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Abstract
In this paper, we put forward a fractional-order survival red blood cells model and
study the dynamics through the Hopf bifurcation. When the delay transcends the
threshold, a series of Hopf bifurcations occur at the positive equilibrium. Then, a
fractional-order Proportional and Derivative (PDα ) controller is applied to the
proposed model for the Hopf bifurcation control. It is discovered that by setting
proper parameters, the PDα controller can delay or advance the onset of Hopf
bifurcations. Therefore the Hopf bifurcation of the fractional-order survival red blood
cells model becomes controllable to achieve desirable behaviors. Finally, numerical
examples are presented to demonstrate the theoretical analysis.

Keywords: Hopf bifurcation; bifurcation control; time delays; PDα controller; survival
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1 Introduction
Fractional calculus was born in 1695 as an important branch of mathematics, almost si-
multaneously with classical calculus. Compared with integer-order derivatives, it has been
found that fractional derivatives have the superiority of accuracy and flexibility when used
to describe some non-classical phenomena in natural science and engineering applications
such as neurons [1], finance systems [2], biological systems [3], and so on. Especially in
biological systems, fractional calculus has more advantages than traditional integer-order
calculus in describing molecular dynamics with memory characteristics and historical de-
pendence [4, 5]. Fractional calculus accumulates the global information of the function in
a weighted form, which is also called memory. A large number of examples show that the
fractional calculus has a more universal meaning than the integer calculus.

In recent years, there have been many papers about the stability and the Hopf bifurcation
analysis of integer-order survival red blood cells models [6–9]. With the rapid develop-
ment of biomedical and molecular biology, researchers have proposed some new research
topics [10–12]. Many biological systems have shown the feature of fractal geometry, the
characteristics of memory and diversity discharge activities which cannot be described
accurately by using the classical calculus theory. It is known that the integer-order calcu-
lus is only determined by the local character of the function, while the fractional-order
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one can gather the global information of the function in the weighted form [13]. In the
biological field, Magin argued that the fractional-order derivative can describe the activ-
ities of the organism more accurately [10, 11]. In [12], the dynamics of a red blood cells
model is fully described by linear fractional-order differential equations, and the theory
of fractional calculus provides a concise way to describe and quantify the biomechanical
behaviors of membranes, cells and tissues. However, the qualitative theory of bifurcations
in a fractional-order system is still a problem, which has not been researched thoroughly.
It is more meaningful to investigate the fractional-order survival red blood cells model
instead of the integer-order counterpart.

For getting better desirable stability domain, we can add some effective controllers, such
as hybrid controller [14, 15], state feedback controller [16, 17] and delayed feedback con-
troller [18, 19], for dynamics control in nonlinear systems. As we know, the PID controller
consists of the proportional unit P, the integrating unit I and the differential unit D. We can
adjust the stability of the systems by setting the three control parameters kp, ki and kd in the
PID controller. The PID controller is mainly applicable to systems with essentially linear
and dynamic characteristics which are not changeable through time [20]. In consideration
of the feature of fractional-order systems, we develop a fractional-order Proportional and
Derivative (PDα) scheme to control the bifurcation of the fractional-order survival red
blood cells model in this paper. It is worth mentioning that such a control strategy has not
been reported in the control of bifurcation for fractional-order systems. Motivated by the
above discussions, we investigate the problem of bifurcation and control for the delayed
fractional-order survival red blood cells model in the present paper.

2 Model description
In [21], Wazewska-Czyzewska and Lasota proposed the survival red blood cells model:

dX
dt

= –aX(t) + be–cX(t–τ ), a > 0, b > 0, c > 0, τ > 0, t ≥ 0, (2.1)

where X(t) represents the number of red blood cells in time t, a is the death rate of red
blood cells, b and c describe the production of red blood cells per unit time and τ is the
necessary time to produce a red blood cell.

There are many definitions of fractional derivatives. The Grünwald-Letnikov defini-
tion, the Riemann-Liouville definition and the Caputo definition are usually used to deal
with fractional-order systems. Since the Caputo derivative only requires the initial con-
ditions which are based on integer-order derivative and represents well-understood fea-
tures of physical situation, it is more applicable to real world problems. Hence, the Caputo
fractional-order derivative is employed in this paper.

The Caputo fractional-order derivative is defined as follows:

C
e Dα

t f (t) =
1

�(d – α)

∫ t

e
(t – τ )d–α–1f (n)(τ ) dτ , (2.2)

where d – 1 < α < d, d ∈ N , and �(·) is the gamma function. The symbol α denotes the
value of the fractional order that is usually chosen in the range 0 < α ≤ 1.
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The Laplace transformation of the Caputo fractional-order derivative is represented as

L
{C

0 Dα
t f (t)

}
= sαF(s) –

d–1∑
k=0

sα–k–1f (k)(0). (2.3)

If f (k)(0) = 0, k = 0, 1, . . . , d – 1, then L{C
0 Dα

t f (t)} = sαF(s).
A class of n-dimensional linear fractional-order systems with multiple time delays can

be represented in the following form [22]:

dα1 x1

dtα1
= a11x1(t – τ11) + a12x2(t – τ12) + · · · + a1nxn(t – τ1n),

dα2 x2

dtα2
= a21x1(t – τ21) + a22x2(t – τ22) + · · · + a2nxn(t – τ2n),

· · ·
dαn xn

dtαn
= an1x1(t – τn1) + an2x2(t – τn2) + · · · + annxn(t – τnn),

(2.4)

with the characteristic equation

det

⎛
⎜⎜⎜⎜⎝

sα1 – a11e–sτ11 –a12e–sτ12 · · · –a1ne–sτ1n

–a21e–sτ21 sα2 – a22e–sτ22 · · · –a2ne–sτ2n

...
...

. . .
...

–an1e–sτn1 –an2e–sτn2 . . . sαn – anne–sτnn

⎞
⎟⎟⎟⎟⎠ = 0, (2.5)

where 0 < αi ≤ 1 (i = 1, 2, 3, . . . , n), and dαi /dtαi is chosen as the Caputo fractional derivative
(2.2).

Theorem 2.1 ([22]) Given that all the roots of the characteristic equation (2.5) have nega-
tive real parts, the zero solution of system (2.4) is Lyapunov globally asymptotically stable.

Remark 2.1 Theorem 2.1 indicates that the stability boundary for the delayed fractional-
order system (2.4) is the imaginary axis.

Remark 2.2 If τij = 0, i, j = 1, . . . , n, then Theorem 2.1 converts into Matignon criterion
[23]: if all the roots λs of the equation det(λI – A) = 0 satisfy | arg(λ)| > απ/2, then the zero
solution of system (2.4) is Lyapunov globally asymptotically stable, where A = (aij)n×n is
the coefficient matrix and λ = sα . It can be seen that the stability boundary is described by
| arg(λ)| = απ/2 (or | arg(s)| = π/2) for the fractional-order system (2.4) without delays.

Remark 2.3 If all the eigenvalues λs of A satisfy | arg(λ)| > απ/2 and the characteristic
equation (2.5) has no purely imaginary roots for any τij > 0, i, j = 1, . . . , n, then the zero
solution of system (2.4) is Lyapunov globally asymptotically stable [22].

For model (2.1), we let

m =
a
bc

, υ = τbc, u(t) = cX
(

t
bc

)
.



Sun et al. Advances in Difference Equations  (2018) 2018:10 Page 4 of 12

Then we get

du(t)
dt

= –mu(t) + e–u(t–υ), t ≥ 0, m > 0,υ > 0. (2.6)

In this paper, we focus on the dynamics of the following fractional-order survival red blood
cells model with time delays:

dαu(t)
dαt

= –mu(t) + e–u(t–υ), t ≥ 0, m > 0,υ > 0. (2.7)

We can easily see that, for model (2.6), there is a unique u∗ satisfying the following equa-
tion:

mu∗ = e–u∗
. (2.8)

It can be seen that u∗ > 1 if and only if 0 < m < 1/e.

3 Bifurcation analysis of the uncontrolled model
In this part, we investigate the stability of the fractional-order survival red blood cells
model (2.7), and some existence conditions of Hopf bifurcations are addressed.

Let u(t) – u∗ = y(t), then the linearized model (2.7) is

dαy
dtα

= –my(t) – mu∗y(t – υ), (3.1)

with the characteristic equation

sq + m + mu∗e–sυ = 0. (3.2)

In the following, we investigate the roots distribution of equation (3.2) by regarding the
time delay υ as the bifurcation parameter.

Let s = ω(cos π
2 + i sin π

2 ) (ω > 0). Then equation (3.2) becomes

ωq cos
qπ

2
+ ωq sin

qπ

2
· i + m + m · u∗(cosωυ – i sinωυ) = 0. (3.3)

Separating the real and imaginary parts gives

⎧⎨
⎩

a2 cosωυ = a1 – ωq cos qπ

2 ,

a2 sinωυ = ωq sin qπ

2 ,
(3.4)

where a1 = –m, a2 = mu∗. It can be obtained from (3.4) that

ω2q – 2a1ω
q cos

qπ

2
+ a2

1 – a2
2 = 0. (3.5)

Denote

h1(ω) = ω2q – 2a1ω
q cos

qπ

2
+ a2

1 – a2
2.
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Lemma 3.1 For equation (3.2), we have the following:
(i) If m ≥ 1/e, then all roots of the characteristic equation (3.2) have negative real

parts.
(ii) If 0 < m < 1/e, then equation (3.2) has a pair of purely imaginary roots ±ω0 when

υ = υj, j = 0, 1, . . . , where

υj =
1
ω0

arccos

(a1 – ω0 cos qπ

2
a2

+ 2jπ
)

, j = 0, 1, 2, . . . , (3.6)

where ω0 is the unique positive zero of the function h1(ω).

Proof (i) From |a1| > a2, then h1(0) > 0, and the symmetry axis is a1 cos qπ

2 < 0. Combining
q > 0, we can see that equation (3.5) has no real root, so equation (3.2) has no purely
imaginary root. This finishes the proof of (i).

(ii) By means of |a1| < a2, it is easy to see that h1(0) < 0. Combining q > 0, there exists a
unique positive number ω0 such that h1(ω) = 0. Then ω0 is a root of equation (3.5). Hence,
for υj as defined in (3.6), (ω0,υj) is a root of equation (3.3). It can be seen that ±ω0 is a pair
of purely imaginary roots of equation (3.2), while υ = υj, j = 0, 1, . . . . This completes the
proof of (ii). �

Remark 3.1 The conclusion (ii) of Lemma 3.1 gives the onset of Hopf bifurcation of model
(2.7).

Here we make the following assumption:

(H1)
P1Q1 + P2Q2

Q2
1 + Q2

2
> 0,

where

P1 = mu∗ω0 sinω0υ0,

P2 = mu∗ω0 cosω0υ0,

Q1 = qω
q–1
0 cos

(q – 1)
2

π – mu∗υ cosω0υ0,

Q2 = qω
q–1
0 sin

(q – 1)
2

π + mu∗υ sinω0υ0.

Lemma 3.2 Let s(υ) = ς (υ) + iω(υ) be the root of equation (3.2). It is easy to see ς (υj) = 0,
ω(υj) = ω0, when υ = υj. If (H1) holds, then we have

Re

[
ds
dτ

]
ω=ω0,υ=υ0

> 0.

Proof Differentiating equation (3.2) implicitly with respect to υ , we obtain

ds
dυ

=
smu∗e–sυ

qsq–1 – υmu∗e–sυ . (3.7)
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Hence, we deduce that

Re

[
ds
dυ

]
ω=ω0,υ=υ0

=
P1Q1 + P2Q2

Q2
1 + Q2

2
.

Obviously, hypothesis (H1) means that the transversality condition is satisfied. �

Theorem 3.1 For model (2.7), when 0 < m < 1/e, the following results hold:
(i) The equilibrium u∗ of model (2.7) is locally asymptotically stable for υ ∈ [0,υ0), and

unstable when υ > υ0.
(ii) Model (2.7) undergoes a Hopf bifurcation at the equilibrium u∗ when υ = υ0.

Proof Note that the eigenvalue λ = –(m + mu∗) < 0 of the linearized system of (3.1) sat-
isfies the inequality | arg(λ)| > qπ/2 when υ = 0. Therefore, the condition for the Hopf
bifurcation is satisfied.

(i) We can find that when υ = 0 the roots of equation (3.2) have negative real parts. In
Lemma 3.1, we can see that all the roots of equation (3.2) have negative real parts for
υ ∈ [0,υ0) by the definition of υ0. From Lemma 3.2, this implies that equation (3.2) has at
least a positive root when υ > υ0.

(ii) From the above discussion, it is obvious that the occurrence condition of the Hopf
bifurcation is satisfied for (2.6). Therefore, near the equilibrium u∗, there occurs a Hopf
bifurcation when υ = υ0. �

4 Bifurcation analysis of the controlled model
In this part, by choosing the time delay υ as the bifurcation parameter, we are trying to con-
trol the Hopf bifurcation of (2.7) based on the fractional-order Proportional and Derivative
(PDα) control strategy.

For the delayed fractional-order model (2.7), we propose a single input and output PDα

controller as follows:

ρ(t) = kp
(
u(t) – u∗) + kd

dα

dtα

(
u(t) – u∗), (4.1)

where kp is the proportional control parameter and kd is the derivative control parameter.
Hence, the controlled fractional-order survival red blood cells model with time delays

becomes

dαu
dtα

= –mu(t) + e–u(t–υ) + ρ(t)

= –mu(t) + e–u(t–υ) + kp
(
u(t) – u∗) + kd

dα

dtα

(
u(t) – u∗). (4.2)

Let u(t) – u∗ = y(t), The controlled model (4.2) becomes

dαy
dtα

=
1

1 – kd

[
–my(t) – mu∗y(t – υ) + kpy(t)

]

=
1

1 – kd

[
(kp – m)y(t) – mu∗y(t – υ)

]
, (4.3)
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with the characteristic equation

sq –
1

1 – kd

[
(kp – m) – mu∗e–sυ]

= 0. (4.4)

Here, we assume the value range of the control parameters: kp < m, kd < 1.

Remark 4.1 Comparing model (4.3) and model (3.1), it is obvious that the controlled
fractional-order model and the uncontrolled one have the same equilibrium point.

Let s = ω(cos π
2 + i sin π

2 ) (ω > 0), then equation (4.4) becomes

ωq
(

cos
qπ

2
+ i sin

qπ

2

)
–

kp – m
1 – kd

+
mu∗

1 – kd
(cosωυ – i sinωυ) = 0.

Separating the real and imaginary parts, we get

⎧⎨
⎩

a4 cosωυ = a3 – ωq cos qπ

2 ,

a4 sinωτ = ωq sin qπ

2 ,
(4.5)

where a3 = kp–m
1–kd

, a4 = mu∗
1–kd

. It can be obtained from (4.5) that

ω2q – 2a1ω
q cos

qπ

2
+ a2

3 – a2
4 = 0. (4.6)

Denote

h2(ω) = ω2q – 2a1ω
q cos

qπ

2
+ a2

3 – a2
4.

Lemma 4.1 If |a3| < a4, equation (4.4) has a pair of purely imaginary roots ±ωc
0 when

υ = υc
j , j = 0, 1, . . . , where

υc
j =

1
ωc

0
arccos

(a3 – ωc
0 cos qπ

2
a4

+ 2jπ
)

, j = 0, 1, 2, . . . , (4.7)

where ωc
0 is the unique positive zero of the function h2(ω).

Proof By means of |a3| < a4, it is easy to see that h2(0) < 0. Combining with q > 0, there
exists a unique positive number ωc

0 such that h2(ω) = 0. Then ωc
0 is a root of (4.6). Hence,

for υc
j as defined in (4.7), (ωc

0,υc
j ) is a root of equation (4.5). It can be seen that ±ωc

0 is a
pair of purely imaginary roots of equation (4.4), while υ = υc

j , j = 0, 1, . . . . �

Remark 4.2 Lemma 4.1 obtains the onset of the delayed fractional-order model’s Hopf
bifurcations.

We make the following assumption:

(H2)
M1N1 + M2N2

N2
1 + N2

2
> 0,
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where

M1 =
ωc

0mu∗

1 – kd
sinωc

0υ
c
0,

M2 =
ωc

0mu∗

1 – kd
cosωc

0υ
c
0,

N1 = q
(
ωc

0
)q–1

cos
(q – 1)

2
π –

υmu∗

1 – kd
cosωc

0υ
c
0,

N2 = q
(
ωc

0
)q–1

sin
(q – 1)

2
π +

υmu∗

1 – kd
sinωc

0υ
c
0.

Lemma 4.2 Let s(υ) = ς (υ) + iω(υ) be the root of equation (4.4). It is easy to see ς (υc
j ) = 0,

ω(υc
j ) = ωc

0 when υ = υc
j . If (H2) holds, then we have

Re

[
ds
dυ

]
ω=ωc

0,υ=υc
0

> 0.

Proof Differentiating equation (4.4) relative to υ , we get

ds
dυ

=
smu∗
1–kd

e–sυ

qsq–1 – υmu∗
1–kd

e–sυ
. (4.8)

Hence, we obtain

Re

[
ds
dυ

]
ω=ωc

0,υ=υc
0

=
M1N1 + M2N2

N2
1 + N2

2
. �

Theorem 4.1 For model (4.2), when |a3| < a4, we get the following results.
(i) The equilibrium u∗ of model (4.2) is locally asymptotically stable for υ ∈ [0,υc

0), and
unstable when υ > υc

0.
(ii) Model (4.2) undergoes a Hopf bifurcation at the equilibrium u∗ when υ = υc

0.

Proof Note that the eigenvalue λ = 1
1–kd

[(kp – m) – mu∗] = a1 – a2 < 0 of the linearized
system of (4.3) satisfies the inequality | arg(λ)| > qπ/2 when υ = 0. Therefore, the condition
for the Hopf bifurcation is satisfied.

(i) It is easy to see that all the roots of equation (4.4) with υ = 0 have negative real parts.
The definition of υc

0 implies that all the roots of equation (4.4) have negative real parts
for υ ∈ [0,υc

0). From Lemma 4.2, it indicates that equation (4.4) has at least a root with
positive real parts when υ > υc

0.
(ii) From the above discussion, it is clear that the occurrence condition of the Hopf bi-

furcation is satisfied for model (4.2). Therefore, near the equilibrium u∗, there occurs a
Hopf bifurcation when υ = υc

0. �

5 Numerical simulations
In this section, we provide numerical simulations to confirm our theoretical analysis and
display the Hopf bifurcation phenomenon of the delayed fractional-order model.

For the uncontrolled model (2.7), we take α = 0.92, m = 0.2 used in [7]. Then (2.7) has
a positive equilibrium u∗ = 1.3267. From (3.6), we can obtain υ0 = 19.6749. The positive
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Figure 1 Waveform plot and phase portrait of the fractional-order model (2.7) with α = 0.92, m = 0.2,
and the initial value u0 = 1. The equilibrium u∗ is asymptotically stable when υ = 18 < υ0 = 19.6749.

Figure 2 Waveform plot and phase portrait of the fractional-order model (2.7) with α = 0.92, m = 0.2,
and the initial value u0 = 1. A Hopf bifurcation occurs and the periodic oscillation bifurcates from u∗ , where
υ = 21 > υ0 = 19.6749.

Table 1 Bifurcation point υ0 versus fractional order α for model (2.7)

Fractional order α Bifurcation point υ0

0.9 21.5435
0.92 19.6749
0.94 17.9960
0.96 16.4929
0.98 15.1312
1.0 13.9045

equilibrium point u∗ is asymptotically stable when υ = 18 < υ0 = 19.6749 as illustrated in
Figure 1, and when υ = 21 > υ0 = 19.6749, there occurs a Hopf bifurcation at the positive
equilibrium point u∗ as demonstrated in Figure 2.

The effect of the order α from 0.9 to 1 on the values of υ0 for model (2.7) is shown in
Table 1.

In order to make a comparison with the uncontrolled fractional-order model (2.7), we
discuss the controlled model (4.2) with the parameters α = 0.92, m = 0.2. When we choose
the control parameters kp = –0.05, kd = 0.5, from (4.7) we can obtain υc

0 = 27.7129. It
can be seen that the stable region has been enlarged and the critical value υc

0 has been
increased to a larger value than that of the uncontrolled model. This indicates that the
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Figure 3 Waveform plot and phase portrait of the controlled fractional-order model (4.2) with
α = 0.92, m = 0.2, kp = –0.05, kd = 0.5 and the initial value u0 = 2. The equilibrium u∗ is asymptotically
stable when υ = 24 < υc

0 = 27.7129.

Figure 4 Waveform plot and phase portrait of the controlled fractional-order model (4.2) with
α = 0.92, m = 0.2, kp = –0.05, kd = 0.5 and the initial value u0 = 2. A Hopf bifurcation occurs and the
periodic oscillation bifurcates from u∗ , where υ = 30 > υc

0 = 27.7129.

PDα controller can delay the onset of Hopf bifurcations effectively. The equilibrium u∗

is asymptotically stable when υ = 24 < υc
0 = 27.7129 as illustrated in Figure 3, and when

υ = 30 > υc
0 = 27.7129, there occurs a Hopf bifurcation at the positive equilibrium point u∗

as demonstrated in Figure 4.
Next, we select other control parameters to validate the effectiveness of our proposed

PDα scheme in the bifurcation control. We also take the same parameters α = 0.92,
m = 0.2 for the original model (2.7). When kp = 0.05, kd = 0.5, from (4.7) one can ob-
tain υc

0 = 6.1794. The critical value υc
0 is smaller than that of the uncontrolled model (2.7),

which shows that the PDα controller can advance the onset of the Hopf bifurcation effec-
tively. The equilibrium u∗ is asymptotically stable when υ = 6 < υc

0 = 6.1794 as illustrated
in Figure 5, and when υ = 7 > υc

0 = 6.1794, there occurs a Hopf bifurcation at the positive
equilibrium point u∗ as demonstrated in Figure 6.

6 Conclusions
In this paper, we have studied the Hopf bifurcation of a fractional-order red blood cells
model with time delay and have proposed the configuration for the stable region. In or-
der to control the Hopf bifurcation of the delayed fractional-order red blood cells model,
we have designed a fractional-order Proportional and Derivative (PDα) controller, which
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Figure 5 Waveform plot and phase portrait of the controlled fractional-order model (4.2) with
α = 0.92, m = 0.2, kp = 0.05, kd = 0.5 and the initial value u0 = 2. The equilibrium u∗ is asymptotically
stable when υ = 6 < υc

0 = 6.1794.

Figure 6 Waveform plot and phase portrait of the controlled fractional-order model (4.2) with
α = 0.92, m = 0.2, kp = 0.05, kd = 0.5 and the initial value u0 = 2. A Hopf bifurcation occurs and the
periodic oscillation bifurcates from u∗ , where υ = 7 > υc

0 = 6.1794.

can successfully delay or advance the onset of Hopf bifurcation. Therefore, we can choose
appropriate values of the Proportional and Derivative parameters to change the charac-
teristics of Hopf bifurcation embedding in fractional-order systems with time delays.
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