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Abstract

In this paper, we establish some (presumably new) differential equation formulas for
the extended Mittag-Leffler-type function by using the Saigo-Maeda fractional

differential operators involving the Appell function F3(-) and results in terms of the

Wright generalized hypergeometric-type function w;{ﬁ}/mo)(z;p) recently

established by Agarwal. Some interesting special cases are also pointed out.
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1 Introduction and preliminaries

Fractional calculus (derivative and integrals) is very old as the conventional calculus and
has bern recently applied in various areas of engineering, science, finance, applied math-
ematics, and bio engineering (see, e.g., [1, 2]). Many differential equations involving vari-
ous special functions have found significant importance and applications in various sub-
fields of mathematical analysis. During the last few decades, a number of workers have
studied, in depth, the properties, applications, and different extensions of various hyper-
geometric operators of fractional derivatives. A detailed account of such operators along
with their properties and applications have been considered by several authors (see [3—22]
and [23]).

A useful generalization of the hypergeometric fractional derivatives, including the
Saigo operators [15-17], has been introduced by Marichev [13] as Mellin-type con-
volution operators with a special function F3(-) in the kernel (for more details, see
Samko et al. [20, p. 194, Eq. (10.47) and Section 10.3]) and later extended and stud-
ied by Saigo and Maeda [18, p. 393, Egs. (4.12) and (4.13)]. Note that the generalized
fractional derivative operators (for Saigo-Maeda operators, see [18]) are defined as fol-

lows:
(Dé::",v,v’,af) (x) _ (I(;",—r,—v’,—u,—af) (x)

d ‘ ! "+k k
= (%) (Ioy TV RTTTEE) (w), (1.1)
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(Di,f/,u,v/,af) (x) = (I:r/,—z,—v’,—v,—“f) (x)

d k , ok .
= (_E) (5 v ) (x), (1.2)

where (o) >0,k = [N(o)]+ 1, 7,7/,u,0',0 € C, C being the set of complex numbers, and
x> 0.

Following Saigo et al. [18] and Saxena and Saigo [21], the left-hand sided and right-hand
sided generalized differentiation for a power function are, respectively, given as follows
(see, [24, p. 7, Egs. (4.1) and (4.2)]):

FETo-oc+7+7 +V)T(0+71-v)

Dr,r’,u,v’,atg—l x) = xr+r/+g—a—1, 1.3
(D5 )® Fo-v)le—o+t+7)T(0—0+T +V) (1.3)
where 9(g) > max{0,N(-t + v),R(-t -1t/ -V - 0)}, and
(D=7 £7) @)
_ FNo+o-1t-1)'o-t'-v+0)T(0+ U/)x7Q+r+r/7U, (1.4)

Forlo—-t-t'-v+o)l(o-1"+V)

where N(g) > max{R(-v"), RNt + ' —0), R +v-0) + R(o) + 1}.

In certain areas of applied mathematics and mathematical physics, special functions
and their generalizations are used for finding solutions of the initial or boundary value
problems for partial differential equations and fractional differential equations. It is also
important to mention here that the special and degenerated cases of hypergeometric func-
tions; in particular, the Bessel, Mittage-Leffler, and Wright hypergeometric functions have
an importance due to application point of view.

Recently, Parmar introduced the extended Mittag-Leftler type function in the following
form [25, p. 1072, Eq. (16)]:

> BUies) (4,1 - asp) 2

(etdiengs® |
Eey (zp) = ; B(,1-1) LEn+¢)
(25,1 € C,91(E) > 0,9(¢) > 0,90) > 15 = 0) (15

where B({"’}’GNO)(A +n,1—A;p) is the extended beta function defined by [26]

1
K, = B £
B({ I}IENO)(Ol,ﬁ;p) _ /(; ¢ 1(1 - t)ﬂ 1@({Kl}leNo;—m) dt

(min{R(a), R(B)} > 0;R(p) > 0), (1.6)

and O({x}eny; 2) is a function of an appropriately bounded sequence {«;}cn, of arbitrary
real or complex numbers defined as follows [26, p. 243, Eq. (2.1)]:

®({KI}ZENO;Z>

o) )

2 Solkidien T |z| < R;0 < R < 0050 := 1, 17
Moz?exp(z)[1+O(2)], NR(z) > o00; Mg > 00 € C.
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It can be easily seen that different selection of the sequence {«;};cry, would generate par-
ticular cases of (1.5) as explained in the following examples.

Example 1 If we set x; = % ({ € Nyp), then (1.5) results in to the extended generalized
Mittag-Leffler function [25, p. 1072, Eq. (17)]

. S B+ n1-rp) 2
E(Pvg)v)\ ; — ) )
e @p) Z; B(,1-%)  TEn+?)

(2,2, € C,R(p) > 0,%(0) > 0,R(§) > 0,R(¢) > 0,R(1) > L;p > 0). (1.8)

Example 2 Setting «; =1 ({ € N) in (1.5) (see [27] with ¢ = 1), we get the function

v e~ Bi+ml-kp) 2
Ef’f(z’p)’;; BO,1-%) T(En+0)

(z,¢,1 € C,N(E) > 0,%(0) > 0,%(1) > L;p > 0). (1.9)

Example 3 Similarly, for p = 0, (1.9) immediately reduces to the Prabhakar-type [28]
Mittage-Leffler function.

Example 4 For § =¢ =1, (1.5), (1.8), and (1.9) can be expressed, respectively, in terms of
the extended confluent hypergeometric functions as follows:

Ei{'l(z leNgt ( p)=® Kk1}1eNy) A 152), (1.10)
EV M (zp) = <I>},”"’)(A;1;Z) (1.11)

and
E}1(zp) = (s 1;2). (1.12)

Similarly, by (1.6) and (1.7) of the extended beta function BUetieno) () 4 1,1 2 p)and a
function of an appropriately bounded sequence {«;}en, of arbitrary real or complex num-
bers ®({k;}en,; 2), Agarwal [29] introduced and studied a further potentially useful exten-
sion of the Wright hypergeometric function as follows:

}ieN,
m+1¢/n+1 c 0 ( )

({1} leNo (air az’)l,mr ()/, 1) .
= m+1wn+1 |:(bj,,3j)1,nr (C, 1) ’(Z’P):|

o1 i [17, Ta; + k) BEeto)(y 4 k, ¢ — y; p)2k
T(e—y) = T T + k) k!

(z,y € C,%(c) > R(y) > 0;p > 0). (1.13)

In this paper, we aim to establish certain (presumably) new fractional differential equa-
tion formulas involving the extended generalized Mittag-Leffler type function (1.9) and
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extended Wright Generalized hypergeometric function (1.13) by using the fractional dif-
ferential operators (1.1) and (1.2), respectively. Some particular cases of our main findings

are also pointed out.

2 Main results
In this section, we establish the fractional differential formulas involving the Saigo-Meada
fractional derivative operators (1.1) and (1.2). These formulas are given in the following

theorems.

Theorem 1 Letx >0, t,t",v,V,0,u,&,¢, M, t,p € C(NR(E)>0,R(¢) >0,R(p) > 0) be such
that

R(w) > max{O, R(-1 + U),?)%(—t -t -v - 0)}. (2.1)

Then the following formula holds:

“1}ieNg M)

! o (
(D§I e E (&) ()
x;/.+r+r’—a—1
T
(epieng) [ (1, 1), (m-v+T1,1), (m+t+t+v -0,1), (v,1)|,.
4V [(M —ul), (pit+t-0,1), (u-o+t+v,1),  (E) ("’p)] - (22)

Proof LetZ be the left-hand side of (2.2). Using (1.5) and changing the order of integration

and summation, which is verified under the conditions of the theorem, we have

. i B({Kl]leNo)(A +m1-Ap) 1

-0 B(,1-2) [(En+¢)

(Dgf/'vvvlﬂt#‘*nil)(x)- (2.3)

N

X

Applying (1.1) and (1.3) with p replaced by 1 + n yields

7. i B({KI}IGNO)()L +n1 —)L;P) 1
= B(A,1-1) T(En+0)

FrMu+m)T(p+n+z-v)(u+n+t+7t' +0 —-0)

xu+n+r+r’—a—1, 2.4
Nu+n-v)l'(u+n-o+t+t ) (w+n—-0o+1+0) (24)

which, in view of (1.13), is equal to the right-hand side of (2.2). This completes the proof. (J

Theorem 2 Let x>0, t,7/,v,V,0,u,&,¢, 1,6, p € C (R(E) >0,N(¢) >0,R(1) > 1,R(p) >
0) be such that

NR(e) > max{R(-v'),R(r + ' - 0),R(t +v-0) + NR(o)}. (2.5)
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Then the following formula holds:

ot gt NN )
(Dr oo e, O (18 p)) (v)

x—u+r+r'—u

()

(kpdeng) [ (e + V', 1), (mw-v-1t+0,1), (mw-t-t'+0,1), (,)|; 1.
X411/4 |: (/'Lrl)? ([L—‘L'—‘L"—U+(T,1), (}L—f/+U,1), (§:§) (x ,p)]' (2.6)

Proof We establish the result by a similar argument as in the proof of Theorem 1 using
(1.4) instead of (1.3). Therefore, we omit the details. a

3 Special cases
The results in Theorems 1 and 2 can be easily specialized to yield the corresponding for-
mulas involving simpler functions like Mittag-Leffler-type functions and extended con-
fluent hypergeometric functions given by (1.8)-(1.12) after appropriate selection of the
sequence {K;}en,-

()]

Setting «; = N ({ € Np), we obtain the following results from Theorems 1 and 2, respec-

tively.

Corollary 1 Let x>0, 7,7",v,V,0,0,&,5, A ¢,0,t,p € C (R(E) > 0,R(¢) >0,N(p) > 0) be
such that

R(w) > max{O, R(-1 + v),i}i(—r -7 -V - cr) } (3.1)
Then the following formula holds:

’ 7 _ 0)ih
(D5 ¢ ESO (6p) ()

~ xll,+‘[+t,—a—1 F(lﬂ)

r(r¢)
(1, 1), (L-v+71,1), (w+t+7 +0 -0,1), (v,1), ($,1)],
XS"“[(u—u,l), (rt+t—0,1),  (u-o+T+ll),  (E), <w,1)("’p)] (32)

Corollary 2 Let x > 0, 7,7/,v,V,0,0,&,5, A ¢, 0t,p € C (N(E) > 0,N(¢) > 0,R(A) >
1,N(p) > 0) be such that

NR(e) > max{R(-v'),R(r + ' - 0),R(r +v-0) + NR(0)}. (3.3)

Then the following formula holds:

(Dz,r',u,u',d t—/LEg’é‘P);)L (l/t,p)) (x)

~ x—u+r+r’f<r F((/J)
- TWre

(/’L+ UI’I)’ (M_U —T/+0,1), (M—T —f/ +o, 1)? (V:l)v (¢,1) -1,
XSWS[ (1, 1), (m-t-tv'-v+o0,1), (u-t'+v,1), (8, (o] (x I’P)]' (34

For x; = 1, Theorems 1 and 2 become as follows.
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Corollary 3 Letx>0,t,7/,v,V,0,u,§,8, 1, t,pe C(R(E)>0,N(¢) >0,R(p) > 0) be such
that

R(w) > max{0,R(-7 +v),R(-t -7 -V - 0)}. (3.5)
Then the following formula holds:

! !
(Do T EL (6p)) ()

x;/.+r+r’—a—1

TT

(1, 1), (n-v+71,1), (m+t+t' +0v -0,1), (y’l)‘(x'p)]. (3.6)

X4w4|:(u—v,l), T N )

Corollary 4 Letx >0, 7,7,v,V,0,0,&,¢, A, t,p € C(NE) >0,N(¢) >0,RA) > 1,R(p) >
0) be such that

R(e) > max{R(-v'),R(r + ' —0),R(r +v—-0) + NR(0)}. (3.7)
Then the following formula holds:

(Do L (1) @)

~ x—M+T+‘[,—0 INCD)

rr¢)
(n+v,1), (u-v-t'+0,1), (u-t-7+0,1), (¥, 1| 1.
><41/f4[ (w, 1), (p-t-t'-v+0,1), (-7 +v,1), (C:E)‘(x ,p)] (38)

Similarly, putting p = 0 in Corollaries 3 and 4, we get the fractional differential formulas
involving the Prabhakar-type [28] Mittag-Leffler function. We omit the details.

Following the same way, setting £ = ¢ = 1, from Theorems 1 and 2 and Corollaries 1 and
2 we obtain the following interesting results.

Corollary5 Letx>0,7,7/,v,V,0,u, A, ¢,0,t,p € C(N(E) >0,R(¢) >0,NR(p) > 0) be such
that

R(u) > max{0,R(-7 +v),R(-t -7 -V - 0)}. (3.9)

Then the following formula holds:

(frg} )
(D(r);r’,u,v’,atﬂ—l q)pkl leNg (A;l;t))(x)
xu+r+r’—a—1
TTTO)
(etdieng) | (1, 1), (w-v+r1,1), (m+t+t'+v -0,1), (v,1)|,.
x4V [(M—u,l), (m+t+1t -0,1), (w—-o+t+0,1), (1,1) (p) |- (3.10)

Corollary 6 Letx>0,t,7/,v,V,0,u,At,peC (RE)>0,R(¢)>0,RA) >1,R(p) > 0) be
such that

NR(e) > max{R(-v'),R(r + ' - 0),R(r +v-0) + NR(0)}. (3.11)
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Then the following formula holds:

Dz‘r,'v»v'vat—ﬂq;“‘(l)IENO) " 1;1 »
? t

x—/l+T+‘[,—O“ l"((p)

r()re)
(n+v,1), (mw-v-1t'+0,1), m-t-t'+0,1), 1|, .
X‘“”‘*[ w1),  (i-t-T-v+o,1), (u-t+v,1), (1, 1)‘(" ’p)]' (312)

Corollary7 Letx>0,7,7,u,V,0,u, A ¢,0,t,p € C(R(E) >0,R(¢) >0, NR(p) > 0) be such
that

R(u) > max{0,R(-7 +v),R(-t -7 -V - 0)}. (3.13)

Then the following formula holds:

(D57 L0l (351;0)) @)

x;u—u—r/—a—l F((p)

r(re)
(1, 1), (L-v+r1,1), (u+t+7t'+v -0,1), (v,1), (p,1)],
x5 ¥s [(u -u,1), (u+t+t -o0,1), (-0 +T+0,1), (1,1), (e 1)‘(x,p):| G

Corollary 8 Let x>0, 7,7/,v,V,0, 1, A ¢, 0, t,p € C (R(E) > 0,R(¢) > 0,N(A) > 1,R(p) >
0) be such that

R(o) > max{f)f(—u/), R(r+1' - a),f}i(r’ +U-— 0) + SR(U)}. (3.15)

Then the following formula holds:

(Do o' I 51 ) ()
x—u.+l+r'—a I'(¢)
F()r(¢)

(r+v,1), (p-v-t'+0,1), (u-t-7"+0,1), (v,1), (1) 1.
XSI/ISI: (1, 1), (m-t-1"-v+0,1), (n-1"+v,1), (1,1), ((p,l)‘(x ’ )] (3.16)

4 Concluding remarks
In this study, we established some fractional differential formulas involving a family of
Mittag-Leffler functions. Due to practical importance of the Mittag-Leffler functions, our

results are of general character and hence encompass several cases of interest.
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