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Abstract
In this paper, we study a singular second-order fractional Emden-Fowler problem. The
reproducing kernel Hilbert space method (RKHSM) is employed to compute an
approximation to the proposed problem. The construction of the reproducing kernel
based on orthonormal shifted Legendre polynomials is presented. The validity of the
RKHSM is ascertained by presenting several examples. We prove the existence of
solution of the singular second-order fractional Emden-Fowler problem. The
convergence of the approximate solution using the proposed method is investigated.
The uniform convergence of the approximate solution to the exact solution is
presented. Error estimation to the proposed method is proven. The results reveal that
the proposed analytical method can achieve excellent results in predicting the
solutions of such problems.
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1 Introduction
Recently, fractional initial and boundary value problems have been studied extensively.
Several forms of them have been proposed in standard models, and there has been a sig-
nificant interest in developing numerical schemes for their solutions. Several numerical
techniques, such as Laplace and Fourier transforms [1, 2], Adomian decomposition and
variational iteration methods [3, 4], eigenvector expansion [5], differential transform and
finite differences methods [6, 7], power series method [8], residual power series method
[9–12], collocation method [13], operational matrix of fractional integration method [14,
15], and wavelet method [16, 17], are used to solve such problems. Many applications of
fractional calculus to various branches of science such as engineering, physics and eco-
nomics can be found in [18, 19]. Considerable attention has been given to the theory of
fractional ordinary differential equations and integral equations [20, 21]. Additionally, the
existence of solutions of ordinary and fractional boundary value problems using monotone
iterative sequences has been investigated by several authors [22–25]. Some applications
are discussed by Singh et al. [26]. They analyze a new fractional model of chemical kinetics
system related to a newly discovered Atangana-Baleanu derivative with fractional order
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having nonsingular and nonlocal kernel. Also, Singh et al. [27] presented a reliable algo-
rithm based on the local fractional homotopy perturbation. Moreover, Singh et al. [28]
proposed a new numerical algorithm, namely q-homotopy analysis Sumudu transform
method (q-HASTM), to obtain the approximate solution for the nonlinear fractional dy-
namical model of interpersonal and romantic relationships.

A reproducing kernel Hilbert space method (RKHSM) is a useful framework for con-
structing approximate solutions of linear and nonlinear boundary value problems. In re-
cent years, a lot of attention has been devoted to the study of RKHSM to investigate various
scientific models. The RKHSM, which accurately computes the series solution, is of great
interest to applied sciences. This technique gives the solution in a rapidly convergent series
with components that can be easily computed. We use the RKHSM to solve this problem
since it is easy to implement and it gives very accurate results. This method is used for
the investigation of several scientific applications, see [29–32] and [33–35]. Kumar et al.
[36] presented a new numerical scheme based on a combination of q-homotopy analysis
approach and Laplace transform approach to examine the Fitzhugh-Nagumo (F-N) equa-
tion of fractional order. Kumar et al. [37] constituted a numerical algorithm based on the
fractional homotopy analysis transform method to study the fractional model of Lienard’s
equations. Baleanu et al. [38–44] considered the exact solutions of wave equations by the
help of the local fractional Laplace variation iteration method (LFLVIM). They developed
an iterative scheme for the exact solutions of local fractional wave equations (LFWEs).

In this paper, we discuss how to solve the following class of second-order fractional
Emden-Fowler problems:

D2αu(x) +
λ

xα
Dαu(x) + h(x)g

(
u(x)

)
= f (x), x ∈ (0, 1),

1
2

< α ≤ 1, (1.1)

subject to

u(0) = a, Dαu(0) = b, (1.2)

where a and b are constants. When α = 1, λ = 2, and h(x) = 1, Eq. (1.1) becomes the Lane-
Emden type equation. With some special forms of g(u(x)), they describe many phenom-
ena in mathematical physics and astrophysics such as the thermal behavior of a spherical
cloud of gas, theory of stellar structure, theory of thermionic currents, and isothermal
gas spheres. We use the RKHSM to solve it. We derive the reproducing kernel and the
RKHSM. In addition, we prove the existence and uniform convergence of the approximate
solution using this approach. Error estimation for our approximation is proved. Moreover,
some numerical examples are presented in Section 6 to show the efficiency of the proposed
method.

We organize this paper as follows. In Section 2, we present some preliminaries which we
use in this paper. In Section 3, we construct the reproducing kernel with fractional shifted
Legendre polynomial form. In Section 4, we present the RKHSM for solving a second-
order fractional Emden-Fowler problem. Convergence and error estimate of the proposed
method are presented in this section. In Section 5, we present an iterative method to solve
the second-order fractional nonlinear Emden-Fowler problem. This iterative method is a
combination of the homotopy perturbation method and the RKHSM. Some numerical re-
sults are presented in Section 6 to illustrate the efficiency of the presented method. Finally,
we conclude with some comments and conclusions in Section 7.
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2 Preliminaries
In this section, we review the definition and some preliminary results of Caputo fractional
derivatives as well as the definition of fractional shifted Legendre functions and their prop-
erties.

Definition 2.1 The Riemann-Liouville fractional integral operator Iα of order α > 0 on
the usual Lebesgue space L1[0, 1] is given by

Iαf (x) =
1

�(α)

∫ x

0

f (t)
(x – t)1–α

dt,

I0f (x) = f (x),

where �(ζ ) =
∫ ∞

0 tζ–1e–t dt is the Euler gamma function, see [18, 45, 46].

For any f ∈ L1[0, 1], α,β ≥ 0, and γ > –1, Iα exists for any x ∈ [0, 1] and

Iαxγ =
�(γ + 1)

�(α + γ + 1)
xα+γ . (2.1)

Definition 2.2 The Caputo fractional derivative of order α is defined by

Dαf (x) = In–αDnf (x) =
1

�(n – α)

∫ x

0

f (n)(t)
(x – t)α–n+1 dt

provided that the integral exists, where n = [α] + 1, [α] is the integer part of the positive
real number α, x > 0.

The Caputo fractional derivative satisfies the following properties for f ∈ L1[0, 1] and
α,β ≥ 0:

IαDαf (x) = f (x) –
n–1∑

k=0

f (k)(0+)xk

k!
(2.2)

and

Dαxβ =
�(β + 1)

�(β – α + 1)
xβ–α . (2.3)

The basic concept of this paper is Legendre polynomials. For this reason, we study some
of their properties.

Definition 2.3 The Legendre polynomials {�k(x) : k = 0, 1, 2, . . .} are the eigenfunctions of
the Sturm-Liouville problem

((
1 – x2)�′

k(x)
)′ + k(k + 1)�k(x) = 0, x ∈ [–1, 1].

In order to use these polynomials on the interval [0, 1], we define the shifted Legendre
polynomials by �Si(x) = �i(2x – 1). It is easy to see that

∫ 1

0
�Si(z)�Sj(z) dz =

1
2i + 1

δij,
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where δij =
{ 1, i = j

0, i �= j . In this paper, we use orthonormal fractional shifted Legendre functions
which are defined by Si(x) =

√
(2i + 1)αS�i(xα), i = 0, 1, 2, . . . . Then

∫ 1

0
Si(x)Sj(x)xα–1 dx = δij.

The reproducing kernel Hilbert space method is a useful numerical technique to solve
nonlinear problems. The reproducing kernel is given by the following definition.

Definition 2.4 Let A be a nonempty abstract set. A function K : A × A → C is a repro-
ducing kernel of the Hilbert space H if and only if

• K(·, x) ∈ H for all x ∈ A,
• (φ(·), K(·, x)) = φ(x) for all x ∈ A and φ ∈ H .

The second condition is called the reproducing property, and a Hilbert space which
possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS).

3 Construction of a reproducing kernel with fractional shifted Legendre
functions form

Let

� = Span
{

S0(x), S1(x), . . . , Sn(x)
}

be the set of all orthonormal fractional shifted Legendre functions of degree ≤ nα with
the following inner product:

(
u(y), v(y)

)
=

∫ 1

0
u(y)v(y)yα–1 dy

and the norm

‖u‖
√(

u(y), u(y)
)
.

It is easy to see that � is a Hilbert space. In the next theorem, we show that � is a repro-
ducing kernel space, and we present its reproducing kernel.

Theorem 3.1 � is a reproducing kernel space, and its reproducing kernel is

Kn(x, y) =
n∑

i=0

Si(x)Si(y). (3.1)

Proof If u(x) ∈ �, then

u(x) =
n∑

i=0

αiSi(x).

Thus, for any y ∈ [0, 1],

Kn(·, y) =
n∑

i=0

Si(y)Si(·) ∈ �
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and

(
u(x), Kn(x, y)

)
=

( n∑

i=0

αiSi(x),
n∑

j=0

Sj(x)Sj(y)

)

=
n∑

i=0

n∑

j=0

αiSj(y)
(
Si(x), Sj(y)

)

=
n∑

i=0

n∑

j=0

αiSj(y)

= u(y),

which completes the proof. �

4 Analysis of RKHSM for a second-order fractional linear initial Emden-Fowler
problem

In this section, we discuss how to solve the following class of second-order fractional linear
initial Emden-Fowler problems:

D2αu(x) +
λ

xα
Dαu(x) = f (x), x ∈ (0, 1),

1
2

< α ≤ 1, (4.1)

subject to

u(0) = 0, Dαu(0) = 0. (4.2)

Let

Lu(x) = D2αu(x) +
λ

xα
Dαu(x).

Then L is a linear operator. Let {x1, x2, . . . , xn} be n nodes of nodes in the interval [0, 1]. In
this paper, we choose

xj =
1 + cos( π j

n )
2

, j = 1, 2, . . . n.

Let

ψi(x) = LηKn(x,η)�η=xi

for i = 1, 2, . . . , n, ψn+1(x) = Sn+1(x), and ψn+2(x) = Sn+2(x). Using the Gram-Schmidt or-
thonormalization to generate orthonormal basis { _

ψ i(x)}n+2
i=1 of �, we have

_
ψ i(x) =

i∑

j=1

αijψj(x), (4.3)

where αij are the coefficients of Gram-Schmidt orthonormalization, αii > 0, i = 1, 2, . . . , n +
2. In the next theorem, we show the existence of solution of Problem (4.1)-(4.2).
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Theorem 4.1 The approximate solution of Problem (4.1)-(4.2) is given by

un(x) =
n∑

i=1

i∑

j=1

αijf (xj)
_
ψ i(x) + γ1

_
ψn+1(x) + γ2

_
ψn+2(x). (4.4)

Proof From Eq. (4.3) and from the fact that Kn(x,η) is a reproducing kernel and Lu(η) =
f (η), we get

un(x) =
n+2∑

i=1

(
u(x),

_
ψ i(x)

) _
ψ i(x)

=
n∑

i=1

(
u(x),

_
ψ i(x)

) _
ψ i(x) +

(
u(x),

_
ψn+1(x)

) _
ψn+1(x) +

(
u(x),

_
ψn+2(x)

) _
ψn+2(x)

=
n∑

i=1

(

u(x),
i∑

j=1

αijLηKn(x,η)�η=xj

)
_
ψ i(x) +

(
u(x),

_
ψn+1(x)

) _
ψn+1(x)

+
(
u(x),

_
ψn+2(x)

) _
ψn+2(x)

=
n∑

i=1

i∑

j=1

αijLη

(
u(x), Kn(x,η)�η=xj

) _
ψ i(x) +

(
u(x),

_
ψn+1(x)

) _
ψn+1(x)

+
(
u(x),

_
ψn+2(x)

) _
ψn+2(x)

=
n∑

i=1

i∑

j=1

αijLη

(
u(η)

)
�η=xj

_
ψ i(x) +

(
u(x),

_
ψn+1(x)

) _
ψn+1(x) +

(
u(x),

_
ψn+2(x)

) _
ψn+2(x)

=
n∑

i=1

i∑

j=1

αijf (xj)
_
ψ i(x) + γ1

_
ψn+1(x) + γ2

_
ψn+2(x),

where γ1 = (u(x),
_
ψn+1(x)) and γ2 = (u(x),

_
ψn+2(x)). To find γ1 and γ2, we set

un(0) = Dαun(0) = 0.

Next, we want to prove that un(x) is a solution to Eqs. (4.1)-(4.2) at xi for i = 1, 2, . . . , n.
For any k ∈ {1, 2, . . . , n},

Lun(xk) =
n∑

i=1

i∑

j=1

αijf (xk)Lx
_
ψ i(x)�η=xk + γ Lx

_
ψn+1(x)�η=xk

=
n∑

i=1

i∑

j=1

αijf (xk)Lx
( _
ψ i(η), Kn(x,η)�η=xk

)
+ γ Lx

( _
ψn+1(η), Kn(x,η)�η=xk

)

=
n∑

i=1

i∑

j=1

αijf (xk)
( _
ψ i(η), LxKn(x,η)�η=xk

)
+ γ

( _
ψn+1(η), LxKn(x,η)�η=k

)

=
n∑

i=1

i∑

j=1

αijf (xk)
( _
ψ i(η),ψk(η)

)
�η=xk

+ γ
( _
ψn+1(η),ψk(η)

)
�η=xk

.
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Then, for any m ∈ {1, 2, . . . , n},

m∑

l=1

αmlLun(xk) =
m∑

l=1

αml

[ n∑

i=1

i∑

j=1

αijf (xk)
( _
ψ i(η),ψk(η)

)
�η=xk

+ γ1
( _
ψn+1(η),ψk(η)

)
�η=xk

+ γ2
( _
ψn+2(η),ψk(η)

)
�η=xk

]

=
n∑

i=1

i∑

j=1

αijf (xk)

(
_
ψ i(η),

m∑

l=1

αmlψk(η)

)

�η=xk

+ γ1

(
_
ψn+1(η),

m∑

l=1

αmlψk(η)

)

�η=xk

+ γ2

(
_
ψn+2(η),

m∑

l=1

αmlψk(η)

)

�η=xk

=
n∑

i=1

i∑

j=1

αijf (xk)
( _
ψ i(η),

_
ψm(η)

)
�η=xk

+ γ1
( _
ψn+1(η),

_
ψm(η)

)
�η=xk

+ γ2
( _
ψn+2(η),

_
ψm(η)

)
�η=xk

=
m∑

i=1

αmjf (xk)δim,

where δij =
{ 1, i = j

0, i �= j

}
. This implies that

Lun(xk) = f (xk)

for k = 1, 2, . . . , n. �

In the next theorem, we present the error estimate of our approximation.

Theorem 4.2 Let un(x) be the approximate solution of Eq. (4.1) in the space � and u(x) be
the exact solution of Eq. (4.1). If {xi}n

i=1 is n nodes in [0, 1] and f (x) ∈ C4[0, 1], then

sup
x∈[0,1]

∥∥u(x) – un(x)
∥∥ ≤ Ch3,

where C is constant and

h = max
i∈{1,2,...,n–1}

|xi+1 – xi|.

Proof Let

Rn(x) = Lun(x) – f (x).

From Theorem 4.1, we see that

Rn(xi) = 0
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for i = 1, 2, . . . , n. Using Roll’s theorem, we get

R′
n(yi) = 0, yi ∈ (xi, xi+1), i = 1, 2, . . . , n – 1,

and

R′′
n(zi) = 0, zi ∈ (yi, yi+1), i = 1, 2, . . . , n – 2.

Let li(x) be an interpolating polynomial of degree 1 of R′′
n(x) at z1 and zi+1, where i ∈

{1, 2, . . . , n – 2}. Then l ≡ 0 on [zi, zi+1]. Then there exists ζi ∈ [xi, zi+1] and a constant ωi

such that

R′′
n(x) = R′′

n(x) – li(x) =
R(4)(ζi)

2
(x – zi)(x – zi+1) ≤ ωih2, x ∈ [xi, zi+1].

Thus,

sup
x∈[0,1]

∥∥R′′
n(x)

∥∥ ≤ ωh2,

where ω = max{ω1,ω2, . . . ,ωn–2}. Hence,

R′
n(x) =

∫ x

yi

R′′
n(t) dt, x ∈ [xi, xi+1], i = 1, 2, . . . , n – 1,

which implies that

∣
∣R′

n(x)
∣
∣ ≤ sup

x∈[0,1]

∥
∥R′′

n(x)
∥
∥|x – yi| ≤ ωh2h = ωh3.

Moreover,

Rn(x) =
∫ x

xi

R′
n(v) dv, x ∈ [xi, xi+1], i = 1, 2, . . . , n – 1,

which implies that

∣∣Rn(x)
∣∣ ≤ sup

x∈[0,1]

∥∥R′′
n(x)

∥∥|x – xi| ≤ ωh3h = ωh4.

Thus,

sup
x∈[0,1]

∥∥Rn(x)
∥∥ ≤ ωh4.

Now,

∥∥Rn(x)
∥∥2

1 = R2
n(0) +

∫ 1

0
R′2

n (x) dx

≤ ωh8 + ω2h6 ≤ κ2h6
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for some positive constant κ . Thus,

∥
∥u(x) – un(x)

∥
∥

�
=

∥
∥L–1Rn(x)

∥
∥

�

≤ ∥
∥L–1∥∥

�

∥
∥Rn(x)

∥
∥

1

≤ ∥
∥L–1∥∥

�
κh3 = �h3,

where � = ‖L–1‖�κ . Then

sup
x∈[0,1]

∥∥u(x) – un(x)
∥∥ ≤ ch3.

In case that the initial condition is given by

u(0) = a and Dαu(0) = b,

we use the following change of variable:

y(x) = u(x) – a – bxα .

Thus, our problem becomes

D2αy(x) +
λ

xα
Dαy(x) = g(x), x ∈ (0, 1), 0 < α(x) < 1,

subject to

y(0) = Dαy(0) = 0,

where g(x) = f (x) + bλ
xα . Then we apply the procedure which is described in this section. �

5 Analysis of RKHSM for the second-order fractional nonlinear initial
Emden-Fowler problem

In this section, we discuss how to solve the following class of second-order fractional non-
linear initial Emden-Fowler problems:

D2αu(x) +
λ

xα
Dαu(x) + h(x)g

(
u(x)

)
= f (x), x ∈ (0, 1),

1
2

< α ≤ 1, (5.1)

subject to

u(0) = a, Dαu(0) = b. (5.2)

Let

�(x, u) = h(x)g
(
u(x)

)
.

We construct a homotopy as follows:

H(u,κ) = D2αu(x) +
λ

xα
Dαu(x) – f (x) + κ�(x, u) = 0, (5.3)
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where κ ∈ [0, 1] is an embedding parameter. If κ = 0, we get a linear equation

D2αu(x) +
λ

xα
Dαu(x) – f (x) = 0

which can be solved by using RKHSM as we described in the pervious section. If λ = 1,
it turns out to be Problem (4.1). Following the homotopy perturbation method [47], we
expand the solution in terms of the homotopy parameter κ as

u = u0 + κu1 + κ2u2 + κ3u3 + · · · . (5.4)

Substitute Eq. (5.4) into Eq. (5.3) and equate the coefficients of identical powers of λ to get
the following system:

κ0 : D2αu0(x) +
λ

xα
Dαu0(x) – f (x) = 0, u0(0) = a, Dαu0(0) = b,

κ1 : D2αu1(x) +
λ

xα
Dαu1(x) = –�

(

x,
∞∑

i=0

κ iui

) ∣∣
∣∣
κ=0

, u1(0) = Dαu0(0) = 0,

κ2 : D2αu2(x) +
λ

xα
Dαu2(x) = –

d�(x,
∑∞

i=0 κ iui)
dκ

∣∣∣
∣
κ=0

, u2(0) = Dαu2(0) = 0,

κ3 : D2αu3(x) +
λ

xα
Dαu3(x) = –

d2�(x,
∑∞

i=0 κ iui)
dκ2

∣∣
∣∣
κ=0

, u3(0) = Dαu3(0) = 0,

...

κk : D2αuk(x) +
λ

xα
Dαuk(x) = –

dk–1�(x,
∑∞

i=0 κ iui)
dκk–1

∣∣
∣∣
κ=0

, uk(0) = Dαuk(0) = 0.

To solve the above equations, we use the RKHSM which is described in the previous sec-
tion, and we obtain

uk(η) =
∞∑

i=1

i∑

j=1

αijwk(xj)
_
ψ i(x), k = 0, 1, 2, . . . , (5.5)

where

w0(x) = f (x)

w1(x) = –�

(

x,
∞∑

i=0

κ iui

) ∣∣
∣∣
κ=0

...

wk(x) = –
dk–1�(x,

∑∞
i=0 κ iui)

dκk–1

∣∣
∣∣
κ=0

, k = 2, 3, . . . .

From Eq. (5.4), it is easy to see that the solution to Problem (5.1)-(5.2) is given by

u(x) =
∞∑

k=0

uk(x) =
∞∑

k=0

( ∞∑

i=1

i∑

j=1

αijwk(xj)
_
ψ i(x)

)

. (5.6)
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We approximate the solution of Problem (5.1)-(5.2) by

uN ,M(x) =
m∑

k=0

( n∑

i=1

i∑

j=1

αijwk(xj)
_
ψ i(x)

)

. (5.7)

6 Results and discussion
In this section, we apply the fractional shifted Legendre functions reproducing kernel
method outlined in the previous sections to solve numerically the following five exam-
ples. Note that the maximum number of terms in the series is M = 15. Let the absolute
error be defined by

eα = max
x∈[0,1]

∣∣
∣∣D

2αu(x) +
λ

xα
Dαu(x) + h(x)g

(
u(x)

)
– f (x)

∣∣
∣∣.

Example 6.1 Consider the following second-order fractional Emden-Fowler problem:

D2αu(x) +
1
xα

Dαu(x) – u(x) = 0, x ∈ (0, 1), (6.1)

subject to

u(0) = 1, Dαu(0) = 0. (6.2)

The graphs of the approximate solutions for different values of α are given in Figure 1. The
absolute error obtained by the presented method is shown in Table 1.

Example 6.2 Consider the following second-order fractional Emden-Fowler problem:

D2αu(x) +
1
xα

Dαu(x) + 2u3(x) = 0, x ∈ (0, 1), (6.3)

Table 1 Absolute error of Example 6.1

α eα

0.55 2.2 ∗ 10–16

0.65 2.4 ∗ 10–16

0.75 2.7 ∗ 10–17

0.85 2.3 ∗ 10–16

0.95 5.6 ∗ 10–17

1 0

Figure 1 The graphs of the approximate
solutions for different values of α for
Example 6.1.
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Table 2 Absolute error of Example 6.2

α eα

0.55 2.2 ∗ 10–16

0.65 6.5 ∗ 10–19

0.75 8.7 ∗ 10–19

0.85 4.3 ∗ 10–19

0.95 0
1 8.7 ∗ 10–19

Figure 2 The graphs of the approximate
solutions for different values of α for
Example 6.2.

subject to

u(0) = 0.1, Dαu(0) = 0.

The graphs of the approximate solutions for different values of α are given in Figure 2.
The absolute error obtained by the presented method is shown in Table 2.

Example 6.3 Consider the following second-order fractional Emden-Fowler problem:

D2αu(x) +
1
xα

Dαu(x) – u3(x) + 3u3(x) = 0, x ∈ (0, 1), (6.4)

subject to

u(0) = 0.5, Dαu(0) = 0. (6.5)

The graphs of the approximate solutions for different values of α are given in Figure 3. The
absolute error obtained by the presented method is shown in Table 3.

Example 6.4 Consider the following second-order fractional Emden-Fowler problem:

D2αu(x) +
2
xα

Dαu(x) –
(
6 + 4x2α

)
u(x) = 6 – 6x2α – 4x4α , x ∈ (0, 1), (6.6)

subject to

u(0) = 0.7, Dαu(0) = 0. (6.7)

The graphs of the approximate solutions for different values of α are given in Figure 4. The
absolute error obtained by the presented method is shown in Table 4.
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Table 3 Absolute error of Example 6.3

α eα

0.55 3.1 ∗ 10–17

0.65 1.0 ∗ 10–17

0.75 6.9 ∗ 10–18

0.85 0
0.95 4.1 ∗ 10–18

1 3.5 ∗ 10–18

Figure 3 The graphs of the approximate
solutions for different values of α for
Example 6.3.

Table 4 Absolute error of Example 6.4

α eα

0.55 2.8 ∗ 10–14

0.65 0
0.75 0
0.85 3.5 ∗ 10–15

0.95 0
1 0

Figure 4 The graphs of the approximate
solutions for different values of α for
Example 6.4.

Example 6.5 Consider the following second-order fractional Emden-Fowler problem:

D2αu(x) +
4
xα

Dαu(x) –
(
18 + 9x4α

)
u(x) = 20 – 36x3α – 18x6α , x ∈ (0, 1), (6.8)

subject to

u(0) = 1, Dαu(0) = 0. (6.9)

The graphs of the approximate solutions for different values of α are given in Figure 5. The
absolute error obtained by the presented method is shown in Table 5.
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Table 5 Absolute error of Example 6.5

α eα

0.55 1.8 ∗ 10–12

0.65 2.3 ∗ 10–13

0.75 1.1 ∗ 10–13

0.85 0
0.95 8.5 ∗ 10–14

1 0

Figure 5 The graphs of the approximate
solutions for different values of α for
Example 6.5.

7 Conclusions
In this paper, we study the second-order fractional Emden-Fowler problem. The repro-
ducing kernel Hilbert space method (RKHSM) is employed to compute an approximate
solution to the proposed problem. The construction of the reproducing kernel based on
the orthonormal shifted Legendre polynomials is presented. The validity of the RKHSM
is ascertained by presenting five of our examples. It is worth mentioning that we get the
same results as those in Wazwaz [48] for Examples 6.3-6.5 when α = 1. We prove the exis-
tence of solution of the second-order fractional Emden-Fowler problem. The convergence
of the approximate solution using the proposed method is investigated. The uniform con-
vergence of the approximate solution to the exact solution is presented. Error estimation
to the proposed method is proven. The results reveal that the proposed analytical method
can achieve excellent results in predicting the solutions of such problems.
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