ax –
y
γ

Ay –
2t
α

At

)

+ J
[(

–A –
x
β

Ax –
y
γ

Ay –
2t
α

At

)

, iωt

]

, (66)

Cx = ξL + D2β–1
x (W5)

∂L
∂D2β

x A
+ J

(

w, Dx
∂L

∂D2β
x A

)

= a1ωD2β–1
x

(

–A –
x
β

Ax –
y
γ

Ay –
2t
α

At

)

+ J
[(

–A –
x
β

Ax –
y
γ

Ay –
2t
α

At

)

, a1ωx

]

, (67)

Cy = ζL + D2γ –1
y (W5)

∂L
∂D2γ

y A
+ J

(

w, Dy
∂L

∂D2γ
y A

)

= –a2ωD2γ –1
y

(

–A –
x
β

Ax –
y
γ

Ay –
2t
α

At

)

+ J
[(

–A –
x
β

Ax –
y
γ

Ay –
2t
α

At

)

, –a2ωy

]

. (68)

5 Exact solutions of time–space fractional (2 + 1) dimensional NLS equation
In this part, the exp(–φ(ξ )) method will be applied to obtain the exact solutions to Eq. (45),
as follows.

To begin with, consider the following fractional complex transformation:

A(x, y, t) = A(ξ ), ξ =
b1xβ

�(β + 1)
+

b2yγ

�(γ + 1)
+

b3tα

�(α + 1)
, (69)

where b1, b2 and b3 indicate constants defined later.
Thus, Eq. (45) can be transformed into the following differential equation [60]:

ib3Aξ + b2
1a1Aξξ – b2

2a2Aξξ + a3A|A|2 = 0, (70)

and the complex function A can be given,

A(ξ ) =
ib3

exp[2(a2b2
2 – a1b2

1)]
ξU(ξ ), (71)

where U(ξ ) denotes the real function, we can get the following equation:

c1U + c2U3 + c3Uξξ = 0, (72)

here c1 = b2
3, c2 = 4a3(a1b2

1 – a2b2
2), c3 = –4(a1b2

1 – a2b2
2).

For the purpose of balancing the highest-order derivative term and the nonlinear term
of Eq. (45), it can be determined that n = 1, and the solutions of Eq. (72) are written

U(ξ ) = d0 + d1 exp
(
–φ(ξ )

)
, (73)
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where d1 and d2 are constants and exp(–φ(ξ )) satisfies the following equation:

φ′(ξ ) = exp
(
–φ(ξ )

)
+ μ exp

(
φ(ξ )

)
+ λ. (74)

Substituting Eq. (73) and Eq. (74) into Eq. (70) and extracting all the same power terms of
[exp(–φ(ξ ))]j, j = –3, . . . , 0, dividing the coefficients into zero one acquires a set of algebraic
equations,

φ3ξ : d0c1 + d3
0c2 + c3d1μλ = 0,

φ2ξ : d1c1 + 3d2
0d1c2 + 2d1c3μ + d1λ

2c3 = 0,

φ1ξ : 3c2d0d2
1 + 3d1c3λ = 0,

φ0ξ : d3
1c2 + 2d1c3 = 0.

(75)

Further solving the above algebraic equations (75), we will get

d0 = ±i
√c3λ√

2c2
, d1 = ±i

√
2c3√
(c2)

, c1 =
1
2
(
c3λ

2 + 4c3μ
)
. (76)

Substituting Eq. (76) into Eq. (73) leads to

U(ξ ) = ±i
√c3λ√

2c2
+ ±i

√
2c3√c2

exp
(
–φ(ξ )

)
. (77)

Finally, based on the above results, we can discuss solutions of different cases.
(I) When λ2 – 4μ < 0 and μ �= 0, the trigonometric function solutions are written

A2(x, y, t) = ±
√

λ2 + 4μc3

exp[2(a2b2
2 – a1b2

1)]

× ξ

(
λ

2√c2
+

1√c2

2μ
√

4μ – λ2 tan(
√

4μ–λ2

2 (ξ + C)) – λ

)

. (78)

(II) When λ2 – 4μ > 0 and μ �= 0, the hyperbolic function solutions are written

A1(x, y, t) = ±
√

λ2 + 4μc3

exp[2(a2b2
2 – a1b2

1)]

× ξ

(
λ

2√c2
–

1√c2

2μ
√

λ2 – 4μ tanh(
√

λ2–4μ

2 (ξ + C)) + λ

)

. (79)

(III) When λ2 – 4μ > 0 and μ = 0, λ �= 0, the hyperbolic function solutions are written

A3(x, y, t) = ±
√

λ2 + 4μc3

exp[2(a2b2
2 – a1b2

1)]

× ξ

(
λ

2√c2
+

1√c2

λ

cosh(λ(ξ + C)) + sinh(λ(ξ + C)) – 1

)

. (80)
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(a)

(b)

Figure 1 (a) The exact solution represented by Eq. (78), t = 2, α = 1, β = 1, γ = 1. (b) The exact solution
represented by Eq. (78), t = 3, α = 1, β = 1, γ = 1

(a)

(b)

Figure 2 (a) The exact solution represented by Eq. (78), t = 2, α = 0.5, β = 1, γ = 1. (b) The exact solution
represented by Eq. (78), t = 3, α = 0.5, β = 1, γ = 1
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(a)

(b)

Figure 3 (a) The exact solution represented by Eq. (78), t = 2, α = 0.75, β = 1, γ = 1. (b) The exact solution
represented by Eq. (78), t = 3, α = 0.75, β = 1, γ = 1

(a)

(b)

Figure 4 (a) The exact solution represented by Eq. (78), t = 3, α = 1, β = 0.25, γ = 1. (b) The exact solution
represented by Eq. (78), t = 3, α = 1, β = 1, γ = 0.25
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(a)

(b)

Figure 5 (a) The exact solution represented by Eq. (78), t = 3, α = 1, β = 0.5, γ = 1. (b) The exact solution
represented by Eq. (78), t = 3, α = 1, β = 1, γ = 0.5

(a)

(b)

Figure 6 (a) The exact solution represented by Eq. (78), t = 3, α = 1, β = 0.75, γ = 1. (b) The exact solution
represented by Eq. (78), t = 3, α = 1, β = 1, γ = 0.75
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(a)

(b)

Figure 7 (a) The exact solution represented by Eq. (78), t = 3, α = 0.25, β = 0.25, γ = 0.25. (b) The exact
solution represented by Eq. (78), t = 3, α = 0.5, β = 0.5, γ = 0.5

(IV) When λ2 – 4μ = 0 and μ �= 0, λ �= 0, the rational function solutions are written

A4(x, y, t) = ±
√

λ2 + 4μc3

exp[2(a2b2
2 – a1b2

1)]
ξ

(
λ

2√c2
–

1√c2

λ2(ξ + C)
2(λ(ξ + C) + 2)

)

. (81)

(V) When λ2 – 4μ = 0 and μ = 0, λ = 0, the function solutions are written

A5(x, y, t) = ±
√

λ2 + 4μc3

exp[2(a2b2
2 – a1b2

1)]
ξ

(

–
1√c2

1
ξ + C

)

. (82)

Adopting the exp(–φ(ξ )) method, we get the exact solutions to the time–space fractional
(2 + 1) dimensional NLS equation. Based on Eq. (78), the following graphics are given (see
Figures 1–7).

In the present numerical simulation, we draw some three-dimensional graphs of the
exact solution (78). First we compare the effect of the fractional order on the solution at
two different moments, t = 2 and t = 3, and At a certain moment t = 3, the change of
solution is considered in the case of changing the fractional order of time and space. The
behavior shows that the change of fractional order changes the nature of the solution and
has a huge influence on the nonlinear propagation of the envelope gravity waves.

6 Conclusion
In this work, we first obtain the (2 + 1) dimensional NLS equation for envelope grav-
ity waves by using multiple-scale, perturbation method. The semi-inverse method is ap-
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plied to get the Lagrangian of the (2 + 1) dimensional NLS equation. Then the fractional
Euler–Lagrange equation with the fractional variational principle is derived. Based on the
modified Riemann–Liouville fractional derivative, we can have the time–space fractional
(2 + 1) dimensional NLS equation, which can better reflect the propagation character-
istics of the envelope gravity wave and capture the nonlinear phenomenon in actual at-
mospheric movement. Using the Lie group analysis method, the conservation laws of the
time–space fractional (2 + 1) dimensional NLS equation are discussed in depth. By adopt-
ing the exp(–φ(ξ )) method, we list the exact solutions to different cases. Taking one of the
solutions as an example, we compare the effects of fractional order for the solution. After
further research, we find that the fractional model is more practical and is a pioneering
effort to find help for the study of actual atmospheric and ocean movement.
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