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Abstract
A mathematical model of the infection of CD4+ T-cells by HIV that includes the
effects of treatment by a reverse transcriptase inhibitor (RTI) and a protease inhibitor
(PI) is studied. The model includes three populations of CD4+ T-cells (healthy cells,
latently-infected cells which cannot produce virus, and productively-infected cells
which can produce virus) and two populations of free virus in the blood (infectious
virus and non-infectious virus). The model includes a time delay between a T-cell
becoming latently infected and productively infected. The model has a virus-free and
a chronic infection equilibrium. It is shown that the model has Andronov-Hopf
bifurcations leading to limit cycle behavior in the chronic infection region at critical
values of the time delays. For three data sets obtained from the work of previous
authors, numerical simulations have given critical delay values ranging from
approximately 15 days to more than 200 days. This range includes the period of
approximately 50 days for intermittent viral blips reported by Rong and Perelson (Plos
Comp. Biol. 5(10), 1-18 (2009)). Simple formulas are derived for the sensitivity indices
of the equilibrium populations and the basic reproductive number with respect to all
parameters in the model. Numerical simulations are carried out to support the
analytical results. The numerical results suggest that the most effective methods of
reducing both the basic reproductive number and the chronic infection CD4+ T-cell
and virus populations are the following: (1) to increase the efficacy of the antiretroviral
treatments and (2) to increase virus clearance rate, decrease infection rate, or
decrease viral reproduction rate.

Keywords: HIV model; RTI and PI treatment; limit cycles; viral blips; sensitivity
analysis

1 Introduction
The development of antiretroviral therapy using reverse transcriptase inhibitors (RTI) and
protease inhibitors (PI) has resulted in a big reduction in the disability associated with HIV
and with the rate of progression to AIDS. Although there is evidence that antiretroviral
therapy does not completely eliminate the virus (see, e.g., [, ]), there is recent evidence
that antiretroviral therapy can reduce the level of virus in an HIV person below detectable
levels (see, e.g., [, –]) and that it can depress the HIV level in an HIV+ person suf-
ficiently to effectively stop transmission of HIV from an HIV+ person to an uninfected
person (see, e.g., [–]). However, in many countries antiretroviral therapy is not avail-
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able. Also, infection by HIV can be asymptomatic [], and these asymptomatic infected
people may interact normally with people and pass on the disease to uninfected people.

Many researchers have developed mathematical models in an attempt to develop an
understanding of HIV transmission at either the cell level (see, e.g., [, , , –]) or the
population level (see, e.g., [, ] ).

In this paper, we consider a model for HIV infection at the cell level recently discussed
by Wang et al. []. The model includes three populations of CD+ T-cells (healthy cells,
latently-infected cells which cannot produce virus, and productively-infected cells which
can produce virus) and two populations of free virus (infectious virus and non-infectious
virus). The model also includes the effects of treatments with a reverse transcriptase in-
hibitor (RTI) and a protease inhibitor (PI). In their paper, Wang et al. showed that the
model has virus-free and chronic infection equilibrium solutions and they proved local
and global stability, boundedness and positivity of these solutions. They also used a latin
hypercube sampling technique for sensitivity analysis of the parameters in their model.

The model of Wang et al. is based on a model discussed by Rong and Perelson [, , ]
with the main difference being the addition of a logistic growth term for healthy CD+
T-cells. One of the important questions discussed in the Rong and Perelson papers is the
mechanism that produces an intermittent viral blip with a period of approximately 
days when subjects are treated with highly active antiretroviral therapy (HAARV). It is
well known (see, e.g., []) that time delays can produce bifurcations leading to limit cycle
behavior in both discrete-time and continuous-time dynamical systems. One of the aims
of the present paper is to check if time delays for procession of latently infected T-cells to
productively infected T-cells could result in viral blip-type behavior.

In the present paper, we develop simple analytical formulas for sensitivity indices for the
basic reproductive number, and for the virus-free and chronic equilibrium populations of
the time-delay model. We also show that the time-delay model can undergo Andronov-
Hopf bifurcations in the chronic equilibrium solutions at critical time delays and that limit
cycle behavior in all five populations occurs at time delays greater than the critical values.

2 Time-delay model
We consider the following model, which is generalized from the model of Wang et al. []
by including a time delay for the procession of latently infected T-cells to productively
infected T-cells. The variables in the model are defined in Table , and the parameters are
defined in Table .

dT(t)
dt

= � – dT T(t) + rT(t)
(

 –
T(t)
Tmax

)
– ( – nrt)kV (t)T(t), ()

dL(t)
dt

= η( – nrt)kV (t)T(t) – dLL(t) – aL(t – τ ), ()

dI(t)
dt

= ( – η)( – nrt)kV (t)T(t) – dII(t) + aL(t – τ ), ()

dV (t)
dt

= ( – np)NdII(t) – cV (t), ()

dW (t)
dt

= npNdII(t) – cW (t). ()
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Table 1 Variables in the model (adapted from [1, 5, 6, 15])

Population Definition

T (t) Healthy CD4+ T-cells at time t
L(t) Latently infected CD4+ T-cells at time t
I(t) Productively infected CD4+ T-cells at time t
V(t) Free infectious virus at time t
W(t) Free non-infectious (inhibited) virus at time t

Table 2 Parameters in the model (adapted from [1, 5, 6, 15])

Parameter Definition

� Constant production rate of healthy CD4+ T-cells from precursors
dT Natural death rate of healthy CD4+ T-cells
r Logistic growth rate of healthy CD4+ T-cells
Tmax Carrying capacity of healthy CD4+ T-cells
k Infection rate of healthy CD4+ T-cells by free infectious virus
η Fraction of infections leading to latently infected CD4+ T-cells
dL Death rate of latently infected CD4+ T-cells
dI Death rate of productively infected CD4+ T-cells
a Activation rate from latently to productively infected CD4+ T-cells
N Average number of free virus released by a productively infected CD4+ T-cell during its mean

lifetime 1/dI
c Clearance rate of free virus
nrt Drug efficacy of RTI (0≤ nrt < 1)
np Drug efficacy of PI (0 ≤ np < 1)
τ Time delay for transformation from latently to productively infected CD4+ T-cells

3 Equilibrium points
As shown by Wang et al. [] the system ()-() has a virus-free and a chronic equilibrium
point. For completeness, we will briefly summarize the proof here.

Theorem  The system ()-() has two equilibrium points:
. Virus-free:

(
T∗

 , L∗
 , I∗

 , V ∗
 , W ∗


)

=
(

Tmax

r

(
r – dT +

√
(r – dT ) + 

r�
Tmax

)
, , , , 

)
. ()

. Chronic infection:

T∗
 =

c(a + dL)
kN(a + ( – η)dL)

, L∗
 =

cη
N(a + ( – η)dL)

V ∗
 ,

I∗
 =

c
NdI

V ∗
 , V ∗

 =

k

(
T∗


T∗


– 

)(
�

T∗


+ r
T∗


Tmax

)
,

W ∗
 =

npN
N

V ∗
 ,

()

where k = ( – nrt)k, N = ( – np)N .

Proof
. Virus-free equilibrium. Setting L∗

 = I∗
 = V ∗

 = W ∗
 = , we have

dL
dt = dI

dt = dV
dt = dW

dt = . Then, setting dT
dt =  and choosing the positive solution for

T∗
 gives the result in part  of the theorem.
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. Chronic equilibrium. The equations for I∗
 and W ∗

 follow immediately from the
conditions dV

dt = dW
dt = . Then, setting dL

dt =  gives

L∗
 =

η

a + dL
kV ∗

 T∗
 . ()

Then, adding equations () and (), setting d(L+I)
dt = , and substituting in

equation (), we obtain the equation for T∗
 in (). Then, substituting for T∗

 in (),
we obtain the equation for L∗

 in (). Finally, setting dT
dt = , we obtain

V ∗
 =


kT∗



(
� + T∗



(
r – dT – r

T∗


Tmax

))

=

k

(
T∗


T∗


– 

)(
�

T∗


+ r
T∗


Tmax

)
. ()

The proof is complete. �

Note: The chronic infected virus population V ∗
 is greater than , i.e., the chronic equi-

librium exists, if and only if the parameter R =
T∗


T∗


> . We shall show in the next section

that R is the basic reproductive number of the model.

4 Basic reproductive number
For this model, as in most models with a virus-free and a chronic equilibrium state, there
are three methods of determining the basic reproductive number. They are: () Lyapunov’s
first method of checking the eigenvalues of the Jacobian of the linearized system at an
equilibrium point (see, e.g., []), () the next-generation method of van den Driessche and
Watmough [], or () by finding the condition for the existence of the chronic equilibrium
as in equation ().

4.1 Next-generation method
In using the next-generation method, it is necessary to identify a suitable infected popu-
lation in the model to choose as an initial infected population. Possible populations are
L, I, V . In this model L and I cannot be considered as separate initially infected popula-
tions since both infections come from infection of the susceptible population T by contact
with the V population. The population V comes only from one population (the I popula-
tion), and therefore we choose it as the initial infected population for the next-generation
method and order the variables as [V , T , L, I, W ]T . As stated in Wang et al. [], the next-
generation method gives

R =
a + ( – η)dL

c(a + dL)
kNT∗

 =
T∗


T∗


. ()

This formula for R is in agreement with the result derived in () as the condition for
existence of the chronic equilibrium.

4.2 Linearized equations and stability
For the time-delay model ()-(), the linearized equations about an equilibrium point are
(we let T(t) = T∗ + x(t), L(t) = L∗ + x(t), I(t) = I∗ + x(t), V (t) = V ∗ + x(t), and W (t) =
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W ∗ + x(t), where xj(T) are small perturbations)

dx(t)
dt

= –dT x(t) + rx(t)
(

 – 
T∗

Tmax

)
– kV ∗x(t) – kx(t)T∗,

dx(t)
dt

= ηkV ∗x(t) + ηkx(t)T∗ – dLx(t) – ax(t – τ ),

dx(t)
dt

= ( – η)kx(t)T∗ + ( – η)kx(t)V ∗ – dIx(t) + ax(t – τ ),

dx(t)
dt

= NdIx(t) – cx(t),

dx(t)
dt

= npNdIx(t) – cx(t).

()

Equation () can be written in matrix form as dx
dt = Jx(t), where x = (x, x, x, x, x)T and

J is a Jacobian. Then, assuming a trial solution of the standard form x(t) = eλtv, where v is
a constant vector, we obtain the Jacobian

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

–dT + r( –  T∗
Tmax

) – kV ∗   –kT∗ 
ηkV ∗ –dL – ae–λτ  ηkT∗ 

( – η)kV ∗ ae–λτ –dI ( – η)kT∗ 
  NdI –c 
  npNdI  –c

⎤
⎥⎥⎥⎥⎥⎥⎦

()

Using the Routh-Hurwitz conditions (see, e.g., []), Wang et al. [] showed for the case
of zero time delay that the eigenvalues of the Jacobian for the virus-free equilibrium have
negative real parts for R = T∗


T∗


<  and the eigenvalues of the Jacobian for the chronic

equilibrium have negative real parts for R > . In a later section, we will use the Jacobian
to find the critical time delays for Andronov-Hopf bifurcations.

Note: With modern mathematical software such as Matlab, Maple or Mathematica, it
is, of course, very easy to numerically compute the eigenvalues of the Jacobian for both
the virus-free and chronic equilibrium points for the case of zero time delay.

5 Sensitivity indices
We define normalized sensitivity indices for a quantity Q with respect to a parameter h as

SI(Q|h) =
h
Q

∂Q
∂h

= h
∂

∂h
ln(Q). ()

There are at least three possible methods of computing sensitivity indices: () direct com-
putation by differentiation of formulas for the quantity Q, () the method of Chitnis et
al. [] of linearizing the original nonlinear model equations to set up a system of linear
algebraic equations for the sensitivity indices and then numerically solve these equations,
and () the method used in Wang et al. [] based on a Latin hypercube sampling tech-
nique.

In this paper, we use the first method of direct differentiation as it gives explicit formulas
for the indices. We will first compute the sensitivity indices for T∗

 , T∗
 with respect to the
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Table 3 Sensitivity indices for virus-free healthy T-cell population T∗
1

Parameter Index Parameter Index

Tmax 1 – 2r�
TmaxD � 2r

TmaxD

r –
2r(�–dT T

∗
1 )

TmaxD dT – dT√
(r–dT )

2+ 4r�
Tmax

Where D = (r – dT )
2 + 4r�

Tmax + (r – dT )

√
(r – dT )

2 + 4r�
Tmax .

Table 4 Sensitivity indices for chronic healthy T-cell population T∗
2

Parameter Index Parameter Index

dL
aηdL

(a+dL )(a+(1–η)dL )
a – aηdL

(a+dL )(a+(1–η)dL )

c 1 k –1

N –1 nrt
nrt
1–nrt

np
np
1–np

η
ηdL

a+(1–η)dL

parameters by using the formulas in Theorem . We will then compute sensitivity indices
for R using the formula in (). Finally, we will compute the sensitivity indices for V ∗

 , L∗
,

I∗
 and W ∗

 using the formulas in Theorem .

5.1 Sensitivity indices for virus-free healthy T-cell population T∗
1

From (), we have

ln
(
T∗


)

= ln(Tmax) + ln

(
r – dT +

√
(r – dT ) +

r�
Tmax

)
– ln() – ln(r). ()

The virus-free equilibrium T-cell population T∗
 is a function of the four parameters Tmax,

�, r and dT . By differentiation of () with respect to these four parameters, we obtain the
sensitivity indices shown in Table .

5.2 Sensitivity indices for chronic healthy T-cell population T∗
2

From Theorem , we have

ln
(
T∗


)

= ln(c) + ln(a + dL) – ln( – nrt) – ln(k)

– ln( – np) – ln(N) – ln
(
a + ( – η)dL

)
. ()

The chronic equilibrium T-cell population is a function of eight parameters, dL, a, c, k, N ,
nrt , np and η. The sensitivity indices of T∗

 with respect to these parameters are shown in
Table .

5.3 Sensitivity indices for the basic reproductive number R0

From equation (), we have ln(R) = ln(T∗
 )– ln(T∗

 ). We note that T∗
 and T∗

 are functions
of different sets of parameters. The sensitivity indices are shown in Table .



Darlai and Moore Advances in Difference Equations  (2017) 2017:138 Page 7 of 16

Table 5 Sensitivity indices for the basic reproductive number R0

Parameter Index Parameter Index

Tmax SI(T∗
1 |Tmax) � SI(T∗

1 |�)

r SI(T∗
1 |r) dT SI(T∗

1 |dT )
dL –SI(T∗

2 |dL) a –SI(T∗
2 |a)

c –SI(T∗
2 |c) k –SI(T∗

2 |k)
N –SI(T∗

2 |N) nrt –SI(T∗
2 |nrt )

np –SI(T∗
2 |np) η –SI(T∗

2 |η)

Table 6 Sensitivity indices for chronic productive virus population V∗
2

Parameter Index

Tmax
R0SI(T

∗
1 |Tmax )
R0–1

–
�TmaxSI(T∗1 |Tmax )+rT∗1 T∗2

�Tmax+rT∗1 T∗2
�

R0SI(T
∗
1 |�)

R0–1
+

�Tmax (1–SI(T∗1 |�))

�Tmax+rT∗1 T∗2
r

R0SI(T
∗
1 |r)

R0–1
+

rT∗1 T∗2 –�TmaxSI(T∗1 |r)
�Tmax+rT∗1 T∗2

dT
R0SI(T

∗
1 |dT )

R0–1
–

�TmaxSI(T∗1 |dT )
�Tmax+rT∗1 T∗2

dL –
R0SI(T

∗
2 |dL )

R0–1
+

rT∗1 T∗2 SI(T∗2 |dL )
�Tmax+rT∗1 T∗2

a –
R0SI(T

∗
2 |a)

R0–1
+

rT∗1 T∗2 SI(T∗2 |a)
�Tmax+rT∗1 T∗2

c –
R0SI(T

∗
2 |c)

R0–1
+

rT∗1 T∗2 SI(T∗2 |c)
�Tmax+rT∗1 T∗2

k –
R0SI(T

∗
2 |k)

R0–1
+

rT∗1 T∗2 SI(T∗2 |k)
�Tmax+rT∗1 T∗2

– 1

N –
R0SI(T

∗
2 |N)

R0–1
+

rT∗1 T∗2 SI(T∗2 |N)
�Tmax+rT∗1 T∗2

nrt –
R0SI(T

∗
2 |nrt )

R0–1
+

rT∗1 T∗2 SI(T∗2 |nrt )
�Tmax+rT∗1 T∗2

+ nrt
1–nrt

np –
R0SI(T

∗
2 |np )

R0–1
+

rT∗1 T∗2 SI(T∗2 |np )
�Tmax+rT∗1 T∗2

η –
R0SI(T

∗
2 |η)

R0–1
+

rT∗1 T∗2 SI(T∗2 |η)
�Tmax+rT∗1 T∗2

5.4 Sensitivity indices for the chronic productive virus population V∗
2

Using the formula for V ∗
 from Theorem , we have

ln
(
V ∗


)

= ln(R – ) + ln

(
�

T∗


+
rT∗


Tmax

)
– ln( – nrt) – ln(k)

= ln(R – ) + ln
(
�Tmax + rT∗

 T∗

)

– ln(Tmax) – ln
(
T∗


)

– ln( – nrt) – ln(k). ()

The formulas for the sensitivity indices can then be written in the form given in Table .

5.5 Sensitivity indices for the chronic infected T-cell populations L∗
2, I∗2 and

nonproductive virus population W∗
2

Using the formulas for L∗
, I∗

 , W ∗
 from Theorem , we have

ln
(
L∗


)

= ln(c) + ln(η) + ln
(
V ∗


)

– ln( – np) – ln(N) – ln
(
a + ( – η)dL

)
,

ln
(
I∗


)

= ln(c) + ln
(
V ∗


)

– ln( – np) – ln(N) – ln(dI),

ln
(
W ∗


)

= ln(np) + ln
(
V ∗


)

– ln( – np).
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Table 7 Sensitivity indices for chronic latently infected T-cell population L∗
2

Parameter Index Parameter Index

Tmax SI(V∗
2 |Tmax) � SI(V∗

2 |�)

r SI(V∗
2 |r) dT SI(V∗

2 |dT )
dL SI(V∗

2 |dL) – (1–η)dL
a+(1–η)dL

a SI(V∗
2 |a) – a

a+(1–η)dL
c 1 + SI(V∗

2 |c) k SI(V∗
2 |k)

N SI(V∗
2 |N) – 1 nrt SI(V∗

2 |nrt )
np SI(V∗

2 |np) + np
1–np

η 1 + SI(V∗
2 |η) + ηdL

a+(1–η)dL

Table 8 Sensitivity indices for chronic productively infected T-cell population I∗2
Parameter Index Parameter Index

Tmax SI(V∗
2 |Tmax) � SI(V∗

2 |�)

r SI(V∗
2 |r) dT SI(V∗

2 |dT )
dL SI(V∗

2 |dL) dI –1

a SI(V∗
2 |a) c 1 + SI(V∗

2 |c)
k SI(V∗

2 |k) N SI(V∗
2 |N) – 1

nrt SI(V∗
2 |nrt) np SI(V∗

2 |np) + np
1–np

η 1 + SI(V∗
2 |η)

Table 9 Sensitivity indices for chronic non-infected free virus population W∗
2

Parameter Index Parameter Index

Tmax SI(V∗
2 |Tmax) � SI(V∗

2 |�)

r SI(V∗
2 |r) dT SI(V∗

2 |dT )
dL SI(V∗

2 |dL) dI 0

a SI(V∗
2 |a) c 1 + SI(V∗

2 |c)
k SI(V∗

2 |k) N SI(V∗
2 |N)

nrt SI(V∗
2 |nrt) np SI(V∗

2 |np) + 1
1–np

η SI(V∗
2 |η)

The sensitivity indices for L∗
, I∗

 , W ∗
 are shown in Tables , , .

6 Numerical results
We give examples of numerical results using the parameter values listed in Table  se-
lected from the work of previous authors.

6.1 Dependence of R0 on antiretroviral therapy
Figures (a), (b) and (c) show critical values of the antiretroviral parameters nrt and np

separating the virus-free and chronic infection equilibrium regions (R = ) for data sets
,  and  of Table , respectively. For the three sets it can be seen that the model ()-()
predicts that for sufficiently high antiretroviral therapy the HIV infection levels can be
reduced to zero. However, as there is evidence (see, e.g., [, ]) that the virus cannot be
completely eliminated from an HIV+ person, these results suggest that the model requires
adjusting in the region of high levels of antiretroviral therapy.
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Table 10 Parameter values (adapted from Wang et al. [15])

Parameter Set 1 Set 2 Set 3 Unit Source

Tmax 1500 1500 1500 μl–1 [14, 15]

� 10 10 10 μl–1 day–1 [1, 5, 6, 14, 15]

r 0.1 0.03 0.1 day–1 [14, 15]

dT 0.03 0.01 0.01 day–1 [1, 5, 6, 14, 15]

dL 0.001 0.004 0.2 day–1 [1, 5, 6, 15]

a 0.1 0.01 0.3 day–1 [1, 5, 6, 15]

c 20 3 15 day–1 [1, 5, 6, 14, 15]

k 0.0001 0.0001 0.0001 μl–1 day–1 [1, 5, 6, 14, 15, 22]

N 1000 200 500 virions/cell [1, 5, 6, 14, 15, 22]

η 0.02 0.001 0.5 [1, 5, 6, 15]

dI 1 1 0.8 day–1 [1, 5, 6, 14, 15]

Figure 1 Plots of the curve R0 = 1 separating the virus-free and chronic equilibrium regions as a
function of nrt and np for the data sets 1, 2 and 3 in Table 10.

6.2 Sensitivity analysis
For the sensitivity analysis, we consider three cases: () Virus-free equilibrium with R < ,
() Chronic equilibrium with R ≈ , and () Chronic equilibrium with R > .
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Virus-free case. For this case, we use data set  in Table  and values of nrt = ., np = ..
For these parameter values, R = . <  and the equilibrium population values and
eigenvalues are as follows:

Virus-free
(
T∗

 , L∗
 , I∗

 , V ∗
 , W ∗


)

= (., , , , ).

Eigenvalues –, –., –., –., –..

Chronic
(
T∗

 , L∗
, I∗

 , V ∗
 , W ∗


)

= (., –., –., –, –.).

Eigenvalues –, –., ., –., –..

As predicted for R < , the virus-free equilibrium is locally asymptotically stable as the
real parts of all eigenvalues are negative. Also, the chronic equilibrium does not exist be-
cause the infected T-cell and free virus populations are negative. It is also unstable because
at least one eigenvalue has a positive real part.

The sensitivity indices for the virus-free healthy T-cell population (T∗
 ) are shown in

Table  and for the basic reproductive number R in Table .
From the numerical results in Table , it can be seen that the most effective methods

of reducing R are the following: () to try to increase the efficacies nrt and np of the an-
tiretroviral therapy and () to increase virus clearance rate c, decrease infection rate k, or
decrease viral reproduction rate N .

Chronic case (R ≈ ). For this case, we use data set  in Table  and values of nrt = .,
np = .. For these parameter values, R = . ≈  and the equilibrium populations and
eigenvalues are as follows:

Virus-free
(
T∗

 , L∗
 , I∗

 , V ∗
 , W ∗


)

= (., , , , ).

Eigenvalues –, –., –., ., –..

Chronic
(
T∗

 , L∗
, I∗

 , V ∗
 , W ∗


)

= (., ., ., ., .).

Eigenvalues –, –., –., –., –..

As predicted for R > , the virus-free equilibrium is unstable as the real part of at least
one eigenvalue is positive. Also, the chronic equilibrium exists because the infected T-cell

Table 11 Sensitivity indices for T∗
1

Parameter Sensitivity index Parameter Sensitivity index

Tmax 0.9024 � 0.00976
r 0.2472 dT –0.3449

Table 12 Sensitivity indices for virus-free basic reproductive number R0

Parameter Sensitivity index Parameter Sensitivity index

Tmax 0.9024 � 0.00976
r 0.2472 dT –0.3449
dL –0.000196 a 0.00196
c –1 k 1
N 1 nrt –4
np –1.5 η –0.000198
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Table 13 Sensitivity indices for R0 and for chronic infected T-cells and virus populations for
R0 ≈ 1

Parameter R0 T∗
2 L∗

2 I∗2 V∗
2

Tmax 0.9024 0 1525.9 1525.9 1525.9
� 0.00976 0 16.618 16.618 16.618
r 0.2472 0 419.24 419.24 419.24
dT –0.3449 0 –583.54 –583.54 –583.54
dL –0.000196 0.000196 –0.3414 –0.332 –0.33164
a 0.00196 –0.00196 2.3261 3.3164 3.3164
c –1 1 –1690.2 –1690.2 –1691.2
k 1 –1 1690.2 1690.2 1690.2
N 1 –1 1690.2 1690.2 1691.2
nrt –1.3529 1.3529 –2286.7 –2286.7 –2286.7
np –1.5 1.5 –2535.3 –2535.3 –2536.8
η –0.000198 0.000198 –0.6652 0.6650 –0.3350
dI 0 0 0 –1 0

and free virus populations are positive. It is also locally asymptotically stable because the
real parts of all eigenvalues are negative. Also, since R ≈ , the infected T-cell and free
virus levels are close to zero and could easily be undetectable. The sensitivity indices for
the chronic equilibrium with R ≈  are shown in Table  for R and for the infected
T-cell and virus populations T∗

 , L∗
, I∗

 and V ∗
 .

Chronic case (R > ). For this case, we use data set  in Table  and values of nrt = .,
np = .. For these parameter values, R = . >  and the equilibrium populations and
eigenvalues are as follows:

Virus-free
(
T∗

 , L∗
 , I∗

 , V ∗
 , W ∗


)

= (., , , , ).

Eigenvalues –, –., –., ., –..

Chronic
(
T∗

 , L∗
, I∗

 , V ∗
 , W ∗


)

= (., ., ., ., .).

Eigenvalues –, –., –. ± .i, –..

As predicted for R > , the virus-free equilibrium is unstable as the real part of at least
one eigenvalue is positive. Also, the chronic equilibrium exists because the infected T-cell
and free virus populations are positive. It is also locally asymptotically stable because the
real parts of all eigenvalues are negative. The complex conjugate eigenvalue with the small
negative real part indicates that the infected populations will oscillate with a slowly de-
creasing amplitude to the chronic equilibrium solution.

The sensitivity indices for the chronic equilibrium with R >  are shown in Table  for
R and for the infected T-cell and virus populations T∗

 , L∗
, I∗

 and V ∗
 .

From the numerical results in Tables  and , it can be seen that in the chronic infec-
tion region the most effective methods of reducing the free virus population V ∗

 are the
following: () to try to increase the efficacies nrt and np of the antiretroviral therapy and ()
to increase virus clearance rate c, decrease infection rate k, or decrease viral reproduction
rate N .

6.3 Dynamic behavior of solutions
We used Matlab to integrate the system ()-() for the parameter values in data set  in
Table  and the nrt and np values for the virus-free case (nrt = ., np = .) and for the
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Table 14 Sensitivity indices for chronic infected T-cells and virus populations for R0 > 1

Parameter R0 T∗
2 L∗

2 I∗2 V∗
2

Tmax 0.9024 0 2.1023 2.1023 2.1023
� 0.00976 0 0.1647 0.1647 0.1647
r 0.2472 0 1.6811 1.6811 1.6811
dT –0.3449 0 –1.1350 –1.1350 –1.1350
dL –0.000196 0.000196 –0.01021 –0.000501 –0.000501
a 0.00196 –0.00196 –0.9852 0.00501 0.00501
c –1 1 –1.5562 –1.5562 –2.5562
k 1 –1 1.5562 1.5562 1.5562
N 1 –1 1.5562 1.5562 2.5562
nrt –0.6667 0.6667 –1.0375 –1.0375 –1.0375
np –1.5 1.5 –2.3344 –2.3344 –3.8344
η –0.000198 0.000198 0.9997 0.9995 –0.000506
dI 0 0 0 –1 0

Figure 2 Plots of populations vs time for virus-free and chronic parameter values.

chronic case with R >  (nrt = ., np = .). These parameter values correspond to cases
 and , respectively, discussed in the sensitivity analysis section.

Examples of the time-dependence of the solutions for zero time delay for infected T-cells
and free virus are shown in Figure (a) for the virus-free case and (b) for the chronic case.
The populations converge to the virus-free equilibrium (., , , , ) in Figure (a)
and to the chronic equilibrium populations (., ., ., ., .) in Fig-
ure (b). As noted for the chronic case with R >  in the previous section, the solutions
oscillate with decreasing amplitude due to the dominant complex conjugate pair of eigen-
values of the chronic equilibrium Jacobian.

6.4 Andronov-Hopf bifurcation for chronic solutions
One of the main conditions for the existence of an Andronov-Hopf bifurcation (see, e.g.,
[]) is the existence of a purely imaginary pair of eigenvalues of the Jacobian of the chronic
equilibrium at a critical value of a delay time with all other eigenvalues having negative
real parts. In this paper, we find purely imaginary eigenvalues and the critical delay time
by direct numerical solution of the characteristic equation det(λI – J) = , where J is the
Jacobian in equation ().
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Table 15 Examples of critical delay times τc (days) for Andronov-Hopf bifurcation

Set 1 Set 2 Set 3

(nrt, np) τc (nrt, np) τc (nrt, np) τc

R0 > 1 (0.2, 0.3) 15.429 (0.2, 0.3) 216.215 (0.2, 0.3) 14.171
(0.5, 0.5) 16.077 (0.5, 0.5) 216.299 (0.2, 0.4) 26.563
(0.4, 0.6) 16.292 (0.4, 0.6) 216.313 (0.25, 0.4) 44.064
(0.5, 0.6) 19.175 (0.5, 0.6) 216.405 (0.25, 0.43) 132.673

R0 ≈ 1 (0.575, 0.6) 18.052 (0.633, 0.7) 231.147

Figure 3 Plots of latent T-Cell populations vs time for data set 1 for time delays less than and greater
than critical time (nrt = 0.5, np = 0.6).

We have used Matlab to obtain numerical solutions of the characteristic equation
det(λI – J) =  for parameter values given in data sets ,  and  of Table  for a selec-
tion of nrt and np values corresponding to R ≈  and R > .

Examples of these critical values for data sets ,  and  of Table  are shown in Ta-
ble . The critical delay values for a bifurcation are clearly very different for the three data
sets. A noticeable difference between the data sets is also that the critical values for data
sets  and  appear to change slowly as the level of the antiretroviral therapy is increased,
whereas the critical values for data set  change rapidly as the level of the antiretroviral
therapy is increased. The reason for this difference is at present unknown to the authors
and requires a sensitivity analysis of the critical delay times.

An example of the dynamical behavior of the solutions of the model for data set  of
Table  for the antiretroviral therapy levels nrt = . and np = . are shown in Figure 
for delay times just less than and just greater than the critical delay time. The plot for
delay time just less than the critical time shows convergence to the chronic latent T-cell
equilibrium population, whereas the plot for the delay time just greater than the critical
time shows convergence to an oscillating population value. An example of the limit cycle
behavior of the infectious free virus population for data set  in Table  for a time delay
just greater than the critical delay is shown in Figure . The phase plane plot in Figure (b)
shows a clear limit cycle behavior as predicted by Andronov-Hopf bifurcation theory (see,
e.g., []).
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Figure 4 Limit cycle behavior of infectious free virus population for data set 1 for time delay greater
than critical time for nrt = 0.5, np = 0.6.

In numerical results, not shown in this paper, we have found that in the limit cycle region
the model ()-() predicts that the latently infected CD+ T-cell population L can become
negative. Since this is physiologically impossible, it is necessary to put a lower bound on the
L population. The evidence (see, e.g., [, ]) that the virus cannot be completely eliminated
suggests that placing a positive lower bound on L would give a more realistic model.

7 Conclusion
We have obtained simple analytical formulas for the sensitivity indices of this time-delay
HIV model and used them to compute numerical values. We have found the following:

() For the virus-free equilibrium, the virus-free healthy T-cell population depends on
parameters that cannot be changed easily and the chronic healthy T-cell population
is only useful because it is used to compute the sensitivity indices for R.
A reduction in R is important because it corresponds to a faster convergence of the
infected populations to zero. From the numerical results, it can be seen that the
most effective methods of reducing R are the following: () to try to increase the
efficacies nrt and np of the antiretroviral therapy and then () to increase virus
clearance rate c, decrease infection rate k, or decrease viral reproduction rate N .

() For the chronic equilibrium, reduction of the productively infected viral population
V ∗

 is the most important method of reducing the HIV infection. From the
numerical results, the most effective methods of reducing V ∗

 are the same as for the
virus-free case.

() The numerical results show that Andronov-Hopf bifurcations occur in the time
delay model and that the critical delay times can vary over a wide range. For three
data sets published by [] and selected from the work of previous authors
(Table ), we have found delay times ranging from approximately - days to
more than  days.

As stated in the introduction, one aim of examining the effect of introducing a time
delay for procession of latently infected CD+ T-cells to productively infected T-cells was
to check if Andronov-Hopf bifurcations could produce limit cycle behavior in the free



Darlai and Moore Advances in Difference Equations  (2017) 2017:138 Page 15 of 16

virus populations that might be associated with the intermittent viral blips with period
of approximately  days observed by Rong and Perelson [, , ]. Our results show that
Andronov-Hopf bifurcations associated with this time delay in procession can produce
limit cycle behavior with periods similar to the viral blip period. However, the present
authors are not able to claim that this behavior actually causes the viral blips.

In numerical results, not shown in this paper, we have found that for a range of antiretro-
viral levels and delay times the model ()-() predicts that the latently infected CD+ T-cell
population L can become negative. However, in these cases, all other populations remain
positive. The evidence (see, e.g., [, ]) that the virus cannot be completely eliminated
suggests that placing a positive lower bound on L is necessary to obtain a more realistic
time-delay model.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Faculty of Science, Energy and Environment, King Mongkuts University of Technology North Bangkok (Rayong Campus),
Rayong, Thailand. 2Department of Mathematics, King Mongkuts University of Technology North Bangkok, Bangkok,
Thailand. 3Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 January 2017 Accepted: 1 May 2017

References
1. Rong, LB, Perelson, AS: Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips

in HIV-infected patients on potent therapy. PLoS Comput. Biol. 5(10), 1-18 (2009)
2. Chomont, N, El-Far, M, Ancuta, P, Trautman, L, Procopio, FA, Yassine-Diab, B, Boucher, G, Boulasse, M-R, Ghattas, G,

Brenchley, JM, Schacker, TW, Hill, BJ, Douek, DC, Routy, J-P, Haddad, EK, Sékaly, R-P: HIV reservoir size and persistence
are driven by T cell survival and homeostatic proliferation. Nat. Med. 15(8), 893-900 (2009)

3. AIDS.gov: https://www.aids.gov. Accessed 30 April 2017
4. Callaway, DS, Perelson, AS: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64(1), 29-64 (2002)
5. Rong, LB, Perelson, AS: Asymmetric division of activated latently infected cells may explain the decay kinetics of the

HIV-1 latent reservoir and intermittent viral blips. Math. Biosci. 217(1), 77-87 (2009)
6. Rong, LB, Perelson, AS: Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol. 260(2), 308-331

(2009)
7. Wilson, C: A farewell to condoms. New Scientist., 22-23 (11 February 2017)
8. Unaids: (2016) http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update2016_en.pdf. Accessed 31

May 2016
9. World Health Organization: (2017) http://www.who.int/campaigns/tb-day/2017/en/. Accessed 24 March 2017
10. Banks, HT, Davidiana, M, Shuhua, H, Kepler, GM, Rosenberg, ES: Modeling HIV immune response and validation with

clinical data. J. Biol. Dyn. 2(4), 357-385 (2008)
11. Barton, KM, Burch, BD, Soriano-Sarabia, N, Margolis, DM: Prospects for treatment of latent HIV. Clin. Pharmacol. Ther.

93(1), 46-56 (2013)
12. Wang, LC, Li, MY: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math.

Biosci. 200(1), 44-57 (2006)
13. Wang, Y, Zhou, YC, Wu, JH, Heffernan, J: Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math. Biosci.

219(2), 104-112 (2009)
14. Wang, Y, Zhou, Y, Brauer, F, Huffernan, JM: Viral dynamics model with CTL immune response incorporating

antiretroviral therapy. J. Math. Biol. 67(4), 901-934 (2013)
15. Wang, Y, Lui, J, Lui, L: Viral dynamics of an HIV model with latent infection incorporating antiretroviral therapy. Adv.

Differ. Equ. 2016, 225 (2016)
16. Ding, Y, Xu, M, Hu, L: Asymptotic behavior and stability of a stochastic model for AIDS transmission. Appl. Math.

Comput. 204, 99-108 (2008)
17. Robert, MG, Saha, AK: The asymptotic behavior of logistic epidemic model with stochastic disease transmission. Appl.

Math. Lett. 12, 37-41 (1999)
18. Kuznetsov, YA: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
19. Luenberger, DG: Introduction to Dynamic Systems: Theory, Models and Applications. Wiley, New York (1979)
20. Vanden Driessche, P, Watmough, J: Reproduction numbers and sub-threshold endemic equilibria for compartmental

models of disease transmission. Math. Biosci. 180(1), 29-48 (2002)

https://www.aids.gov
http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update2016_en.pdf
http://www.who.int/campaigns/tb-day/2017/en/


Darlai and Moore Advances in Difference Equations  (2017) 2017:138 Page 16 of 16

21. Chitnis, N, Hyman, JM, Cushing, JM: Determining important parameters in the spread of malaria through the
sensitivity analysis of a mathematical model. Bull. Math. Biol. 70, 1272-1296 (2008)

22. de Leenheer, P, Smith, HL: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4), 1313-1327 (2003)


	Andronov-Hopf bifurcation and sensitivity analysis of a time-delay HIV model with logistic growth and antiretroviral treatment
	Abstract
	Keywords

	Introduction
	Time-delay model
	Equilibrium points
	Basic reproductive number
	Next-generation method
	Linearized equations and stability

	Sensitivity indices
	Sensitivity indices for virus-free healthy T-cell population T1*
	Sensitivity indices for chronic healthy T-cell population T2*
	Sensitivity indices for the basic reproductive number R0
	Sensitivity indices for the chronic productive virus population V2*
	Sensitivity indices for the chronic infected T-cell populations L2*, I2* and nonproductive virus population W2*

	Numerical results
	Dependence of R0 on antiretroviral therapy
	Sensitivity analysis
	Dynamic behavior of solutions
	Andronov-Hopf bifurcation for chronic solutions

	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


