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Abstract
In this paper, we propose a discrete Nicholson’s blowflies model with feedback
control. Sufficient conditions are obtained for the permanence. By means of an
almost periodic functional hull theory, we show that the almost periodic system has a
uniqueness of globally attractive almost periodic solution. Moreover, a suitable
example and its numerical simulation are given to illustrate the feasibility of the main
results.
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1 Introduction
In this paper, we propose and study the permanence and global attractivity of an almost
positive solution of the following discrete Nicholson’s blowflies model with delay and feed-
back control:

�x(n) = –α(n)x(n) + β(n)x(n – τ)e–γ (n)x(n–τ) – c(n)x(n)u(n),

�u(n) = –a(n)u(n) + b(n)x(n – τ),
(.)

where x(n) is the density of the species at time n and u(n) is the control variable at time n.
For any bounded sequence {η(n)}, we define η+ = supn∈Z{η(n)} and η– = infn∈Z{η(n)}.

Throughout this work, we use the following assumptions:

(H) {α(n)}, {β(n)}, {β(n)}, {a(n)}, {b(n)}, and {c(n)} are bounded nonnegative almost pe-
riodic sequences such that

 < α– ≤ α(n) ≤ α+ < ,  < β– ≤ β(n) ≤ β+,  < γ – ≤ γ (n) ≤ γ +,

 < a– ≤ a(n) ≤ a+ < ,  < b– ≤ b(n) ≤ b+,  < c– ≤ c(n) ≤ c+, n ∈ Z.

© 2016 Chen et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-016-0873-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-016-0873-8&domain=pdf
mailto:snailkitty@126.com


Chen et al. Advances in Difference Equations  (2016) 2016:185 Page 2 of 15

We consider system (.) with the following initial conditions:

x(θ ) = ϕ(θ ) ≥ , θ ∈ {–τ , –τ + , . . . , –, –, },
ϕ() > , u() > , τ = max{τ, τ}.

(.)

It is not difficult to see that solutions of (.) with the initial condition (.) are well defined
and remain positive for all n ≥ .

As we know, Nicholson’s blowflies model belongs to a class of biological systems and
its analog equation has attracted more attention because of its extensively realistic sig-
nificance. Topics such as existence, uniqueness, and exponential convergence of almost
periodic solutions of the system were extensively investigated, and many excellent results
have been derived; see [–] and the references cited therein. However, in the study of
ecology, a discrete model is more significant in practice than a differential model as these
species are short in life and have non-overlapping generations. Discrete-time models can
also provide efficient computational models of continuous models for numerical simula-
tion. Therefore, lots have been done on discrete-time population models. To mention a
few cases, we refer the reader to [–]. For example, Zhang et al. [] have studied the
dynamic behavior of the following autonomous discrete differential equation:

�x(n) = –αx(n) + βx(n – τ )e–γ x(n–τ ). (.)

Recently, some scholars [–] paid attention to the non-autonomous discrete Nicholson’s
blowflies models. They mainly studied the existence and exponential convergence of pos-
itive almost periodic solutions of the models.

On the other hand, ecosystems in the real world are continuously disturbed by unpre-
dictable forces which can result in changes in the biological parameters such as survival
rates. Of practical interest in ecology is the question of whether or not an ecosystem can
withstand those unpredictable disturbances which persist for a finite period of time. In the
language of control variables, we call the disturbance functions control variables. In ,
Gopalsamy and Weng [] introduced a feedback control variable into logistic models and
discussed the asymptotic behavior of solutions in logistic models with feedback controls,
in which the control variables satisfy a certain differential equation. We also refer to [,
, , , –] for a further study of population models with feedback control. Zhao
and Wang [] discussed a general Nicholson’s blowflies model with feedback control as
follows:

dx

dt
= –α(t)x(t) + β(t)x

(
t – τ(t)

)
e–γ (t)x(t–τ(t)) – c(t)x(t)x

(
t – η(t)

)
,

dx

dt
= –λ(t)x(t) + b(t)x

(
t – δ(t)

)
.

(.)

However, to the best of the authors’ knowledge, to this day, studies of the general discrete
Nicholson’s blowflies model with feedback control are fairly rare. This is the main moti-
vation of this paper.

For the population models with feedback controls, as we well know, an important subject
is to study the effects of the feedback controls on the dynamical behavior of the models.
Thus, an important and interesting open problem is proposed here, that is, whether or not
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in system (.) the feedback control influences the permanence of the species. In [–], the
main approach to investigating the existence and stability of the almost periodic solutions
of the system is using the fixed point theorem and the Lyapunov functional method. Is
there any more convenient method to solve a similar problem as regards system (.)?

The rest of the paper is organized as follows. In the next section, we give some defini-
tions and present some useful lemmas. In Section , some sufficient conditions for the
permanence of system (.) are obtained. Then, in Section , we establish a sufficient con-
dition for the existence and uniqueness of a globally attractive almost periodic solution.
Finally, the main result is illustrated by giving an example with its numerical simulation.

2 Preliminaries
Lemma . [] Assume that A >  and y() > , and further suppose that

()

y(n + ) ≤ Ay(n) + B(n), n = , , . . . .

Then for any integer k ≤ n,

y(n) ≤ Aky(n – k) +
k–∑

i=

AiB(n – i – ).

Especially, if A <  and B is bounded above with respect to M, then

lim sup
n→∞

y(n) ≤ M
 – A

,

()

y(n + ) ≥ Ay(n) + B(n), n = , , . . . .

Then for any integer k ≤ n,

y(n) ≥ Aky(n – k) +
k–∑

i=

AiB(n – i – ).

Especially, if A <  and B is bounded below with respect to m, then

lim sup
n→∞

y(n) ≥ m
 – A

.

Definition . System (.) is said to be permanent if there exist positive constants M,
M, m, m, which are independent of the solutions of the system, such that any positive
solution (x(n), u(n)) of system (.) satisfies

m ≤ lim inf
n→∞ x(n) ≤ lim sup

n→∞
x(n) ≤ M,

m ≤ lim inf
n→∞ u(n) ≤ lim sup

n→∞
u(n) ≤ M.
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Definition . [] A sequence x : Z → R is called an almost periodic sequence if the
ε-translation set of x

E{ε, x} = τ ∈ Z :
∣
∣x(n + τ ) – x(n)

∣
∣ < ε, ∀n ∈ Z,

is a relatively dense set in Z for all ε > ; that is, for any given ε > , there exists an integer
l(ε) >  such that each interval of length l(ε) contains an integer τ ∈ E{ε, x} with

∣∣x(n + τ ) – x(n)
∣∣ < ε, ∀n ∈ Z.

The integer τ is called an ε-translation number of x(n).

Definition . [] Let D be an open subset of Rm. A function f : Z ×D → Rm is said to be
almost periodic in n uniformly for x ∈ D, if for any ε >  and any compact set S ⊂ D, there
exists a positive integer l = l(ε, S) such that any interval of length l contains an integer τ ,
for which

∣∣f (n + τ , x) – f (n, x)
∣∣ < ε, ∀(n, x) ∈ Z × S.

τ is called an ε-translation number of f (n, x).

Definition . [] The hull of f , denoted by H(f ), is defined by

H(f ) =
{

g(n, x) : lim
k→∞

f (n + τk , x) = g(n, x) uniformly on Z × S
}

,

for some sequence {τk}, where S is any compact set in D.

Lemma . [] {x(n)} is an almost periodic sequence if and only if for any integer sequence
{k′

i}, there exists a subsequence {ki} ⊂ {k′
i} such that the sequence {x(n + ki)} converges uni-

formly for all n ∈ Z as i → ∞. Furthermore, the limit sequence is also an almost periodic
sequence.

3 Permanence
Set

M =
β+

α–γ –e
, M =

b+M

a– ,

m = min

{


γ + ln
β–

α+ + c+M
,

β–

α+ + c+M
Me–γ +M

}
, m =

b–m

a+ .

Theorem . Assume that (H) holds; assume further that

(H) α+ + c+M < min{,β–}
holds, then system (.) is permanent.
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Proof Let (x(n), u(n)) be any positive solution of system (.); from the first equation of
(.), it follows that

x(n + ) ≤ (
 – α(n)

)
x(n) + β(n)x(n – τ)e–γ (n)x(n–τ)

≤ (
 – α–)

x(n) + β+x(n – τ)e–γ –x(n–τ). (.)

This combined with the fact that supu≥ ue–γ u = 
γ e leads to

x(n + ) ≤ (
 – α–)

x(n) +
β+

γ –e
. (.)

By applying Lemma . to (.), it follows that

lim sup
n→∞

x(n) ≤ β+

α–γ –e
def= M. (.)

For any positive constant ε small enough, it follows from (.) that there exists large
enough N such that

x(n) ≤ M + ε, for all n ≥ N. (.)

Equation (.) combined with the second equation of (.) leads to

u(n + ) ≤ (
 – a–)

u(n) + b+(M + ε), for all n ≥ N + τ . (.)

By applying Lemma ., for any positive solution (x(n), u(n)), it follows from (.) that

lim sup
n→∞

u(n) ≤ b+(M + ε)
a– .

Setting ε →  in the above inequality leads to

lim sup
n→∞

u(n) ≤ b+M

a–
def= M. (.)

For any positive constant ε small enough, without loss of generality, from (H) we may
assume that α+ + c+(M + ε) < min{,β–}. It follows from (.) and (.) that there exists a
large enough N > N + τ such that

x(n) ≤ M + ε, u(n) ≤ M + ε, for all n ≥ N. (.)

Now we prove that any positive solution x(n) of system (.) and (.) satisfies

lim inf
n→∞ x(n) > . (.)

Suppose, for the sake of contradiction, lim infn→∞ x(n) = .
We define

t(n) = max
{

s : s ≤ n, x(s) = min
≤ξ≤n

x(ξ )
}

.
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Observe that t(n) → ∞ as n → ∞ and

lim
n→∞ x

(
t(n)

)
= . (.)

However, x(t(n)) = min≤ξ≤n x(ξ ), and so x(t(n + )) – x(t(n)) ≤ , which implies that

 ≥ x
(
t(n + )

)
– x

(
t(n)

)
= –α

(
t(n)

)
x
(
t(n)

)

+ β
(
t(n)

)
x
(
t(n) – τ

)
e–γ (t(n))x(t(n)–τ ) – c

(
t(n)

)
x
(
t(n)

)
u
(
t(n)

)

≥ –α+x
(
t(n)

)
+ β–x

(
t(n) – τ

)
e–γ +x(t(n)–τ )

– c+(M + ε)x
(
t(n)

)
, for all n ≥ max

{
t(n), N

}
,

and therefore

 = lim
n→∞

(
α+ + c+(M + ε)

)
x
(
t(n)

) ≥ lim
n→∞β–x

(
t(n) – τ

)
e–γ +x(t(n)–τ ). (.)

Hence,

lim
n→∞ x

(
t(n) – τ

)
= .

Thus, together with (.) and the definition of t(n), we have

α+ + c+(M + ε) ≥ lim inf
n→∞

β–x(t(n) – τ )
x(t(n))

e–γ +x(t(n)–τ ) ≥ lim inf
n→∞ β–e–γ +x(t(n)–τ ) = β–,

which contradicts with α+ + c+(M + ε) < β–. Hence (.) holds.
We next prove that there exists a positive constant m such that lim infn→∞ x(n) ≥ m.
Define

η = lim inf
n→∞ x(n)

and

h = min
{

g(η), g(M)
}

, where g(x) = xe–γ +x.

This combined with system (.) and (.) leads to

x(n + ) ≥ (
 – α+)

x(n) + β–h – c+(M + ε)x(n), for all n ≥ N.

Thus, together with  < α+ + c+(M + ε) < , we have

η = lim inf
n→∞ x(n)

≥ lim inf
n→∞

[(
x() –

β–h
α+ + c+(M + ε)

)
(
 – α+ – c+(M + ε)

)n +
β–h

α+ + c+(M + ε)

]

=
β–h

α+ + c+(M + ε)
.
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Setting ε →  in the above inequality, we have

η = lim inf
n→∞ x(n) ≥ β–h

α+ + c+M
. (.)

If h = g(η), then η ≥ β–

α++c+M
ηe–γ +η . So we have η ≥ 

γ + ln β–

α++c+M
.

If h = g(M), it follows from (.) that η ≥ β–

α++c+M
Me–α+M .

The above inequality leads to

lim inf
n→∞ x(n) ≥ min

{


γ + ln
β–

α+ + c+M
,

β–

α+ + c+M
Me–α+M

}
def= m. (.)

For any positive constant ε small enough, without loss of generality, assume that ε < 
 m,

from (.) we know that there exists a large enough N > N such that

x(n) ≥ m – ε, for all n ≥ N. (.)

Equation (.) combined with the second equation of (.) leads to

u(n + ) ≥ (
 – a+)

u(n) + b–(m – ε), for all n ≥ N + τ . (.)

By applying Lemma ., for any positive solution (x(n), u(n)), it follows from (.) that

lim sup
n→∞

u(n) ≥ b–(m – ε)
a+ .

Setting ε →  in the above inequality leads to

lim sup
n→∞

u(n) ≥ b–m

a+
def= m. (.)

Equations (.), (.), (.), and (.) show that if the assumptions (H) and (H) hold,
system (.) is permanent. This ends the proof of Theorem .. �

4 Global attractivity of almost periodic solution
The main purpose of this paper is to investigate the existence and uniqueness of globally
attractive almost periodic solution of system (.).

First of all, we investigate the attractivity of the solution of (.).

Theorem . Assume that (H) and (H) hold; suppose further that

(H) γ –m > 

and

(H) α– + c–m > b+ + 
e β+, a– > c+M,

hold, then system (.) is globally attractive. That is, for any positive solutions (x(n), u(n))
and (p(n), q(n)) of system (.), we have limn→∞(x(n) – p(n)) = , limn→∞(u(n) – q(n)) = .
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Proof For any solutions (x(n), u(n)) and (p(n), q(n)) of system (.), it follows from Theo-
rem . that

m ≤ lim inf
n→∞ x(n) ≤ lim sup

n→∞
x(n) ≤ M, m ≤ lim inf

n→∞ p(n) ≤ lim sup
n→∞

p(n) ≤ M,

m ≤ lim inf
n→∞ u(n) ≤ lim sup

n→∞
u(n) ≤ M, m ≤ lim inf

n→∞ q(n) ≤ lim sup
n→∞

q(n) ≤ M.

For any positive constant ε >  small enough, there exists an integer n such that, for all
n ≥ n,

m – ε ≤ x(n), p(n) ≤ M + ε,

m – ε ≤ u(n), q(n) ≤ M + ε.
(.)

Using the mean value theorem, we get

x(n)e–x(n) – p(n)e–p(n) =
(
 – θ (n)

)
e–θ (n)(x(n) – p(n)

)
, (.)

where θ (n) lies between x(n) and p(n).
Let

V(n) =
∣∣x(n) – p(n)

∣∣ +
∣∣u(n) – q(n)

∣∣.

Then, from system (.) and (.), we get

�V(n) = V(n + ) – V(n)

≤ –α(n)
∣∣x(n) – p(n)

∣∣

+ β(n)
∣
∣x(n – τ)e–γ (n)x(n–τ) – p(n – τ)e–γ (n)p(n–τ)∣∣

– c(n)u(n)
∣
∣x(n) – p(n)

∣
∣ + c(n)p(n)

∣
∣u(n) – q(n)

∣
∣

– a(n)
∣∣u(n) – q(n)

∣∣ + b(n)
∣∣x(n – τ) – p(n – τ)

∣∣

≤ –α(n)
∣
∣x(n) – p(n)

∣
∣

+ β(n)
∣∣( – θ (n – τ)

)
e–θ (n–τ)(x(n – τ) – p(n – τ)

)∣∣

– c(n)u(n)
∣∣x(n) – p(n)

∣∣ + c(n)p(n)
∣∣u(n) – q(n)

∣∣

– a(n)
∣
∣u(n) – q(n)

∣
∣ + b(n)

∣
∣x(n – τ) – p(n – τ)

∣
∣. (.)

According to (H), (.), and the fact that maxx∈[,+∞]( – x)e–x = 
e , for n ≥ n + τ , we have

�V(n) ≤ –α(n)
∣∣x(n) – p(n)

∣∣

+

e β(n)

∣∣x(n – τ) – p(n – τ)
∣∣

– c(n)u(n)
∣
∣x(n) – p(n)

∣
∣ + c(n)p(n)

∣
∣u(n) – q(n)

∣
∣

– a(n)
∣∣u(n) – q(n)

∣∣ + b(n)
∣∣x(n – τ) – p(n – τ)

∣∣. (.)
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Let

V(n) =
n–∑

u=n–τ


e β(u + τ)

∣∣x(u) – p(u)
∣∣,

V(n) =
n–∑

u=n–τ

b(u + τ)
∣∣x(u) – p(u)

∣∣.

Then

�V(n) =

e β(n + τ)

∣
∣x(n) – p(n)

∣
∣ –


e β(n)

∣
∣x(n – τ) – p(n – τ)

∣
∣,

�V(n) = b(n + τ)
∣∣x(n) – p(n)

∣∣ – b(n)
∣∣x(n – τ) – p(n – τ)

∣∣.
(.)

Define

V (n) = V(n) + V(n) + V(n).

Then it follows from (.) and (.) that

�V (n) ≤
(

–α(n) +

e β(n + τ) – c(n)u(n) + b(n + τ)

)∣∣x(n) – p(n)
∣∣

+
(
c(n)p(n) – a(n)

)∣∣u(n) – q(n)
∣∣. (.)

From (.) and (.), for n > n + τ , we obtain

�V (n) ≤
(

–α– +

e β+ – c–(m – ε) + b+

)∣∣x(n) – p(n)
∣∣

+
(
c+(M + ε) – a–)∣∣u(n) – q(n)

∣
∣. (.)

From condition (H) and the above ε, we can choose δ small enough such that

δ = min

{
α– + c–(m – ε) – b+ –


e β+, a– – c+(M + ε)

}
> . (.)

From (.) and (.), we obtain

�V (n) ≤ –δ
(∣∣x(n) – p(n)

∣
∣ +

∣
∣u(n) – q(n)

∣
∣). (.)

Summing both sides of the above inequalities from n + τ to n, we have

n∑

s=n+τ

(
V (s + ) – V (s)

) ≤ –δ

n∑

s=n+τ

(∣∣x(s) – p(s)
∣
∣ +

∣
∣u(s) – q(s)

∣
∣),

which implies

V (n + ) + δ

n∑

s=n+τ

(∣∣x(s) – p(s)
∣
∣ +

∣
∣u(s) – q(s)

∣
∣) ≤ V (n + τ ),
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that is,

n∑

s=n+τ

(∣∣x(s) – p(s)
∣
∣ +

∣
∣u(s) – q(s)

∣
∣) ≤ V (n + τ )

δ
.

It follows from (.) that Vi(n + τ ) (i = , , ) are all bounded. Hence

n∑

s=n+τ

(∣∣x(s) – p(s)
∣
∣ +

∣
∣u(s) – q(s)

∣
∣) ≤ V (n + τ )

δ
< +∞,

which means that

+∞∑

s=n+τ

(∣∣x(s) – p(s)
∣
∣ +

∣
∣u(s) – q(s)

∣
∣) ≤ V (n + τ )

δ
< +∞.

This implies that limn→∞(|x(n) – p(n)| + |u(n) – q(n)|) = , or limn→∞(x(n) – p(n)) = ,
limn→∞(u(n) – q(n)) = . This completes the proof of Theorem .. �

Next, we investigate the existence and uniqueness of an almost periodic sequence solu-
tion of system (.) by using almost periodic functional hull theory.

Let {μk} be any integer valued sequence such that μk → ∞ as k → ∞. According to
Lemma ., taking a subsequence if necessary, we have α(n + μk) → α∗(n), β(n + μk) →
β∗(n), γ (n + μk) → γ ∗(n), a(n + μk) → a∗(n), b(n + μk) → b∗(n), c(n + μk) → c∗(n), as
k → ∞ for n ∈ Z. Then we get a hull equation of system (.) as follows:

�x(n) = –α∗(n)x(n) + β∗(n)x(n – τ)e–γ ∗(n)x(n–τ) – c∗(n)x(n)u(n),

�u(n) = –a∗(n)u(n) + b∗(n)x(n – τ),
(.)

By the almost periodic theory, we can conclude that if system (.) satisfies (H)-(H), then
the hull equation (.) of system (.) also satisfies (H)-(H).

From Theorem . in [], the following lemma can easily be obtained.

Lemma . If each hull equation of system (.) has a unique strictly positive solution,
then the almost periodic difference system (.) has a unique strictly positive almost periodic
solution.

Theorem . If the almost periodic difference system (.) satisfies (H)-(H), then the al-
most periodic difference system (.) admits a uniqueness of globally attractive almost pe-
riodic sequence solution.

Proof By Lemma ., we only need to prove that each hull equation of system (.) has a
unique strictly positive solution. We prove that the existence of a strictly positive solution
of any hull equations of system (.).

By the almost periodicity of {α(n)}, {β(n)}, {γ (n)}, {a(n)}, {b(n)}, and {c(n)}, there exists
an integer valued sequence {δk} with δk → ∞ as k → ∞ such that α(n + δk) → α∗(n),
β(n + δk) → β∗(n), γ (n + δk) → γ ∗(n), a(n + δk) → a∗(n), b(n + δk) → b∗(n), c(n + δk) →
c∗(n), as k → ∞ for n ∈ Z. Suppose that X(n) = (x(n), u(n)) is any positive solution of hull
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equation (.). Since (H) and (H) hold, combined with the proof of Theorem ., we
have

m ≤ lim inf
n→∞ x(n) ≤ lim sup

n→∞
x(n) ≤ M,

m ≤ lim inf
n→∞ u(n) ≤ lim sup

n→∞
u(n) ≤ M.

(.)

Therefore

 < inf
n∈Z+

x(n) ≤ sup
n∈Z+

x(n) < ∞,

 < inf
n∈Z+

u(n) ≤ sup
n∈Z+

u(n) < ∞.

Let ε be an arbitrary small positive number. It follows from (.) that there exists a positive
integer N such that

m – ε ≤ x(n) ≤ M + ε, m – ε ≤ u(n) ≤ M + ε, n > N.

Define xk(n) = x(n + δk) and uk(n) = u(n + δk) for all n ≥ N + τ – δk , k ∈ Z+. For any positive
integer q, it is easy to see that there exist sequences {xk(n) : k ≥ q} and {uk(n) : k ≥ q} such
that the sequences {xk(n)} and {uk(n)} have subsequences, denoted by {xk(n)} and {uk(n)}
again, converging on any finite interval of Z as k → ∞. Thus we have sequences {y(n)} and
{v(n)} satisfying

xk(n) → y(n), uk(n) → v(n), for n ∈ Z as k → ∞.

This, combined with

�xk(n) = –α∗(n + τk)xk(n) + β∗(n + τk)xk(n – τ)e–γ ∗(n+τk )xk (n–τ)

– c∗(n + τk)xk(n)uk(n),

�uk(n) = –a∗(n + τk)uk(n) + b∗(n + τk)xk(n – τ),

give us

�y(n) = –α∗(n)y(n) + β∗(n)y(n – τ)e–γ ∗(n)y(n–τ) – c∗(n)y(n)v(n),

�v(n) = –a∗(n)v(n) + b∗(n)y(n – τ).

We can easily see that (y(n), v(n)) is a solution of hull equation (.) and

m – ε ≤ y(n) ≤ M + ε, m – ε ≤ v(n) ≤ M + ε, n ∈ Z.

Since ε is an arbitrary small positive number, it follows that

m ≤ y(n) ≤ M, m ≤ v(n) ≤ M, n ∈ Z.
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that is,

 < inf
n∈Z

y(n) ≤ sup
n∈Z

y(n) < ∞,  < inf
n∈Z

y(n) ≤ sup
n∈Z

y(n) < ∞.

This implies that each hull equation of the almost periodic difference system (.) has at
least one strictly positive solution.

Now we prove the uniqueness of the strictly positive solution of each hull equation
(.). Suppose that the hull equation (.) has two arbitrary strictly positive solutions
(x∗(n), u∗(n)) and (p∗(n), q∗(n)). Similar to the proof of Theorem ., we define a Lyapunov
functional,

V ∗(n) = V ∗
 (n) + V ∗

 (n) + V ∗
 (n), (.)

where

V ∗
 (n) =

∣∣x∗(n) – p∗(n)
∣∣ +

∣∣u∗(n) – q∗(n)
∣∣,

V ∗
 (n) =

n–∑

u=n–τ


e β(u + τ)

∣
∣x∗(u) – p∗(u)

∣
∣,

V ∗
 (n) =

n–∑

u=n–τ

b(u + τ)
∣
∣x∗(u) – p∗(u)

∣
∣.

Calculating the difference of V ∗ along the solution of the hull equation (.), similar to
the discussion of (.), one has

�V ∗(n) ≤ –δ
(∣∣x∗(n) – p∗(n)

∣
∣ +

∣
∣u∗(n) – q∗(n)

∣
∣), for n ∈ Z. (.)

We immediately see that V ∗(n) is a non-increasing function on Z. Summing both sides of
(.) from n to , we have

δ

∑

s=n

(∣∣x∗(s) – p∗(s)
∣∣ +

∣∣u∗(s) – q∗(s)
∣∣) ≤ V ∗(n) – V ∗(), for n < .

Note that V ∗(n) is bounded. Hence we have
∑

s=–∞(|x∗(s) – p∗(s)| + |u∗(s) – q∗(s)|) < +∞,
which implies that

lim
n→–∞

(
x∗(n) – p∗(n)

)
= , lim

n→–∞
(
u∗(n) – q∗(n)

)
= . (.)

Let ε be an arbitrary small positive number. It follows from (.) that there exists a posi-
tive integer N >  such that

∣
∣x∗(n) – p∗(n)

∣
∣ <

ε

Q
,

∣
∣u∗(n) – q∗(n)

∣
∣ <

ε

Q
, n < –N,

where Q =  + τβ+

e + τb+. Therefore, for n < –N,

V ∗
 (n) ≤ ε

Q
+

ε

Q
, V ∗

 (n) ≤ τβ
+

e
ε

Q
, V ∗

 (n) ≤ τb+ ε

Q
.
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It follows from (.) and the above inequalities that

V ∗(n) ≤ Q
ε

Q
= ε, n < –N,

so limn→–∞ V ∗(n) = . Notice that V ∗(n) is a non-increasing function on Z, and then
V ∗(n) ≡ . That is x∗(n) = p∗(n), u∗(n) = q∗(n), for all n ∈ Z. Therefore, each hull equa-
tion of system (.) has a unique strictly positive solution.

In view of the above discussion, any hull equation of system (.) has a unique strictly
positive solution. By Theorem . and Theorem ., the almost periodic system (.) has
a uniqueness of globally attractive almost periodic solution. The proof is completed. �

5 An example
The following example shows the feasibility of our main results.

Example . Consider the following equations:

�x(n) = –
(
. + . sin(

√
n)

)
x(n)

+
(
. + . sin(

√
n)

)
x(n – )e–(.+. sin(n))x(n–)

–
(
. + . sin(

√
n)

)
x(n)u(n),

�u(n) = –
(
. + . sin(

√
n)

)
u(n) +

(
. + . cos(

√
n)

)
x(n – ).

(.)

It is easy to calculate that M ≈ ., m ≈ ., M ≈ ., m ≈ .. By sim-
ple calculation, we found that conditions (H)-(H) are satisfied. It follows from Theo-
rem . that system (.) admits uniqueness of a globally attractive almost periodic solu-
tion (see Figure ).

6 Conclusion
In this paper, we propose and study the discrete Nicholson’s blowflies model with feed-
back control. In Theorem ., we obtain condition (H) to ensure the permanence of sys-
tem (.), which shows that the feedback control can change the permanence. However,
as is well known, the feedback control cannot influence the permanence [, , , ],

Figure 1 Dynamic behavior of the solution (x(n), u(n)) of system (5.1) with the initial conditions
(ϕ(θ ), u(0)) = (1.8, 0.22), (2, 0.25), and (2.15, 0.28) for θ = –2, –1, 0, respectively.
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therefore, the result not only improves but also supplements the known results. Further,
by using almost periodic functional hull theory, which is different from that of [–], we
show that the almost periodic system has a unique strictly positive almost periodic solu-
tion, which is globally attractive. The main analysis technique that we use in the proof of
the main results is developed from the work of Li et al. []. This implies that the main
theorems of this paper improve and extend some of previously obtained results.
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