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Abstract
Porcine reproductive and respiratory syndrome (PRRS) gives rise to reproductive
disorders in sows and problem with respiratory system in piglets and young pigs. This
disease creates serious economic losses to major pork producing countries. The
disease, which is characterized by high morbidity and significant mortality, combined
with its potential for rapid spread, can devastate the pig industries of the affected
countries. However, not much is known about the spatial transmission of PRRSV
(porcine reproductive and respiratory syndrome virus) in growing pigs. In previous
models, the infection rate has been assumed to be constant with time. Experimental
studies on specific cases of this viral infection suggest that this assumption might not
hold. A structured model for the spread of PRRSV has therefore been constructed,
incorporating time and spatial dimensions as well as the decline of infection rate with
time. Using the traveling wave coordinate and the modified extended hyperbolic
tangent method, we derive analytical solutions to the model system. Stability and
phase plane analyses are also carried out in order to gain insights into the spatial
spread of PRRS as time progresses.
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1 Introduction
There are many epidemic diseases in the swine population such as swine fever disease,
foot and mouth disease and Aujesky’s disease. One of the most devastating diseases is
porcine reproductive and respiratory syndrome (PRRS), which was first reported in the
United States in  []. Initially, the disease was named the “mystery swine disease”. In
, the first European outbreak of the disease was reported in Germany [], after which
it spread throughout Europe [].

In , the epidemic of PRRS in the Netherlands was found in Dutch breeding farms
[] and then spread to most countries with swine industries. The causative agent, porcine
reproductive and respiratory syndrome virus (PRRSV), was first isolated in Europe by
Wensvoort et al. in  [] and then in the United States by Collins et al. [].

High rates of morbidity from these infectious diseases in swine farms would cause such
a severe financial loss to the country which is suffering from the epidemic as a whole
that it is crucial that all efforts are brought to bear to discover as much as possible about
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these diseases, to predict their progress as well as discover optimal prevention and con-
trol strategies. In this endeavor, mathematical models of the diseases are needed to study
the behavior of the disease and control strategies. Various research works on this subject
cannot find out how to control the disease effectively. Therefore, a mathematical model of
the disease is needed to study the behavior of the disease and possibility of control.

According to Charoensook et al. [] the National Statistical Office (NSO) recorded the
population of Thailand to be at about ,, inhabitants in  and the gross do-
mestic product (GDP) was US$ , per capita. The swine industry in Thailand has been
expanding rapidly as one of the major livestock industries since the s. Swine is one
kind of farmed animals that has traditionally been an important part of the integrated
farming system in Thailand. In particular, pork has become the second most important
meat in Thai consumption, with average consumption in the late s of about . kg
per person per year (FAO Corporate Document Repository, ). Moreover, Thailand is
an agricultural country with around % of the households throughout the country work-
ing in agriculture and % of them located in rural areas. The two major activities in the
agriculture area are the cultivation of crops (%) and integrated crop-livestock farming
(%) [].

For decades, many researchers have experimented and investigated on PRRS in the lab-
oratories. In , Nodelijk et al. [] proposed a quantitative approach to evaluate the
effectiveness of vaccination under experimental conditions. They used two consecutive
experimental designs to investigate whether PRRSV transmission among vaccinated pigs
was reduced compared to control pigs and to estimate the reproduction parameter R.

In , Mortensen et al. [] attempted to quantify the likely routes of the transmission
of PRRSV among a cohort of Danish sow herds. The design was a nested case-control
study. A random sample of time-matched controls was used instead of all non-infection
herds in the cohort.

In , Van Gucht et al. [] investigated the interaction between PRRSV and LPS
(lipopolysaccharide) and described the effects of different pharmacological agents on
the PRRSV–LPS induced disease. The central hypothesis throughout this study is that
PRRSV-LPS induced respiratory disease results from an overproduction of pro inflam-
matory cytokines locally in the lungs.

In , Wu et al. [] showed that there is an association between PRRSV b protein,
a minor structural component of the Porcine Reproductive and Respiratory Syndrome
Virus, and intact virus particles, by locating the b protein in the same sucrose density
fraction as infectious virus by Western immunoblot assay. However, these experiments
could not rule out the possibility that the presence of b or another  kDa protein in the
structure of PRRSV in the same fraction was a result of independent co-migration with
the virions.

In , Pitkin et al. [] developed a model of a swine production region and demon-
strated the airborne spread of PRRS virus over a distance representative of building sepa-
ration in commercial agriculture. They also quantified infectious virus in bio-aerosols and
evaluated a method of biosecurity designed to reduce this risk. In addition, they identi-
fied meteorological risk factors associated with the presence of virus in bio-aerosols. The
model provides crucial new information on the airborne spread of PRRS virus and offers
a means to reduce this risk.
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In , Evans et al. [] proposed a model of a farrow-finish pig herd, investigated the
within-herd transmission dynamics of PRRSV, and examined patterns of on-farm persis-
tence and fade-out. The model was structured to represent the management of a typical
European pig herd and run for various isolation practices of purchased gilts, contact struc-
ture, herd size and the frequency of re-introduction of infectious gilts.

In the same year, Wilson and Pantoja [] presented mathematical models of host-PRRS
virus interaction. The models are designed to explore the role of various components in-
volved in the host response to PRRS virus infection identified by molecular studies, on
the resulting infection characteristics. They presented a model of virus dynamics that can
be further extended to include essential components of the cellular and humoral immune
response.

Recently, there have been reports that infectiousness of pigs infected by the PRRSV is
time dependent []. We therefore construct a structured model for the spread of PRRSV
that incorporates both the time and the spatial dimensions as well as the decline of in-
fectiousness with time. We derive analytical solutions to the model system by using the
traveling wave coordinate, based on the modified extended tanh method [], in order to
gain insights into the spatial spread of the infection as time progresses.

2 Model system
Often, reaction-diffusion equations are used to describe the spread of populations in
space. Hence, the other stream of research related to our work is on the reaction-diffusion
equations.

In , Chang and Manoranjan [] studied a contaminant transport model with a
cubic sorption isotherm and presented the method for finding exact solutions, which is a
traveling wave front, by using traveling wave coordinate to obtain a coupled system of ordi-
nary differential equations that can be reduced to a single second-order differential equa-
tion. Thus, they obtained exact solute concentration profiles for contaminant transport
with the appropriate nonlinear sorption. Later, Manoranjan and Lee [] studied Fishers
equation, which is the logistic growth model which they modified to arrive at a popula-
tion model that incorporates the efficiency of resource utilization based on the idea of
adsorption theory in chemical kinetics. Traveling wave solutions were derived, possessing
a constant wave speed ≥  in [].

In , Prasertsang et al. [] proposed a dental plaque model consisting of a system
of advective reaction-diffusion equations coupled with nonlinear sorption to describe the
diffusion of mobile reactants through the tooth enamel and the time variation of the im-
mobile reactants. Making use of the traveling wave coordinate, they transformed the par-
tial differential equations into two coupled nonlinear ordinary differential equations and
obtained the concentration profiles of the mobile reactant exactly in the form of a travel-
ing wave front. Other examples of the use of traveling wave coordinates to find analytic
solutions may be found in [] and [].

Based on the above works, we modify the reaction-diffusion equations which have been
often used to describe the spread of infection to incorporate both time and spatial dimen-
sions as well as the decline of infectiousness with time, arriving at the following model
system:

∂S
∂t

=
∂S
∂x + bSS + bSII – βS

∫ t


αe–γ (t–τ )I(x, τ ) dτ – dSS, ()
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∂I
∂t

= bII + βS
∫ t


αe–γ (t–τ )I(x, τ ) dτ – dII, ()

where S(x, t) is the number of the susceptible swine at time t and distance x per unit area,
and I(x, t) is the number of the infected swine at time t and spatial distance x per unit area.
The first term on the right of () is the diffusion rate of S(x, t) in space, the second term
is the birth rate from susceptible swine, the third term is the rate of birth of susceptible
swine from infected swine, and the last term is the death rate of susceptible swine due to
natural means or culling. The first and last terms in () are the birth and death rates of
infectious swine, respectively.

The integral expression in ()-() represents the rate of infection of susceptible swine due
to infective swine I(x, t). On considering the PRRS data reported by Charpin et al. [], we
observe that the number of new infections per infected swine decreases exponentially as
time passes (Figure b in the work of Charpin et al. []). For this reason, the exponential
term e–γ (t–τ ) is utilized to represent the rate at which susceptible swine at time t is infected
by a swine infected at time τ earlier. Thus, the bigger t – τ is, the smaller the infection rate.
The exponential term is multiplied by I(x, t) dτ to obtain the total rate of infection at time
t due to all swine infected at time τ earlier during the period dτ . To get the total specific
rate of infection at the time t, we integrate from  to t, to arrive at the integral expression
which we shall denote by G:

G =
∫ t


αe–γ (t–τ )I(x, τ ) dτ . ()

Substituting () in ()-() and differentiating G, we arrive at the following reaction-
diffusion system model:

∂S
∂t

=
∂S
∂x + bSS + bSII – βSG – dSS, ()

∂I
∂t

= bII + βSG – dII, ()

∂G
∂t

= αI – γ G. ()

We then introduce the traveling wave coordinate ξ = x–ct, where c is the constant speed
at which the wave is assumed to be moving. By using ξ in ()-(), we obtain the following
system of nonlinear ordinary differential equations:

–cU ′ = U ′′ + (bU – dU )U + bUV V – βUW , ()

–cV ′ = βUW + (bV – dV )V , ()

–cW ′ = αV – γ W , ()

where ()′ denotes the derivative with respect to ξ , U(ξ ) = S(x, t), V (ξ ) = I(x, t) and W (ξ ) =
G(x, t). By using (), we obtain V ′ = –cW ′′

α
+ γ W ′

α
. Substituting V and V ′ into ()-() we are

led to the following system of second-order differential equations in terms of U and W :

U ′′ = –cU ′ – (bU – dU )U +
cbUV W ′

α
–

γ bUV W
α

+ βUW , ()

W ′′ =
αβUW

c +
(γ – bV + dV )W ′

c
+

γ (bV – dV )W
c . ()
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Letting y = U , y = y′
, y = W , y = y′

, we can write () and () as

y′
 = y, ()

y′
 = –(bU – dU )y – cy –

γ bUV

α
y +

cbUV

α
y + βyy, ()

y′
 = y, ()

y′
 =

γ (bV – dV )
c y +

(γ – bV + dV )
c

y +
αβ

c yy. ()

Next, we shall analyze the system ()-() for its stability.

3 Model analysis
Before we derive the exact solution, a dynamical analysis may be carried out on the model
system written in the form of the system ()-(). The system possesses two equilibrium
points, namely E = (, , , ) and E = (– γ (bV –dV )

αβ
, , (bU –dU )(bV –dV )

β(bUV +bV –dV ) , ).
We note that the non-washout steady state E exists only if

bV – dV <  ()

and

bU – dU

bUV + bV – dV
< , ()

in which case all components of E will be positive.
The Jacobian matrix of the system ()-() about an equilibrium point (y, y, y, y) is

J =

⎡
⎢⎢⎢⎣

   
βy – (bU – dU ) –c βy – γ bUV

α

cbUV
α

   
αβ

c y  αβ

c y + γ (bV –dV )
c – (bV –dV –γ )

c

⎤
⎥⎥⎥⎦ .

At the equilibrium point E = (, , , ), the Jacobian matrix becomes

J =

⎡
⎢⎢⎢⎣

   
–(bU – dU ) –c – γ bUV

α

cbUV
α

   
  γ (bV –dV )

c – (bV –dV –γ )
c

⎤
⎥⎥⎥⎦ ,

whose eigenvalues are

λ, =
–c ± √

c – (bU – dU )


, λ =
γ

c
, λ = –

(bV – dV )
c

.

Since λ is positive, this equilibrium point is unstable. In fact, we can conclude that E

shall be a saddle point if bU – dU <  or bV – dV > .
Further, we state the following result concerning the non-washout steady state E.
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Figure 1 Phase portrait of the system (12)-(15)
with bS – dS = –1.017520494,
bI – dI = 0.040524417, bSI = 0.2, α = 0.437838,
β = 0.032432, c = 0.402694, μ = 0.120808 and
γ = 0.488649.

Theorem . The equilibrium solution E of ()-() is unstable for all positive paramet-
ric values whenever it exists.

Proof The Jacobian matrix of ()-() about E is

J =

⎡
⎢⎢⎢⎢⎣

   
–bUV (bU –dU )
bUV +bV –dV

–c – γ (bUV +bV –dV )
α

cbUV
α

   
α(bU –dU )(bV –dV )

c(bUV +bV –dV )   – (bV –dV –γ )
c

⎤
⎥⎥⎥⎥⎦ ,

whose characteristic equation is

λ +
[

(bV – dV – γ )
c

+ c
]
λ +

[
(bV – dV – γ ) +

bUV (bU – dU )
(bUV + bV – dV )

]
λ

–
[

γ bUV (bU – dU )
c(bUV + bV – dV )

]
λ +

γ (bU – dU )(bV – dV )
c = .

According to the Routh-Hurwitz stability criterion, for the solution E to be stable we
need all coefficients in the characteristic equation above to be positive. However, the co-
efficient of λ is

(bV – dV – γ ) +
bUV (bU – dU )

(bUV + bV – dV )
< ,

since () and () must hold for this non-washout steady state E to exist. Therefore,
this equilibrium solution E is unstable whenever it exists. This ends the proof of Theo-
rem .. �

Figure  shows a phase portrait in the y-y plane, in which the solution is seen to diverge
from the origin, which is a saddle point as predicted.

Clinically, the above analysis implies that infection will not be controllable at a steady
level, unless other measures are taken to remedy the situation.

4 Analytical solution
In this section, we shall rely on the modified extended tanh method [, –] to derive
analytical solutions in terms of the traveling wave coordinate. First, the solution of the
system ()-() can be expressed as a finite series of tanh functions in the form

U(ξ ) =
M∑

m=

amφm, ()
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V (ξ ) =
N∑

n=

bnφ
n, ()

W (ξ ) =
H∑

h=

chφ
h, ()

where am, bn and ch are constants, and φ(ξ ) = tanh (μξ ) satisfying the Riccati equation

φ′ = μ
(
 – φ).

We determine M, N and H by balancing the highest order of φ in the nonlinear term UW
with the highest order of φ in the linear term U ′′ in () which gives

M +  = M + H ,

so that H = . Balancing the highest order of φ in the term UV with that in the term V ′ in
equation () gives

N +  = M + H = M + ,

so that N = M + . Balancing the term W ′ with the term V in equation () gives

H +  = N + .

Therefore, we obtain

M = , N =  and H = . ()

Substituting () into ()-(), we find that

U(ξ ) = a + aφ + aφ
, ()

V (ξ ) = b + bφ + bφ
 + bφ

, ()

W (ξ ) = c + cφ + cφ
. ()

Substituting φ(ξ ) = tanh (μξ ) and the Riccati equation in equations ()-(), with the aid of
()-(), and equating the coefficients of each power of φ, we obtain a system of algebraic
equations of the parameters a, a, a, b, b, b, b, c, c, c, namely:

μa + bU a – dU a + bUV b – βac + cμa = ,

cμa – μa + bUa – dUa + bUV b – βac – βac = ,

–cμa – μa + bUa – dU a + bUV b – βac – βac – βac = ,

–cμa + μa + bUV b – βac – βac = ,

μa – βac = ,

bV b – dV b + βac + cμb = ,
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bV b – dV b + βac + βac + cμb = , ()

bV b – dV b + βac + βac + βac – cμb + cμb = ,

bV b – dV b + βac + βac + cμb = ,

βac – cμb = ,

αb – γ c + cμc = ,

αb – γ c + cμc = ,

αb – γ c – cμc = ,

αb – cμc = .

Solving (), we can obtain the parameters a, a, b, b, b, c, c expressed in terms of
a, b, c, which correspond to the initial boundary values of ()-(), as follows:

a =
(bU – dU )ca + cbUV b – cβac – μbUV b + μβac

μ(bU – dU – c – μ – βc)
,

a =
bUV b – βac – βac – cμa

μ – bU + dU + βc
,

b =
(dV – bV )b – βac

cμ
, b =

(dV – bV )b – β(ac + ac)
cμ

,

b =
((bV – dV )b + β(ac + ac + ac) – cμb) – β(ac + ac)

(bV – dV )
,

c =
γ c – αb

cμ
, c =

γ c – αb

cμ
,

where

α =
bUV ac


a

(bc + c) + abc(a – )
, β =

bUV ab


a
(bc + c) + abc(a – )

,

c =

√
bUV a

c

(bc + c) + abc(a – )
, γ =

(bc – bc)bUV a

a
(bc + c) + abc(a – )

,

and

μ =



√
bUV b

c

a
(bc + c) + abc(a – )

.

Thus, we obtain the exact solution of the model system:

S(x, t) = a +
(bS – dS)ca + cbSIb – cβac – μbSIb + μβac

μ(bS – dS – c – μ – βc)
tanh

(
μ(x – ct)

)

+
bSIb – βac – βac – cμa

μ – bS + dS + βc
tanh(μ(x – ct)

)
, ()
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Figure 2 Travelling wave solution. (a) The susceptible population per unit area and (b) the infected
population per unit area are plotted as functions of x for t between 30 (left most) and 60 (right most), plotted
in time steps of 10. Here, S(0, 0) = 0.4, I(0, 0) = 1.285451998, G(0, 0) = 0.8186870039, and other parametric
values are as given in the text.

I(x, t) = b +
(dI – bI)b – βac

cμ
tanh

(
μ(x – ct)

)

+
(dI – bI)b – β(ac + ac)

cμ
tanh(μ(x – ct)

)

+
((bI – dI)b + β(ac + ac + ac) – cμb) – β(ac + ac)

(bI – dI)

× tanh(μ(x – ct)
)
, ()

G(x, t) = c +
γ c – αb

cμ
tanh

(
μ(x – ct)

)
+

γ c – αb

cμ
tanh(μ(x – ct)

)
. ()

Figure  shows the graphs of the wave fronts S(x, t), I(x, t) given in ()-(). Here, a =
., a = ., a = ., b = ., b = ., b = , b = ., c =
., c = ., and c = .. The waves are seen here to travel from left to right
as time increases.

The wave fronts seen in Figure  describe the situation where, at the center of the region
of interest, x = , the infection starts out being prevalent, while not that many healthy
pigs remain (see Figure ). As time passes, the number of infected cases here becomes
higher, while the susceptibles reduce in number at this location. In other words, if we fix
the location x, we observe the level of number of infectives to increase with time, but the
number of susceptibles decreases.

On the other hand, if we fix the time, and follow a single wave front as x increases,
moving further and further away from the origin of infection, the susceptibles further
away from the centre is higher in number per unit area because the infection needs time
to spread outward before it reaches that distant location.

This can be more clearly understood by looking at Figure  which shows D plots of the
levels of susceptible and infective populations as functions of x and t. With this graph, we
can find what would happen to the swine population at risk to this disease as we move in
the direction of simultaneously increasing time and space.

5 Conclusion
In previous models [–], transmission since infection was assumed to be constant with
time. However, Charpin et al. [] have provided evidence that this is not the case. We
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Figure 3 Three dimensional plots of the analytic solution of (4)-(6) with the same set of parameters as
those shown in Figure 2, given in the text. (a) S(x, t); (b) I(x, t).

have therefore constructed a structured model for the spread of PRRSV that incorporates
both the time and the spatial dimensions as well as the decline of infectiousness with time.
We derive analytical solutions to the model system by using the traveling wave coordinate,
based on the modified extended tanh method [] and the earlier works on traveling wave
solutions [–].

Our work is expected to form a basis for further investigation to test the potential ef-
fectiveness of employing various intervention strategies for disease containment, such as
inoculation. Building upon our basic model, it should also be possible to examine other in-
terventions aimed at reducing population contact rates as reinforcement to a containment
policy.

Furthermore, in France, % of French pigs are raised in areas like Brittany and hence
the disease is prevalent in these densely pig populated regions. Some areas of France are,
on the other hand, disease free []. Such heterogeneity in space should also be considered
in a model of PRRS making the infection rate vary with space as well as time. Infection also
appears to vary with the pigs’ ages and this can be incorporated by building upon our basic
model we have proposed here, which is a subject for future research.

According to Charpin et al. [], porcine reproductive and respiratory syndrome leads
to considerable financial losses. In addition, to deter bacterial secondary infections in pig
production, farmers have to resort more and more to the use of antibiotics. In the United
States, annual economic losses due to PRRS in its swine industry were estimated to be up
to  million dollars in . Therefore, it is important that knowledge on the occurrence
and spread of PRRS virus in farms be deepened. The information obtained in this study
could be useful to develop efficient strategies for PRRS surveillance not only in Thailand
but in other countries as well. Further studies on PRRS incidence and persistence in farms
are needed in order to prevent economic losses caused by the spread of this dangerous
disease in the swine industry.
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