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Abstract
This study investigates the problem of finite-time control for uncertain systems with
nonlinear perturbations. The aim is to design the state-feedback and output-feedback
controller which ensure finite-time boundedness and with a desired H∞ performance
index υ . Specifically, first, we divide the time-varying delay into non-uniformly
subintervals and decompose the corresponding integral intervals to estimate the
bounds of integral terms exactly. Second, the conditions obtained in this paper are
formulated in terms of linear matrix inequalities (LMIs), which can be efficiently solved
via standard numerical software. Finally, numerical examples are presented to
demonstrate the effectiveness and advantages of the theoretical results.

Keywords: finite-time boundedness (FTB); Lyapunov-Krasovskii functional (LKF);
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1 Introduction
Much work has been done on the robust control of linear systems over the past  years [,
]. Most of the results in this field relate to the stability and performance criteria defined
over an infinite time interval. In many practical applications, however, the main concern
is the behavior of the system over a fixed finite time interval. In this sense it appears rea-
sonable to define as stable a system whose state, given some initial conditions, remains
within prescribed bounds in the fixed time interval, and as unstable a system which does
not. Many are the practical problems in which this kind of stability (FTS) or short-time
stability [, ] plays an important role: for instance the problem of not exceeding some
given bounds for the state trajectories, when some saturation elements are present in the
control loop; or the problem of controlling the trajectory of a space vehicle from an initial
point to a final point in a prescribed time interval. Time delay frequently occurs in various
practical engineering systems, such as static neural networks systems [, ], singular sys-
tems [–], Markovian jump systems [–], genetic regulatory network systems []
and networked control systems (NCS) [–].

It is well known that the nonlinearities, as time delays also cause instability and poor per-
formance of practical systems. Therefore, the stability problem of time-delay systems with
nonlinear perturbations has received increased attention [–]. The free-weighting ma-
trices approach was adopted in [–]. Recently, a less conservative delay-dependent sta-
bility criterion was provided in [] by partitioning the delay interval into two segments
of equal length, and evaluating the time derivative of a candidate LKF in each segment
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of the delay interval into two segments of equal length, having this at our disposal, more
information on the variation interval of the delay can be employed. Nevertheless, there
still exists room for further improvement.

In many practical systems, time delay is unavoidable; see [–]. In such cases, a
method of FTS has been applied to investigate the system with time varying; see [, ].
Motivated by the above discussions, this paper investigates the problem of finite-time con-
trol for uncertain systems with nonlinear perturbations. The contributions of this paper
can be summarized as follows:

• We divide the variation of the delay into N parts with equal length, and construct a
new LKF for these delay intervals, which can be regarded as an extension of the
method of [], consequently, use more information of the delay range, and hence
yield less conservative delay-range bounds.

• The system is assumed to be exactly known to designers in [], i.e., there are no
uncertainties in the system, while in this paper, the existence of norm-bounded
uncertainties is considered, which will increase the difficulty of FTS analysis.

• Only the state-feedback control is considered in [], in this paper, we design both the
state-feedback and the output-feedback controllers, the output-feedback controller
design is much more difficult than the state-feedback one.

• It is well known that a disturbance effect is often the source of instability and poor
performance of a system, thus, the disturbance attenuation performance studied via
the H∞ control approach is worth to be considered. Compared with [, ], we
added external disturbance w(t) and unknown nonlinear perturbations f (x(t), t),
g(x(t – τ (t)), t), and this motivates the research.

In this paper, we deal with the problem of finite-time H∞ controller design for uncer-
tain systems with nonlinear perturbations. Both state-feedback controller and output-
feedback controller have been considered. By means of LMI techniques, some suffi-
cient LMI-based conditions for the existence of the state-feedback controller and output-
feedback controller are given.

The rest of the current paper is organized as follows. Section  introduces the problem
formulation and some definitions on FTB and finite-time H∞ control. Some FTB criteria
obtained for the systems are presented in Section . In Section , the problem of finite-
time H∞ control via state-feedback and output-feedback is discussed. Section  gives some
numerical examples to demonstrate the effectiveness of our main results. Finally, Section 
draws the conclusion.

Notation The superscripts T and (–) stand for matrix transposition and matrix in-
verse, respectively; Rn denotes the n-dimensional Euclidean space; the notation X > Y
(X ≥ Y ), where X, Y are symmetric matrices, means that X – Y is positive definite (posi-
tive semidefinite). ∗ denotes the term that is induced by symmetry. col{x, x, . . . , xn} means
[xT

 , xT
 , . . . , xT

n ]T and Sym{X} = X + XT . The shorthand notation diag{M, M, . . . , Mn} de-
notes a block diagonal matrix with diagonal blocks being the matrices M, M, . . . , Mn.
λmin(·) and λmax(·) denote the smallest and largest eigenvalue of ·. Ln

[ N] is the space
of n-dimensional square integrable function vectors over [ N]. Matrices, if their dimen-
sions are not explicitly stated, are assumed to have appropriate dimensions for algebraic
operations.
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2 Problem formulation and preliminaries
In this paper, we consider the neural networks with time-varying delay systems as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = [A + �A(t)]x(t) + [Ad + �Ad(t)]x(t – τ (t)) + Ff (x(t), t)

+ Gg(x(t – τ (t)), t) + Bu(t) + Ew(t),

y(t) = Cx(t) + Cdx(t – τ (t)),

x(t) = ϕ(t), t ∈ [–τM, ],

()

where x(t) ∈ R
n is the state vector of the neural network associated with n neurons; τ (t)

is time-varying delay satisfying  < τm ≤ τ (t) ≤ τM , τ̃d ≤ τ̇ (t) ≤ τ̄d ; ϕ(·) ∈ L[–τM ] is
an initial function; u(t) ∈ R

l is the control input and y(t) ∈ R
m is the measured output.

w(t) ∈ Lq
[ +∞] is the external disturbances; A, Ad , C, Cd , F , G, B, E are known real

constant matrices with appropriate dimensions. �A(t), �Ad(t) are real-valued unknown
matrices representing time-varying parameter uncertainties, and they are assumed to be
of the form

[
�A(t) �Ad(t)

]
= L�(t)

[
Ea Ed

]
, ()

where L and Ei (i = a, d) are known real constant matrices and �(t) is unknown time-
varying matrix functions satisfying �T (t)�(t) ≤ I , ∀t. f (x(t), t) ∈ R

n and g(x(t – τ (t)), t) ∈
R

n are unknown nonlinear perturbations with x(t) and x(t –τ (t)), respectively. They satisfy
f (, t) ≡ , g(, t) ≡ , and

⎧
⎨

⎩

f T (x(t), t)f (x(t), t) ≤ αxT (t)x(t),

gT (x(t – τ (t)), t)g(x(t – τ (t)), t) ≤ βxT (t – τ (t))x(t – τ (t)),
()

where α ≥ , β ≥  are known scalars. For simplicity we denote f = f (x(t), t), g = g(x(t –
τ (t), t)).

Assumption . For any given positive number η, the external disturbances input w(t) is
time varying and satisfies

∫ T


wT (t)w(t) dt ≤ η, η ≥ . ()

In this paper, the objective is to find a state-feedback controller and output-feedback
controller for the system () that will render the corresponding closed-loop dynamic sys-
tem FTB with a desired H∞ index υ . The definitions of FTS, FTB and finite-time H∞
control are introduced as follows.

Definition . ([] (FTS)) The time-delay system () with w(t) =  is said to be FTS with
respect to (c, c, T , R), where c > , and R > , if there exists a constant c (> c), such that

xT (t)Rx(t) ≤ c, ∀t ∈ (–τM, ] ⇒ xT (t)Rx(t) ≤ c, ∀t ∈ (, T],
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Definition . ([] (FTB)) Given positive constants c, η, T and a symmetric ma-
trix R > , the time-delay system () with w(t) satisfying () guaranteed by the state-
feedback/output-feedback controller is said to be robustly FTB with respect to (c, c, T ,
R,η), if there exists a constant c (> c), such that

xT (t)Rx(t) ≤ c, ∀t ∈ (–τM, ] ⇒ xT (t)Rx(t) ≤ c, ∀t ∈ (, T],

Definition . ([]) If there exists a state-feedback/an output-feedback controller, such
that the closed-loop system is FTB with respect to (c, c, T , R,η) and under the assumed
zero initial condition, the system output satisfies the following cost function inequality for
T >  and for all admissible w(t) which satisfy ():

∫ T


yT (t)y(t) dt ≤ υ

∫ T


wT (t)w(t) dt. ()

Then the state-feedback/out-putback controller is called the robust finite-time H∞ con-
troller of the system ().

Remark  (FTS and asymptotic stability) It is worth noting that asymptotic stability and
FTS are independent concepts: a system which is FTS may not be asymptotically stable,
while an asymptotically stable system may not be FTS.

Remark  It is easy to see that, given Definition . of FTB, FTS can be recovered as a
particular case by letting η = .

Remark  From system (), combining (), (), (), it follows that

∥
∥ϕ̇(t)

∥
∥≤ [‖A‖ + ‖Ad‖ + ‖L‖(‖Ea‖ + ‖Ed‖

)
+ α‖F‖ + β‖G‖]‖ϕ‖ + ‖E‖η

=
√

ρ, ∀t ∈ [–τM, ]. ()

We note that

ρ =
{[‖A‖ + ‖Ad‖ + ‖L‖(‖Ea‖ + ‖Ed‖

)
+ α‖F‖ + β‖G‖]‖ϕ‖ + ‖E‖η}.

Remark  (FTB and reachable sets) Since the concept of FTB is, in some way, related to
the concept of researchable sets, it is important to clarify the differences between the two
ideas. Reachable sets are defined as the set of states that a dynamical system attains given
some bounded inputs and starting from some given initial conditions (see []). On the
other hand, according to Definition ., FTB explores if, given a bound on the state vari-
ables and a set of admissible initial states, the state remains confined within the prescribed
bound when both non-zero initial conditions and external constant disturbances are con-
sidered. An important difference between the two approaches is that in the reachable set
analysis the assumption of the system asymptotic stability is exploited [], while the FTB
analysis condition provided in this paper allows one to establish FTB for t ∈ [, T] of the
system even if it is not asymptotically stable (see also Remark ).
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Lemma . ([]) For any positive matrix Z and for differentiable signal x in [α,β] → R
n,

the following inequality holds:

∫ β

α

ẋT (u)Zẋ(u) ≥ 
β – α

�̂T Z̄�̂,

where Z̄ = diag{Z, Z} and

�̂ =

[
x(β) – x(α)

x(β) + x(α) – 
β–α

∫ β

α
x(u) du

]

.

Lemma . ([]) Let H , E, and F(t) be real matrices of appropriate dimension with F(t)
satisfying

FT (t)F(t) ≤ I.

Then for any scalar ε > 

HF(t)E +
(
HF(t)E

)T ≤ ε–HHT + εET E.

3 Main results
In this section, we shall establish our main results based on LMI framework. Let N >  be
an integer and τj (j = , , . . . , N + ) be some scalars satisfying

τm = τ < τ < · · · < τN < τN+ = τM.

We can divide the delay interval [τm, τM] into N equidistant subintervals, where τm = τ,
τN+ = τM , we denote by τ� the length of the subinterval [τi, τi+], that is, τ� = τi+ – τi =
(τM–τm)

N . Firstly, we derive sufficient conditions which guarantee the FTB of system in equa-
tion () under ignoring the control input u(t), secondly, we will consider an unstable sys-
tem, respectively, design the state-feedback and output-feedback controller to make the
system FTB.

3.1 A new model transformation
To extract the time-varying term in τ (t), we express x(t – τ (t)) as

x
(
t – τ (t)

)
= δx(t – τi) + ( – δ)x(t – τi+) + δτ�χd(t), ()

where δ ∈ (, ], δx(t –τi)+(–δ)x(t –τi+) denotes the approximation of x(t –τ (t)), δτ�χd(t)
is the approximation error. Ignoring the control input u(t), by using equation (), the sys-
tem in () can be regarded as

ẋ(t) = Āx(t) + δĀdx(t – τi) + ( – δ)Ādx(t – τi+) + δτ�Ādχd(t) + Ff + Gg + Ew(t), ()

where

Ā = A + �A(t), Ād = Ad + �Ad(t).
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Remark  In [], x(t – τ (t)) is expressed by x(t – τ (t)) = 
 x(t – τ) + 

 (t – τ) + τ�
 χd(t).

In this paper, we use δ (δ ∈ (, ]) instead of 
 . In this way, we can get less conservative

criteria for delay systems via adjusting the parameter δ.

By defining yd(t) = ẋ(t), we can rewrite χd(t) as

χd(t) =


δτ�

[
x
(
t – τ (t)

)
– δx(t – τi) – ( – δ)x(t – τi+)

]

=


δτ�

{
( – δ)

[
x
(
t – τ (t)

)
– x(t – τi+)

]
– δ

[
x(t – τi) – x

(
t – τ (t)

)]}

=
 – δ

δτ�

∫ t–τ (t)

t–τi+

ẋ(s) ds –

τ�

∫ t–τi

t–τ (t)
ẋ(s) ds

=

τ�

∫ t–τi

t–τi+

σ (θ )yd(θ ) dθ , ()

where

σ (θ ) =

⎧
⎨

⎩

–δ
δ

, t – τi+ ≤ θ < t – τ (t),

–, t – τ (t) ≤ θ ≤ t – τi.

Hence, equation () can be written as

[
yd(t)
y(t)

]

=

[
�

�

][
ζ (t)
χd(t)

]

, ()

where

ζ (t) = col

{

x(t), x(t – τi), x(t – τi+), f , g,
∫ t

t–τi

x(s) ds,
∫ t–τi

t–τi+

x(s) ds, w(t)
}

,

�T
 = col

{
ĀT , δĀT

d , ( – δ)ĀT
d , FT , GT , , , ET , δτ�ĀT

d
}

,

�T
 = col

{
CT , δCT

d , ( – δ)CT
d , , , , , , δτ�CT

d
}

.

For convenience of representation, the following notation is introduced:

ei = col{n, . . . , n︸ ︷︷ ︸
i–

, In, n, . . . , n︸ ︷︷ ︸
–i

},

ξT (t) =
[
ζ T (t) χT

d (t)
]
.

In order to derive less conservative criteria, we firstly analyze the method of choosing
LKF for the above-mentioned systems () and asymptotically stable conditions are pre-
sented in this section.

3.2 FTB analysis
In this subsection, we aim to analyze the FTB of the system consisting of () and derive
the sufficient conditions of FTB.
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Theorem . For some given scalars α, β , c, η,  < τm ≤ τM , τ̃d , ψ , τ̄d , δ ∈ (, ], T > ,
γ ≥ , ρ , the system in () is FTB with respect to (c, c, T ,ψ ,η), if there exist symmetric
positive matrices

P =

⎡

⎢
⎣

P P P

∗ P P

∗ ∗ P

⎤

⎥
⎦ ∈R

n×n,

Q, Q, X, X, X, X, X ∈ R
n×n, positive scalars c, ωj (j = , , . . . , ), ε, and any positive

scalars ε, ε, such that, for i = , , , . . . , N , the following LMIs hold:

[
ψ – P 

∗ P – ψ

]

< , ()

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–ce–γ T
√

c + η( – e–γ T ) θ θ · · · θ

∗ –I   · · · 
∗ ∗ –ω  · · · 
∗ ∗ ∗ –ω · · · 
...

...
...

...
. . .

...
∗ ∗ ∗ ∗ · · · –ω

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< , ()

where

θ =

√

τ 
i


ρω, θ =

√

τ 
i+


ρω, θ =
√

τ 
� (τi + τi+)


ρω,

θ =

√

τ�

[

–
τ 

i


+
τ 

i+


]

ρω, θ =

√

τ�

[
τ 

i+


–
τ 

i


]

ρω, θ = τi

√
c

λmin(ψ)
ω,

θ = τi+

√
c

λmin(ψ)
ω, θ =

√
τic

λmin(ψ)
ω, θ =

√
τi+c

λmin(ψ)
ω,

θ =

√
τiτi+c

λmin(ψ)
ω, θ =

√
τic

λmin(ψ)
ω, θ =

√
τi+c

λmin(ψ)
ω,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� � � � � � � �

∗ –X     ετiXL 
∗ ∗ –X    ετi+XL 
∗ ∗ ∗ –X   ετ�XL 
∗ ∗ ∗ ∗ –X  ετ�XL 
∗ ∗ ∗ ∗ ∗ –X ετ�XL 
∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< , ()

where � = (�ij)× with

� = PA + AT P + P + PT
 + P + PT

 + Q + Q + εα
I – � – � – γ P,

� = δPAd – P – �, � = ( – δ)PAd – P – �, � = PF ,
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� = PG, � = P + P + PT
 + P + AT P + AT P +


τi

� +


τi+
�,

� = AT P + P +


τi+
� + P, � = PE, � = δτ�PAd,

� = –Q + εβ
δI – �, � = εβ

δ( – δ)I,

� = –P – P + δAT
d (P + P) +


τi

�, � = –P + δAT
d P,

� = εβ
δτ�I, � = –Q – � + βε( – δ)I,

� =


τi+
� + ( – δ)AT

d (P + P) – PT
 – P,

� =


τi+
� + ( – δ)AT

d P – P, � = εβ
( – δ)δτ�I,

� = –εI, � = FT (P + P), � = FT P, � = –εI,

� = GT (P + P), � = GT P, � = –

τ 

i
� –


τ 

i+
�,

� = –

τ 

i+
�, � =

(
PT

 + PT

)
E, � = δτ�

(
PT

 + PT

)
Ad,

� = –

τ 

i+
�, � = PT

E, � = δτ�PT
Ad,

� = –γ I, � = –τ�M + εβ
δτ 

� I.

The other entries of � are zeros. We have

X –
τ�τ̄d

τi
X ≥ , ()

 < Xi < ωiI, i = , , , , , ()

 < P < ωI,  < P < ωI, |P| < ωI,  < Q < ωI,  < Q < ωI,

|P| < ωI, |P| < ωI, ()

� =
(
τ 

i ω + τ 
i+ω + τiω + τi+ω + τiτi+ω + τiω + τi+ω

) c

λmin(ψ)

+
{

τ 
i


ω +
τ 

i+


ω +
τ 
�


(τi + τi+)ω + τ�ω

[

–
τ 

i


+
τ 

i+


]

+ τ�ω

[

–
τ 

i


+
τ 

i+


]}

ρ,

�̄ =
[
τiXĀ τiδXĀd τi( – δ)XĀd τiXF τiXG   τiXE τ�τiδXĀd

]T ,

�̄ =
[
τi+XĀ τi+δXĀd τi+( – δ)XĀd τi+XF τi+XG   τi+XE τ�τi+δXĀd

]T ,

�̄ =
[
τ�XĀ τ�δXĀd τ�( – δ)XĀd τ�XF τ�XG   τ�XE τ 

� δXĀd
]T ,

�̄ =
[
τ�XĀ τ�δXĀd τ�( – δ)XĀd τ�XF τ�XG   τ�XE τ 

� δXĀd
]T ,

�̄ =
[
τ�XĀ τ�δXĀd τ�( – δ)XĀd τ�XF τ�XG   τ�XE τ 

� δXĀd
]T ,

� =
[
τiXA τiδXAd τi( – δ)XAd τiXF τiXG   τiXE τ�τiδXAd

]T ,
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� =
[
τi+XA τi+δXAd τi+( – δ)XAd τi+XF τi+XG   τi+XE τ�τi+δXAd

]T ,

� =
[
τ�XA τ�δXAd τ�( – δ)XAd τ�XF τ�XG   τ�XE τ 

� δXAd
]T ,

� =
[
τ�XA τ�δXAd τ�( – δ)XAd τ�XF τ�XG   τ�XE τ 

� δXAd
]T ,

� =
[
τ�XA τ�δXAd τ�( – δ)XAd τ�XF τ�XG   τ�XE τ 

� δXAd
]T ,

� =
[
εLT P     εLT (P + P) εLT P  

]T ,

� =
[

Ea δEd ( – δ)Ed      δτ�Ed
]T ,

� = Sym
{

[e, e, e + e]P
[
�T

 , e – e, e – e
]T},

� = e(Q + Q)eT
 – eQeT

 – eQeT
 ,

� = �T
 S�, � = –

[
e – e e + e –  

τi
e
]
�̄

[
e – e e + e –  

τi
e
]T ,

� = –
[
e – e e + e –  

τi+
(e + e)

]
�̄

[
e – e e + e –  

τi+
(e + e)

]T ,

� = –τ�eMeT
 , � = ε

(
–eeT

 + αeeT

)
, � = ε

(
–eeT

 + β��
T

)
,

� = δe + ( – δ)e + δτ�e, � = X –
τ�τ̄d

τi
X, �̄ = diag{�, �},

� = X +
τ�τ̃d

τi
X, �̄ = diag{�, �},

S = τ 
i X + τ 

i+X + τ 
� X + τ 

� X + τ 
� X, P = ψ


 P̃ψ


 ,

λ = λmin(P̃), λ = λmax(P̃),

Proof When τ (t) ∈ [τi, τi+], construct a LKF candidate:

Vi(xt) =
∑

j=

Vij(xt), ()

where

Vi(xt) = ηT (t)Pη(t),

Vi(xt) =
∫ t

t–τi

xT (s)Qx(s) ds +
∫ t

t–τi+

xT (s)Qx(s) ds,

Vi(xt) = τi

∫ 

–τi

∫ t

t+θ

ẋT (s)Xẋ(s) ds dθ + τi+

∫ 

–τi+

∫ t

t+θ

ẋT (s)Xẋ(s) ds dθ ,

Vi(xt) = τ�

∫ –τi

–τi+

∫ t

t+θ

ẋT (s)Xẋ(s) ds dθ ,

Vi(xt) = τ�

∫ –τi

–τ (t)

∫ t

t+θ

ẋT (s)Xẋ(s) ds dθ ,

Vi(xt) = τ�

∫ –τ (t)

–τi+

∫ t

t+θ

ẋT (s)Xẋ(s) ds dθ ,

with

η(t) = col

{

x(t),
∫ t

t–τi

x(s) ds,
∫ t

t–τi+

x(s) ds
}

.
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Calculating the time derivative of V (xt) along the solution of (), we can get

V̇i(xt) =
∑

j=

V̇ij(xt), ()

where

V̇i(xt) = ηT (t)Pη̇T (t) = 
[
xT (t)

∫ t
t–τi

xT (s) ds
∫ t

t–τi+
xT (s) ds

]×
⎡

⎢
⎣

P P P

∗ P P

∗ ∗ P

⎤

⎥
⎦

×
⎡

⎢
⎣

ẋ(t)
x(t) – x(t – τi)

x(t) – x(t – τi+)

⎤

⎥
⎦

= ξT (t)�ξ (t), ()

V̇i(xt) = xT (t)(Q + Q)x(t) – xT (t – τi)Qx(t – τi) – xT (t – τi+)Qx(t – τi+)

= ξT (t)�ξ (t), ()

V̇i(xt) = ẋT (t)
[
τ 

i X + τ 
i+X

]
ẋ(t) – τi

∫ t

t–τi

ẋT (s)Xẋ(s) ds

– τi+

∫ t

t–τi+

ẋT (s)Xẋ(s) ds, ()

V̇i(xt) = τ 
� ẋT (t)Xẋ(t) – τ�

∫ t–τi

t–τi+

ẋT (s)Xẋ(s) ds, ()

V̇i(xt) = τ�

(
τ (t) – τi

)
ẋT (t)Xẋ(t) – τ�

(
 – τ̇ (t)

)
∫ t–τi

t–τ (t)
ẋT (s)Xẋ(s) ds

+ τ�τ̇ (t)
∫ t

t–τi

ẋT (s)Xẋ(s) ds, ()

V̇i(xt) = τ�

(
τi+ – τ (t)

)
ẋT (t)Xẋ(t) – τ�

(
 – τ̇ (t)

)
∫ t–τ (t)

t–τi+

ẋT (s)Xẋ(s) ds

– τ�τ̇ (t)
∫ t

t–τi+

ẋT (s)Xẋ(s) ds, ()

Using Lemma ., one obtains

– τi

∫ t

t–τi

ẋT (s)Xẋ(s) ds + τ�τ̇ (t)
∫ t

t–τi

ẋT (s)Xẋ(s) ds

= –τi

∫ t

t–τi

ẋT (s)
[

X –
τ�τ̇ (t)

τi
X

]

ẋ(s) ds

≤ –τi

∫ t

t–τi

ẋT (s)
[

X –
τ�τ̄d

τi
X

]

ẋ(s) ds

≤ –

[
x(t) – x(t – τi)

x(t) + x(t – τi) –  
τi

∫ t
t–τi

x(s) ds

]T

�̄

[
x(t) – x(t – τi)

x(t) + x(t – τi) –  
τi

∫ t
t–τi

x(s) ds

]

= ξT (t)�ξ (t), ()
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where

X –
τ�τ̄d

τi
X ≥ , ()

–τi+

∫ t

t–τi+

ẋT (s)Xẋ(s) ds – τ�τ̇ (t)
∫ t

t–τi+

ẋT (s)Xẋ(s) ds

= –τi+

∫ t

t–τi+

ẋT (s)
[

X +
τ�τ̇ (t)
τi+

X

]

ẋ(s) ds

≤ –τi+

∫ t

t–τi+

ẋT (s)
[

X +
τ�τ̃d

τi+
X

]

ẋ(s) ds

≤ –

[
x(t) – x(t – τi+)

x(t) + x(t – τi+) –  
τi+

∫ t
t–τi+

x(s) ds

]T

× �̄

[
x(t) – x(t – τi+)

x(t) + x(t – τi+) –  
τi+

∫ t
t–τi+

x(s) ds

]

= ξT (t)�ξ (t), ()

there exists δ ∈ (, ], subject to τ�X + τ�( – τ̄d)X = ( δ
–δ

)[τ�X + τ�( – τ̄d)X], we define
it as M, using Jensen’s inequality []

–τ�

∫ t–τi

t–τi+

ẋT (s)Xẋ(s) ds – τ�

(
 – τ̇ (t)

)
∫ t–τi

t–τ (t)
ẋT (s)Xẋ(s) ds

– τ�

(
 – τ̇ (t)

)
∫ t–τ (t)

t–τi+

ẋT (s)Xẋ(s) ds

≤ –
∫ t–τi

t–τ (t)
ẋT (s)Mẋ(s) ds –

∫ t–τ (t)

t–τi+

ẋT (s)
(

 – δ

δ

)

Mẋ(s) ds

= –
∫ t–τi

t–τi+

ẋT (s)σ (s)MẋT (s) ds

≤ –τ�χ
T
d (t)Mχd(t). ()

Combining equations ()-(), we obtain

V̇i(xt) + V̇i(xt) + V̇i(xt) + V̇i(xt) ≤ ξT (t)(� + � + � + �)ξ (t). ()

On the other hand, for any scalars ε ≥ , ε ≥ , it follows from () that

ε
[
f T f – αxT (t)x(t)

]≤ , ()

ε
[
gT g – βxT(t – τ (t)

)
x
(
t – τ (t)

)]≤ . ()

With the expression of system in () and combining equations ()-(), V̇i(xt) can be
finally written as

V̇i(xt) ≤ ξT (t)

[

� + � +
∑

i=

�i

]

ξ (t) = ξT (t)�̂ξ (t), ()
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where �̂ = (�̂ij)×.

�̂ = PĀ + ĀT P + P + PT
 + P + PT

 + Q + Q + εα
I + ĀT SĀ – � – �,

�̂ = δPĀd – P + δĀT SĀd – �,

�̂ = ( – δ)PĀd – P + ( – δ)ĀT SĀd – �, �̂ = PF + ĀT SF ,

�̂ = PG + ĀT SG,

�̂ = P + P + PT
 + P + ĀT P + ĀT P +


τi

� +


τi+
�,

�̂ = ĀT P + P + P +


τi+
�, �̂ = ĀT SE + PE,

�̂ = δτ�PĀd + δτ�ĀT SĀd, �̂ = –Q + δĀT
d SĀd + εβ

δI – �,

�̂ = δ( – δ)ĀT
d SĀd + εβ

δ( – δ)I, �̂ = δĀT
d SF , �̂ = δĀT

d SG,

�̂ = –P – P + δĀT
d (P + P) +


τi

�, �̂ = –P + δĀT
d P,

�̂ = δĀT
d SE, �̂ = δτ�ĀT

d SĀd + εβ
δτ�I,

�̂ = –Q – � + βε( – δ)I + ( – δ)ĀT
d SĀd, �̂ = ( – δ)ĀT

d SF ,

�̂ = ( – δ)ĀT
d SG, �̂ =


τi+

� + ( – δ)ĀT
d (P + P) – PT

 – P,

�̂ =


τi+
� + ( – δ)ĀT

d P – P, �̂ = ( – δ)ĀT
d SE,

�̂ = εβ
( – δ)δτ�I + ( – δ)δτ�ĀT

d SĀd, �̂ = –εI + FT SF ,

�̂ = FT SG, �̂ = FT (P + P), �̂ = FT P,

�̂ = FT SE, �̂ = δτ�FT SĀd, �̂ = –εI + GT SG,

�̂ = GT (P + P), �̂ = GT P, �̂ = GT SE, �̂ = δτ�GT SĀd,

�̂ = –

τ 

i
� –


τ 

i+
�, �̂ = –


τ 

i+
�, �̂ =

(
PT

 + PT

)
E,

�̂ = δτ�

(
PT

 + PT

)
Ād, �̂ = –


τ 

i+
�, �̂ = PT

E,

�̂ = δτ�PT
Ād, �̂ = ET SE, �̂ = δτ�ET SĀd,

�̂ = –τ�M + εβ
δτ 

� I + δτ 
� ĀT

d SĀd.

Next, choosing a supplementary function as J(t) = V̇i(xt) – γ xT (t)Px(t) – γ wT (t)w(t),
it follows that

J(t) ≤ ξT (t)�̃ξ (t), ()

where �̃ = (�̃ij)×,

�̃ = PĀ + ĀT P + P + PT
 + +P + PT

 + Q + Q + εα
I

+ ĀT SĀ – � – � – γ P,
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�̃ = ET SE – γ I,

and the other entries of �̃ are the same as �̂. The matrix �̃ can be rewritten as

�̃ = �̌ –
∑

j=

�̄j(–Xj)–�̄T
j < , ()

where

�̌ = PĀ + ĀT P + P + PT
 + P + PT

 + Q + Q + εα
I – � – � – γ P,

�̌ = δPĀd – P – �, �̌ = ( – δ)PĀd – P – �, �̌ = PF ,

�̌ = PG, �̌ = �̂, �̌ = �̂, �̌ = PE, �̌ = δτ�PĀd,

�̌ = –Q + εβ
δI – �, �̌ = εβδ( – δ)I, �̌ = �̂,

�̌ = �̂, �̌ = εβ
δτ�I, �̌ = –Q – � + βε( – δ)I,

�̌ = �̂, �̌ = �̂, �̌ = εβ
( – δ)δτ�I, �̌ = –εI,

�̌ = �̂, �̌ = �̂, �̌ = –εI, �̌ = �̂, �̌ = �̂,

�̌ = �̂, �̌ = �̂, �̌ = �̂, �̌ = �̂, �̌ = �̂,

�̌ = �̂, �̌ = �̂, �̌ = –γ I, �̌ = –τ�M + εβ
δτ 

� I.

By using the Schur complement [], it is obvious that the inequality in equation () is
equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̌ �̄ �̄ �̄ �̄ �̄

∗ –X    
∗ ∗ –X   
∗ ∗ ∗ –X  
∗ ∗ ∗ ∗ –X 
∗ ∗ ∗ ∗ ∗ –X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< . ()

Using equation (), the inequality in equation () can be rewritten as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� � � � � �

∗ –X    
∗ ∗ –X   
∗ ∗ ∗ –X  
∗ ∗ ∗ ∗ –X 
∗ ∗ ∗ ∗ ∗ –X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ Sym

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε–

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

ετiXL
ετi+XL
ετ�XL
ετ�XL
ετ�XL

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�(t)
[
�T

     
]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

< . ()
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Applying Lemma ., the inequality in equation () is equivalent to equation (). Hence,
if the condition in equation () holds, we have J(t) ≤ ξT (t)�̃ξ (t) < . Then we can obtain

V̇i(xt) < γ xT (t)Px(t) + γ wT (t)w(t) < γ Vi(xt) + γ wT (t)w(t). ()

Multiplying the above inequality by e–γ t , it yields

d
dt
(
e–γ tV (xt)

)
< γ e–γ twT (t)w(t). ()

By integrating the aforementioned inequality between  and t, we obtain

V (xt) < eγ tV (x) + γ eγ t
∫ t


e–γ swT (s)w(s) ds

≤ eγ T V (x) + eγ Tη
(
 – e–γ T), t ∈ (, T]. ()

On the other hand, note that P = ψ

 P̃ψ


 , the following relation is true:

λmin(P̃)xT ()ψx() ≤ xT ()Px() ≤ λmax(P̃)xT ()ψx() ≤ λmax(P̃)c, ()

λmin(ψ)xT ()x() ≤ xT ()ψx() ≤ c, λmin(P̃)xT (t)ψx(t) ≤ Vi(x), ()

The initial value of LKF can be written as

Vi(x) =
∑

j=

Vij(x)

= ηT ()Pη() +
∫ 

–τi

xT (s)Qx(s) ds +
∫ 

–τi+

xT (s)Qx(s) ds

+ τi

∫ 

–τi

∫ 

θ

ẋT (s)Xẋ(s) ds dθ + τi+

∫ 

–τi+

∫ 

θ

ẋT (s)Xẋ(s) ds dθ

+ τ�

∫ –τi

–τi+

∫ 

θ

ẋT (s)Xẋ(s) ds dθ + τ�

∫ –τi

–τ ()

∫ 

θ

ẋT (s)Xẋ(s) ds dθ

+ τ�

∫ –τ ()

–τi+

∫ 

θ

ẋT (s)Xẋ(s) ds dθ

≤ xT ()Px() + �̃ ≤ xT ()Px() + � , ()

where

�̃ =
[
τ 

i λmax(P) + τ 
i+λmax(P) + τiλmax(P) + τi+λmax(P)

+ τiτi+λmax(P) + τiλmax(Q) + τi+λmax(Q)
] c

λmin(ψ)

+
{

τ 
i


λmax(X) +
τ 

i+


λmax(X) +
τ 
�


(τi + τi+)λmax(X)

+ τ�λmax(X)
[

–
τ 

i


+
τ ()



]

+ τ�λmax(X)
[

–
τ ()


+

τ 
i+


]}

ρ

≤ � .
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In addition, combining equations ()-(), we have

λmin(P̃)xT (t)ψx(t) ≤ eγ T(xT ()Px() + �
)

+ eγ Tη
(
 – e–γ T), t ∈ (, T], ()

it follows from () that

xT (t)ψx(t) ≤ cλmax(P̃) + � + η( – e–γ T )
λmin(P̃)e–γ T

. ()

Now, we proceed to show the derivation of conditions of () and (). In order to trans-
form () into a LMI-based condition, we assume that inequality () is true, that is,

ψ < P

P < ψ

}

⇒ I < ψ–/Pψ
–/ < I.

The above relations imply that λ > , λ < . By considering these relations, one can obtain
the following:

⎧
⎨

⎩

cλ + ω + η( – e–γ T ) < c + ω + η( – e–γ T ),

cλe–γ T > ce–γ T .

Defining λ = λmin(P̃), λ = λmax(P̃), we arrive at xT (t)ψx(t) < c from LMIs () and ().
That is, the system in () is FTB when ignoring the control input u(t). This completes the
proof. �

Remark  Different from the delay-partitioning approach used in [], when the delay-
partitioning number becomes larger, there are involved more decision variables, so that
the conditions become more complicated and the computational cost increases. However,
in our method, there are no additional matrix variables apart from those associated in the
corresponding LKF, that is, P, Qi (i = , ), Xj (j = , , , , ). One can see that when the
delay-partitioning number becomes larger, the derived criteria can lead to an improve-
ment. Furthermore, the cost of computation and the complexity of the obtained criteria
do not increase.

Remark  If there is no perturbation, that is, f = , g = , w(t) = , the FTB problem of
system () is reduced to analyzing the FTS of the system

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = [A + �A(t)]x(t) + [Ad + �Ad(t)]x(t – τ (t)) + Bu(t),

y(t) = Cx(t) + Cdx(t – τ (t)),

x(t) = ϕ(t), t ∈ [–τM, ].

This problem has been widely studied in the recent literature (see []) and the FTS crite-
rion for the deterministic system is addressed below.

Remark  In the proof of Theorem ., a new integral inequality, called a Wirtinger-based
inequality, is employed to bound the derivative of LKF, which was proposed in [] and was
shown to be tighter than the one employed in []. Therefore, the condition obtained in
this paper may be less conservative than [].
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Remark  The inequalities in equations ()-() are LMIs, which can be calculated by the
LMI toolbox in MATLAB. The results depend on the selected parameters (c, c, T ,ψ ,η),
the lower and upper bounds of the time-varying delay, and scalars ε and γ . Further, in
order to obtain a minimum state upper bound c, we choose a value of the parameter ε,
then the minimum searching function (such as the “mincx” in MATLAB) can be used to
search an optimal γ which can guarantee the upper bound c minimum.

3.3 State-feedback controller design
In this subsection, we consider the following state-feedback controller for the system ():

u(t) = Kx(t), ()

where the state-feedback controller gain K is to be determined in the course of the design.
Then we can get the following closed-loop system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = [A + �A(t) + BK]x(t) + [Ad + �Ad(t)]x(t – τ (t)) + Ff + Gg + Ew(t),

y(t) = Cx(t) + Cdx(t – τ (t)),

x(t) = ϕ(t), t ∈ [–τM, ].

()

Theorem . gives sufficient conditions, which guarantee the resulting closed-loop system
() is FTB with respect to the given (c, c, T ,ψ ,η).

Theorem . For some given scalars α, β , c, η,  < τm ≤ τM , τ̃d , ψ , τ̄d , δ ∈ (, ], T > ,
γ ≥ , ρ , the system in () by the state-feedback controller () is FTB with respect to
(c, c, T ,ψ ,η) and satisfies the cost function equation () for all admissible w(t), if there

exist symmetric positive matrices P =
[ P P P

∗ P P
∗ ∗ P

]
∈R

n×n (P = κP, P = κP, κ > ,

κ > ), Q, Q, X, X, X, X, X ∈ R
n×n, positive scalars c, ωj (j = , , . . . , ), ω, ω, ω,

ε, σ , and any positive scalars ε, ε, and real matrix W , W, W, W, W, W such that,
for i = , , , . . . , N , the following LMIs and conditions (), ()-() hold:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–ce–γ T
√

c + η( – e–γ T ) θ̄ θ · · · θ θ θ θ

∗ –I   · · ·    
∗ ∗ –ω  · · ·    
∗ ∗ ∗ –ω · · ·    
...

...
...

...
. . .

...
...

...
...

∗ ∗ ∗ ∗ · · · –ω   
∗ ∗ ∗ ∗ · · · ∗ –ω  
∗ ∗ ∗ ∗ · · · ∗ ∗ –ω 
∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ –ω

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< ,

()

where

θ̄ =

√

τ 
i


ρ +
(τik + τi+k)c

λmin(ψ)
ω,
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� � � � � � � �

∗ –X     ετiXL 
∗ ∗ –X    ετi+XL 
∗ ∗ ∗ –X   ετ�XL 
∗ ∗ ∗ ∗ –X  ετ�XL 
∗ ∗ ∗ ∗ ∗ –X ετ�XL 
∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< , ()

where � = ( �ij)× with

� = PA + AT P + W + W T + (κ + κ)P + Q + Q

+ εα
I – � – � – γ P +


σ

CT C,

� = δPAd – κP – � +

σ

δCT Cd,

� = ( – δ)PAd – κP – � +

σ

( – δ)CT Cd, � = PF , � = PG,

� = P + P + PT
 + P + (κ + κ)

(
AT P + W T) +


τi

� +


τi+
�,

� = κ
(
AT P + W T) + P +


τi+

� + P, � = PE,

� = δτ�PAd +

σ

δτ�CT Cd, � = –Q + εβ
δI – � +


σ

δCT
d Cd,

� = εβ
δ( – δ)I +


σ

δ( – δ)CT
d Cd,

� = –P – P + δ(κ + κ)AT
d P +


τi

�, � = –P + δκAT
d P,

� = εβ
δτ�I +


σ

δτ�CT
d Cd,

� = –Q – � + βε( – δ)I +

σ

( – δ)CT
d Cd,

� =


τi+
� + ( – δ)(κ + κ)AT

d P – PT
 – P,

� =


τi+
� + ( – δ)κAT

d P – P,

� = εβ
( – δ)δτ�I +


σ

( – δ)δτ�CT
d Cd, � = –εI, � = (κ + κ)FT P,

� = κFT P, � = –εI, � = (κ + κ)GT P, � = κGT P,

� = –

τ 

i
� –


τ 

i+
�, � = –


τ 

i+
�, � = (κ + κ)PE,

� = δτ�(κ + κ)PAd, � = –

τ 

i+
�, � = κPE,

� = δτ�κPAd, � = –γ I, � = –τ�M + εβ
δτ 

� I +

σ

δτ 
� CT

d Cd.
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The other entries of � are the same as � in Theorem .. We have

� =
[
τi(XA + W) τiδXAd τi( – δ)XAd τiXF τiXG   τiXE τ�τiδXAd

]T ,

� =
[
τi+(XA + W) τi+δXAd τi+( – δ)XAd τi+XF τi+XG  

τi+XE τ�τi+δXAd
]T ,

� =
[
τ�(XA + W) τ�δXAd τ�( – δ)XAd τ�XF τ�XG   τ�XE τ 

� δXAd
]T ,

� =
[
τ�(XA + W) τ�δXAd τ�( – δ)XAd τ�XF τ�XG   τ�XE τ 

� δXAd
]T ,

� =
[
τ�(XA + W) τ�δXAd τ�( – δ)XAd τ�XF τ�XG   τ�XE τ 

� δXAd
]T ,

� =
[
εLT P     ε(κ + κ)LT P εκLT P  

]T ,

� ∗ =
(
τ 

i ω + τ 
i+ω + τiκω + τi+κω + τiτi+ω + τiω + τi+ω

) c

λmin(ψ)

+
{

τ 
i


ω +
τ 

i+


ω +
τ 
�


(τi + τi+)ω + τ�ω

[

–
τ 

i


+
τ 

i+


]

+ τ�ω

[

–
τ 

i


+
τ 

i+


]}

ρ.

In this case, a suitable state-feedback controller gain can be obtained by K = (BT B)– ×
BT P–

 W .

Proof Select the same KLF as Theorem . and define the following function:

J(t) = V̇i(xt) – γ xT (t)Px(t) – γ wT (t)w(t) +

σ

yT (t)y(t).

Recalling the condition equation (), we have the following relation along the trajecto-
ries of system:

J(t) < .

Then we obtain the following equation through some similar algebraic manipulations of
the proof in Theorem .:

∫ T


yT (t)y(t) dt < σγ eγ T

∫ T


wT (t)w(t) dt.

Therefore, condition () can be guaranteed by letting v =
√

σγ eγ T . By means of the change
of variable W = PBK , W = XBK , W = XBK , W = XBK , W = XBK , W = XBK , the
proof procedure is similar to that of Theorem ., and it is omitted here. �

3.4 Output-feedback controller design
In this subsection, we consider the following output-feedback controller for the system
():

u(t) = Ky(t), ()
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where the state-feedback controller gain K is to be determined in the course of the design.
Then we can get the following closed-loop system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = [A + �A(t) + BKC]x(t) + [Ad + �Ad(t) + BKCd]x(t – τ (t))
+ Ff + Gg + Ew(t),

y(t) = Cx(t) + Cdx(t – τ (t)),
x(t) = ϕ(t), t ∈ [–τM, ].

()

Theorem . presents some sufficient conditions which guarantee the resulting closed-
loop system () is FTB with respect to the given (c, c, T ,ψ ,η).

Theorem . For some given scalars α, β , c, η,  < τm ≤ τM , τ̃d , ψ , τ̄d , δ ∈ (, ], T > ,
γ ≥ , ρ , the system in () by the output-feedback controller () is FTB with respect to
(c, c, T ,ψ ,η) and satisfies the cost function equation () for all admissible w(t), if there
exist symmetric positive matrices

P =

⎡

⎢
⎣

P P P

∗ P P

∗ ∗ P

⎤

⎥
⎦ ∈R

n×n

(P = κP, P = κP, κ > , κ > ), Q, Q, X, X, X, X, X ∈R
n×n, positive scalars c,

m, ωj (j = , , . . . , ), ω, ω, ω, ε, σ , and any positive scalars ε, ε, and real matrices
W o, W o

 , W o
 , W o

 , W o
 , W o

 such that, for i = , , , . . . , N , the following LMI and conditions
()-(), ()-() hold:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�o �o
 �o

 �o
 �o

 �o


� �

∗ –X     ετiXL 
∗ ∗ –X    ετi+XL 
∗ ∗ ∗ –X   ετ�XL 
∗ ∗ ∗ ∗ –X  ετ�XL 
∗ ∗ ∗ ∗ ∗ –X ετ�XL 
∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< , ()

where �o = ( �o
ij)× with

�o
 = PA + AT P + W oC + CT(W )T + (κ + κ)P + Q + Q

+ εα
I – � – � – γ P +


σ

CT C,

�o
 = δ

(
PAd + W oCd

)
– κP – � +


σ

δCT Cd,

� = ( – δ)
(
PAd + W oCd

)
– κP – � +


σ

( – δ)CT Cd,

�o
 = P + P + PT

 + P + (κ + κ)
[
AT P + CT(W o)T] +


τi

� +


τi+
�,

�o
 = κ

[
AT P + CT(W o)T] + P +


τi+

� + P,
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�o
 = δτ�

(
PAd + W oCd

)
+


σ

δτ�CT Cd,

�o
 = –P – P + δ(κ + κ)

[
AT

d P + CT
d
(
W o)T] +


τi

�,

�o
 = –P + δκ

[
AT

d P + CT
d
(
W o)T],

�o
 =


τi+

� + ( – δ)(κ + κ)
[
AT

d P + CT
d
(
W o)T] – PT

 – P,

�o
 =


τi+

� + ( – δ)κ
[
AT

d P + CT
d
(
W o)T] – P,

�o
 = δτ�(κ + κ)

(
PAd + W oCd

)
, �o

 = δτ�κ
(
PAd + W oCd

)
,

�o
 =

[
τiM τiδMd τi( – δ)Md τiXF τiXG   τiXE τ�τiδMd

]T ,

�o
 =

[
τi+M τi+δMd τi+( – δ)Md τi+XF τi+XG  

τi+XE τ�τi+δMd
]T ,

�o
 =

[
τ�M τ�δMd τ�( – δ)Md τ�XF τ�XG   τ�XE τ 

� δMd
]T ,

�o
 =

[
τ�M τ�δMd τ�( – δ)Md τ�XF τ�XG   τ�XE τ 

� δMd
]T ,

�o
 =

[
τ�M τ�δMd τ�( – δ)Md τ�XF τ�XG   τ�XE τ 

� δMd
]T ,

XiA + W o
i C = Mi, XiAd + W o

i Cd = Mid (i = , , , , ).

The other entries of �o are the same as � in Theorem .. In this case, a suitable state-
feedback controller gain can be obtained by K = (BT B)–BT P–

 W o.

Proof The closed-loop system in equation () can be written as

ẋ(t) =
[
A +�A(t) + BKC

]
x(t) +

[
Ad +�Ad(t) + BKCd

]
x
(
t –τ (t)

)
+ Ff + Gg + Ew(t). ()

Defining W o = PBK , W o
 = XBK , W o

 = XBK , W o
 = XBK , W o

 = XBK , W o
 = XBK .

The proof procedure is similar to that of Theorem ., and it is not difficult to get the
conclusion. This completes the proof. �

4 Numerical examples and simulation
Example  Consider the system () with the parameters []

A =

[
. .
. .

]

, Ad =

[
–. 
. 

]

, B =

[
.
.

]

, C = [. ],

Cd = [. ], L =

[
.



]

, Ea = [ ],

Ed = [. ], F = G = E =

[
 
 

]

.

• State-feedback case: We choose α = , β = , η = ., ρ = ., T = ., c = .,
ε = ,, ψ = I , k = ., k = ., τ̃d = ., τ̄d = ., τm = ., τM = ., N = . By
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Figure 1 State response x(t) of the system with
state-feedback controller and time-varying
delay 0.1 ≤ τ (t) ≤ 2.2.

Figure 2 Time-delay state response x(t – τ (t)) of
the system with state-feedback controller and
time-varying delay 0.1 ≤ τ (t) ≤ 2.2.

using Theorem ., the control gain matrix K and the minimum upper bound of state
variable are calculated by LMIs in equations (), (), (), (), () for γ = .. When
i=, τ (t) ∈ [., .]

min{c} = .e + ,

P =

[
. .
. .

]

, W = .e +  ∗
[

–. .
–. –.

]

,

K = .e +  ∗ [–. –.].

• Output-feedback case: We choose α = , β = , η = ., ρ = ., T = ., c = .,
ε = ,, ψ = I , k = ., k = ., τ̃d = ., τ̄d = ., τm = ., τM = ., N = . By
using Theorem ., the control gain matrix K and the minimum upper bound of state
variable are calculated by LMIs in equations (), (), (), (), (), for γ = .. When
i = , τ (t) ∈ [., .],

min{c} = .e + ,
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Figure 3 State response x(t) of the system with
output-feedback controller and time-varying
delay 0.1 ≤ τ (t) ≤ 0.5.

Figure 4 Time-delay state response x(t – τ (t)) of
the system with state-feedback controller and
time-varying delay 0.1 ≤ τ (t) ≤ 0.5.

P =

[
. –.

–. .

]

, W o =

[
–.

–.

]

, K = [–.].

The curves of state values with state-feedback controller and output-feedback controller
are shown in Figures -.

From Figures -, it can be seen that state values satisfy the following condition with the
state-feedback controller: K = .e +  ∗ [–. –.], which makes the unstable
system in () FTB with respect to (., ,, ., I, .). We have

xT (t)ψx(t) < c = ,, ∀t ∈ (, .].

Further, with the output-feedback controller K = [–.], state responses satisfy the
following condition, which proves that the system is FTB with respect to (., ,, .,
I, .):

xT (t)ψx(t) < c = ,, ∀t ∈ (, .].

When τm = ., k = ., k = ., α = β = , the minimum allowable upper bounds for
c are given in Table  for different values of i. From Table , it is also seen that the FTB



Liu et al. Advances in Difference Equations  (2017) 2017:45 Page 23 of 28

Figure 5 The system with state-feedback controller when i = 2.

Figure 6 The system with state-feedback controller when i = 3.

Table 1 The minimum allowable c2 upper bound for τm with different values i

i 1 2 3 4 5 6

State-Feedback Case 8.3992e+04 2.143e+05 3.3919e+05 1.8940e+07 9.0078e+07 3.0874e+08
Output-Feedback Case 1.4127e+04 7.3132e+03 9.1025e+05 5.7247e+06 1.1926e+07 9.8105e+06

criteria can still be applicable when the range of c is greater by adjusting the parameter i.
From Figures -, we can see that with output-feedback controller, the state values are
larger and the rate of convergence is faster than those with state-feedback controller.

Example  We consider the above time-delay systems () with the following parameters
given in [, , , ]:

A =

[
–. .
–. –

]

, Ad =

[
–. .
– –.

]

, B =

[



]

, C = [ ],

Cd = [ ], L =

[



]

, Ea = [ ], Ed = [ ],
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Figure 7 The system with output-feedback controller when i = 2.

Figure 8 The system with output-feedback controller when i = 3.

F = G =

[
 
 

]

, E =

[
 
 

]

.

For given values of α = ., β = ., c = ., ρ = ., η = ., τ̃d = ., τ̄d = .,
ε = , δ = ., T = ., τm = , τM = ., ψ = I , N = , we provide a part of the feasible
solution here (due to the limitation of the length of this paper):

c{min} = .e + ,

Q =

[
. .
. .

]

, Q =

[
. –.

–. .

]

,

ε = ., ε = ..

Let f (x) = .x(t) sin(x(t)), g(x(t – τ (t))) = .x(t – τ (t)) cos(x(t – τ (t))), in this exam-
ple, Figures  and  show the trajectory of variables x(t) with τM = . and τ (t) =
 + . sin t under the initial condition [., .], respectively.

When α = β = ., τm = , τM = ., τ̃d = ., τ̄d = ., the minimum allowable c are
given in Table  for different values of δ. From Table , it is also to see the FTB criteria can
still be applicable when the range of c is greater by adjusting the parameter δ.
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Figure 9 Trajectories of x(t) with τ = 8.3618.

Figure 10 Trajectories of x(t) with τ (t) = 8 + 0.25
sin(t).

Table 2 The minimum allowable c2 upper bound for τm with different values δ

δ 0.5 0.6 0.7 0.9

min{c2} 4.1132e+06 1.4459e+07 3.6054e+07 8.8196e+06

Example  We consider the above time-delay systems () with the following parameters
given in []:

A =

[
– .
 –

]

, Ad =

[
– 
– –

]

, B =

[



]

, C = [ ],

Cd = [ ], L =

[



]

, Ea = [ ], Ed = [ ],

F = G =

[
 
 

]

, E =

[
 
 

]

.

Let f (x(t)) = .x(t) ∗ sin(x(t)), g(x(t – τ (t))) = .x(t – τ (t)) ∗ cos(x(t – τ (t))), τM = ..
Figure  shows the trajectory of variable x(t) under the initial condition [., .]T .
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Figure 11 Trajectories of x(t) with τ = 8.5419.

Table 3 Maximum bounds τM for τm = 0.5, 1

τm α, β α = 0, β = 0.1 α = 0.1, β = 0.1

τ̄d 0.5 0.9 1.1 0.5 0.9 1.1

0.5 [24] 1.550 1.550 1.550 1.369 1.369 1.369
0.5 Theorem 3.1 (N = 2) 1.980 1.980 1.980 1.645 1.645 1.645
0.5 Theorem 3.1 (N = 3) 2.647 2.647 2.647 2.348 2.348 2.348
0.5 Theorem 3.1 (N = 4) 3.589 3.589 3.589 3.104 3.104 3.104

1 [24] 1.749 1.749 1.749 1.520 1.520 1.520
1 Theorem 3.1 (N = 2) 2.349 2.349 2.349 1.970 1.970 1.970
1 Theorem 3.1 (N = 3) 2.780 2.780 2.780 2.147 2.147 2.147
1 Theorem 3.1 (N = 4) 3.419 3.419 3.419 3.165 3.165 3.165

For given values of α, β and τ̄d , we apply Theorem . to calculate the maximal allowable
value τM that guarantees the asymptotical stability of the system listed in Table . From
the table, it is easy to see that our proposed stability criterion gives much less conservative
results than those in [], since the proposed analysis uses delay-partitioning approach as
well as tighter bounding on the time derivative of the LKF.

5 Conclusions
In this paper, we investigated the finite-time H∞ control problem for a class of continuous-
time nonlinear system with time-varying norm-bounded parameter uncertainties and ad-
missible external disturbances. Some sufficient conditions for the existence of the robust
state-feedback controller and output-feedback controller have been provided in terms of
LMIs. Finally, numerical examples are provided to demonstrate the effectiveness of the
proposed method.
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