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Abstract
The hexagonal grid version of the block-grid method, which is a difference-analytical
method, has been applied for the solution of Laplace’s equation with Dirichlet
boundary conditions, in a special type of polygon with corner singularities. It has
been justified that in this polygon, when the boundary functions away from the
singular corners are from the Hölder classes C4,λ, 0 < λ < 1, the uniform error is of
order O(h4), h is the step size, when the hexagonal grid is applied in the ‘nonsingular’
part of the domain. Moreover, in each of the finite neighborhoods of the singular
corners (‘singular’ parts), the approximate solution is defined as a quadrature
approximation of the integral representation of the harmonic function, and the errors
of any order derivatives are estimated. Numerical results are presented in order to
demonstrate the theoretical results obtained.

Keywords: hexagonal grid; Laplace’s equation; singularity problem; block-grid
method

1 Introduction
It is well known that angular singularities arise in many applied problems when the so-
lution of Laplace’s equation is considered, and that finite-difference and finite-element
methods may become less accurate when singularities are not taken into account. In the
last two decades, for the solution of singularity problems, various combined and highly
accurate methods have been proposed (see [–], and references therein).

Among these methods the block-grid method (BGM), presented in [–], on polygons
with interior angles αjπ , j = , , . . . , N , where αj ∈ { 

 , , 
 , } (staircase polygons), requires

the finite neighborhood of the singular vertices to be covered by sectors (blocks), and the
remaining part of the domain by overlapping rectangles (‘nonsingular’ part). The finite-
difference method with square grids is used for the approximate solution in the ‘nonsin-
gular’ part, and in the blocks the integral representations of the harmonic function are
approximated by the exponentially convergent mid-point quadrature rule (see []). Finally
these subsystems are connected together by constructing an appropriate order matching
operator. BGM is a highly accurate method not only for the approximation of the solution,
but also for the approximation of its derivatives around singular points.

In this paper, the fourth order BGM is extended and justified for the Dirichlet problem
of Laplace’s equation on polygons with interior angles αjπ , where αj ∈ { 

 , 
 , , } (non-
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staircase), by gluing with the matching operator the -point approximation on a hexagonal
grid in the ‘nonsingular’ part and the approximation of the integral representations around
the singular points (on ‘singular’ parts).

An advantage of using the hexagonal grid version of BGM in this domain is that a highly
accurate approximation on the irregular grids is not required as in []. Thus the realization
of the total system of algebraic equations becomes simpler. This may not be the case for
this type of domain when square or rectangular grids are applied.

Furthermore it is justified that, when the boundary functions on the sides except the
adjacent sides of the singular vertices are given in C,λ,  < λ < , the proposed hexagonal
grid version of BGM has an accuracy of O(h), h is the mesh step. The same order of
accuracy is obtained for the -point scheme on a square grid (see [, ]).

Finally in the last section of the paper, numerical experiments are demonstrated to sup-
port the theoretical results obtained.

2 Boundary value problem on a special type of polygon
Let D be an open simply connected polygon, γj, j = , , . . . , N , be its sides, including the
ends, enumerated counterclockwise (γ ≡ γN , γ ≡ γN+), and let αjπ , αj ∈ { 

 , 
 , , }, be

the interior angles formed by the sides γj– and γj. Furthermore, let γ̇j = γj– ∩ γj be the
jth vertex of D, γ =

⋃N
j= γj be the boundary of D; s is the arclength measured along the

boundary of D in the positive direction, and sj is the value of s at γ̇j. We denote by rj, θj

the polar system of coordinates with poles in γ̇j and the angle θj is taken counterclockwise
from the side γj.

Consider the boundary value problem

�u =  on D, ()

u = ϕj on γj, j = , , . . . , N , ()

where � ≡ ∂/∂x + ∂/∂y, ϕj, j = , , . . . , N , are given functions and

ϕj ∈ C,λ(γj),  < λ < ,  ≤ j ≤ N . ()

In addition, at the vertices γ̇j, for αj = /, the following conjugation conditions are satis-
fied:

ϕ
(p)
j– (sj) = ϕ

(p)
j (sj), p = , . ()

No compatibility conditions are required at the vertices for αj �= /. Moreover, it is re-
quired that when αj �= /, the boundary functions on γj– and γj are given as algebraic
polynomials of the arclength s measured along γ .

Let E = {j : αj �= /,  ≤ j ≤ N}. We construct two fixed block sectors in the neighbor-
hood of γ̇j, j ∈ E, denoted by Ti

j = Tj(rji) ⊂ D, i = , , where  < rj < rj < min{sj+ – sj, sj –
sj–}, Tj(r) = {(rj, θj) :  < rj < r,  < θj < αjπ}. On the closed sector T 

j , j ∈ E, we consider the
carrier function Qj(rj, θj) in the form given in [], which satisfies the boundary conditions
() on γj– ∩ T 

j and γj ∩ T 
j , j ∈ E.
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We set (see [])

Rj(rj, θj,η) =

αj

∑

k=

(–)kR
((

r
rj

)/αj

,
θ

αj
, (–)k η

αj

)

, j ∈ E,

where

R(r, θ ,η) =
 – r

π ( – r cos(θ – η) + r)

is the kernel of the Poisson integral for a unit circle.
The following lemma acts as a basis for the approximation of the solution around the

vertices γ̇j with angle αjπ , αj �= /.

Lemma . ([]) The solution u of problem ()-() can be represented on T
j \Vj, j ∈ E, in

the form

u(rj, θj) = Qj(rj, θj) +
∫ αjπ



(
u(rj,η) – Qj(rj,η)

)
Rj(rj, θj,η) dη, ()

where Vj is the curvilinear part of the boundary of the sector T
j .

For the approximation of problem (), () in the domain D, we apply the hexagonal grid
version of the block-grid method (see [–]). The application of this method first of all
requires the construction of two more sectors T

j and T
j , where  < rj < rj < rj. Let

DT = D\(
⋃

j∈E T
j ). The following steps are taken for the realization:

() We blockade the singular corners γ̇j, j ∈ E, by the double sectors Ti
j (rji), i = , , with

T
k ∩ T

l = ∅, k �= l, k, l ∈ E, and cover the polygon D by overlapping parallelograms
denoted by D′

l , l = , , . . . , M, and sectors T
j , j ∈ E, such that the distance from D′

l to
γ̇j is not less that rj for all l = , , . . . , M.

() On the parallelograms D′
l , l = , , . . . , M, we use the -point scheme for the

hexagonal grid with step size hl ≤ h, h a parameter, for the approximation of
Laplace’s equation, and the singular part T

j , j ∈ E, is approximated by using the
harmonic function defined in Lemma ..

() The fourth order matching operator in a hexagonal grid is applied for connecting
the subsystems.

() Schwarz’s alternating procedure is used for solving the finite-difference system
formed for Laplace’s equation on the parallelograms covering DT .

Let D′
l ⊂ DT , l = , , . . . , M, be open fixed parallelograms and D ⊂ (

⋃M
l= D′

l) ∪
(
⋃

j∈E T
j ) ⊂ D. We denote by ηl the boundary of D′

l , l = , , . . . M, by Vj the curvilinear
part of the boundary of the sector T

j , and let tj = (
⋃M

l= ηl) ∩ T
j . For the arrangement

of the parallelograms D′
l , l = , , . . . , M, it is required that any point P lying on ηl ∩ DT ,

 ≤ l ≤ M, or lying on Vj ∩ D, j ∈ E, falls inside at least on of the parallelograms D′
l(P),

 ≤ l(P) ≤ M, depending on P, where the distance from P to DT ∩ ηl(P) is not less than
some constant κ independent of P.

Let h ∈ (,κ/] be a parameter, and define a hexagonal grid on D′
l ,  ≤ l ≤ M, with

maximal positive step hl ≤ h, such that the boundary ηl lies entirely on the grid lines. Let
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D′
lh be the set of grid nodes on D′

l , ηh
l be the set of nodes on ηl , and let D′

lh = D′
lh ∪ ηh

l .
Furthermore, ηh

l denotes the set of nodes on ηl ∩ DT , ηh
l = ηh

l \ηh
l, and th

j denotes the set
of nodes on tj.

We also specify a natural number n ≥ [ln+χ h–] + , where χ >  is a fixed number, and
the quantities n(j) = max{, [αjn]}, βj = αjπ/n(j), and θm

j = (m – /)βj, j ∈ E,  ≤ m ≤ n(j).
On the arc Vj we choose the points (rj, θm

j ),  ≤ m ≤ n(j), and denote the set of these
points by V n

j . Finally, we have

ωh,n =

( M⋃

l=

ηh
l

)

∪
(⋃

j∈E

V n
j

)

, Dh,n
∗ = ωh,n ∪

( M⋃

l=

D′
lh

)

.

For the approximation of the solution at the points of the set ωh,n we use the fourth order
linear matching operator S constructed in [], which can be represented as follows:

S(uh,ϕ) =
∑

k=

λkuh(Pk), ()

where ϕ = {ϕj}N
j=,

λk ≥ ,
∑

k=

λk = . ()

Consider the system of difference equations

uh = Suh on D′
lh, ()

uh = ϕ on ηh
l, ()

uh(rj, θj) = Qj(rj, θj) + βj

n(j)∑

k=

Rj
(
rj, θj, θ k

j
)[

uh
(
rj, θ k

j
)

– Qj
(
rj, θ k

j
)]

on th
j , ()

uh = S(uh,ϕ) on ωh,n, ()

where  ≤ l ≤ M, j ∈ E, and the operator S is defined as

Su(x, y) =



(

u(x + h, y) + u
(

x +
h


, y +
√




h
)

+ u
(

x –
h


, y +
√




h
)

+ u(x – h, y) + u
(

x –
h


, y –
√




h
)

+ u
(

x +
h


, y –
√




h
))

.

The solution of this system is the approximation of the solution of problem (), ()
on Dh,n

∗ .

Theorem . There is a natural number n such that for all n ≥ n the system of equations
()-() has a unique solution.

Proof Taking into account the corresponding homogeneous system of system ()-(), the
proof follows by analogy to Lemma  in []. �
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Now consider the sector T∗
j = Tj(r∗

j ), where r∗
j = (rj + rj)/, j ∈ E. Let uh be the solution

of the system of equations ()-(). The function

Uh(rj, θj) = Qj(rj, θj) + βj

n(j)∑

q=

Rj
(
rj, θj, θ

q
j
)(

uh
(
rj, θq

j
)

– Qj
(
rj, θq

j
))

()

defined on T∗
j is an approximate solution of problem (), (), on the closed block T

j , j ∈ E.

3 Error analysis of the 7-point approximation on the special parallelogram
Let D′ be one of the parallelograms covering the ‘nonsingular’ part of the polygon D de-
fined in Section . The boundaries of the parallelogram D′ are denoted by γ ′

j , enumer-
ated counterclockwise starting from left, including the ends, γ̇ ′

j = γ ′
j– ∩ γ ′

j , j = , , , ,
denotes the vertices of D′, γ ′ =

⋃
j= γ ′

j , and D′ = D′ ∪ γ ′. Furthermore γ ∩ γ ′ �= ∅, but
the vertices γ̇ ′

m with an interior angle of αmπ �= π/ are located either inside of D, or
on the interior of a side γm of D,  ≤ m ≤ N . We define the open parallelogram D′ as
D′ = {(x, y) :  < y <

√
a/, d – y/

√
 < x < e – y/

√
}. The boundary value problem ()-()

is considered on D′:

�v =  on D′, ()

v = ψj on γ ′
j , j = , , , , ()

where ψj are the values of the solution of problem ()-() on γ ′.
Let h > , where (e – d)/h ≥ , a/

√
h ≥  are integers. We assign to D′ a hexagonal grid

of the form D′
h = {(x, y) ∈ D′ : x = h

 ( – l) + kh, y = l
√

h
 , k, l = ,±,±,±, . . .}. Let γ ′

jh be
the set of nodes on the interior of γ ′

j , and

γ̇ ′
jh = γ ′

j– ∩ γ ′
j , γ ′

h =
⋃

j=

γ ′
jh, j = , , , ,

D′
h = D′

h ∪ γ ′
h.

We consider the system of finite-difference equations:

vh = Svh on D′
h, ()

vh = ψj on γ ′
jh, j = , , , , ()

where

Sv(x, y) =



(

v(x + h, y) + v
(

x +
h


, y +
√




h
)

+ v
(

x –
h


, y +
√




h
)

+ v(x – h, y) + v
(

x –
h


, y –
√




h
)

+ v
(

x +
h


, y –
√




h
))

. ()

Since () has nonnegative coefficients and their sum is equal to , the solution of system
(), () exists and is unique (see []).
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Everywhere below we will denote constants which are independent of h and of the cofac-
tors on their right by c, c, c, . . . , generally using the same notation for different constants
for simplicity.

Lemma . Let

ψj(s) ∈ C,λ(γ ′
j
)
,  < λ <  ()

and

ψ
(p)
j– (sj) = ψ

(p)
j (sj), p = , , ()

be satisfied on the vertices whose interior angles are αjπ = π/, where j = , , , . Then the
solution of problem (), ()

v ∈ C,λ(D′). ()

Proof The closed parallelogram D′ lies inside the polygon D defined in Section , and the
vertices γ̇ ′

m with an interior angle of αmπ �= π/ are located either inside of D or on the
interior of a side γm of D,  ≤ m ≤ N . Since the boundary functions (), by the definition
of the boundary functions ϕj in problem (), () satisfy conditions (), (), from the results
in [], () follows. �

Let D′
h,k be the set of nodes whose distance from the point P ∈ D′

h to γ ′
h is

√


 kh,  ≤
k ≤ a∗, where a∗ = [ dt√

h ], [c] denotes the integer part of c, and dt is the minimum of the
half-lengths of the sides of the parallelogram.

Lemma . Let wk
h �= const. be the solution of the system of equations

wk
h = Swk

h + f k
h on D′

h,k ,

wk
h = Swk

h on D′
h\D′

h,k ,

wk
h =  on γ ′

h,

and zk
h �= const. be the solution of the system of equations

zk
h = Szk

h + gk
h on D′

h,k ,

zk
h = Szk

h on D′
h\D′

h,k ,

zk
h =  on γ ′

h,

where  ≤ k ≤ a∗. If |f k
h | ≤ gk

h , then

∣
∣wk

h
∣
∣ ≤ zk

h,  ≤ k ≤ a∗. ()

Proof The proof follows analogously to the proof of the comparison theorem given in
[]. �



Dosiyev and Celiker Advances in Difference Equations  (2015) 2015:59 Page 7 of 17

Lemma . Let v be the trace of the solution of problem (), () on D′
h, and vh be the

solution of system (), (). If

ψj(s) ∈ C,λ(γ ′
j
)
,  < λ < , j = , , , 

and

ψ
(p)
j– (sj) = ψ

(p)
j (sj), p = , ,

on the vertices with an interior angle of αjπ = π/, j = , , , , then

max
D′

h

|v – vh| ≤ ch. ()

Proof Let εh = vh – v on D′
h. Clearly

εh = Sεh + (Sv – v) on D′
h, ()

εh =  on γ ′
h. ()

Let D′
h contain the set of nodes whose distance from the boundary γ ′ is

√
h
 , and hence

for (x, y) ∈ D′
h, (x + sH , y + sK) ∈ D′ for  ≤ s ≤ , H = ± h

 ,±h, K = ,±
√

h
 , H + K > ,

and D′
h = D′

h\D′
h.

Moreover, let

εh = ε
h + ε

h . ()

We rewrite problem (), () as

ε
h = Sε

h + (Sv – v) on D′
h,

ε
h = Sε

h on D′
h, ()

ε
h =  on γ ′

h

and

ε
h = Sε

h on D′
h,

ε
h = Sε

h + (Sv – v) on D′
h, ()

ε
h =  on γ ′

h.

In order to obtain an estimation for Sv – v on D′
h, we use Taylor’s formula. On the basis

of Lemma ., we have

|Sv – v| ≤ ch on D′
h. ()

Since at least two values of ε
h in Sε

h are lying on the boundary γ ′
h, on which ε

h = , from
(), (), and the maximum principle (see []), we obtain

max
D′

h

∣
∣ε

h
∣
∣ ≤ 


max

D′
h

∣
∣ε

h
∣
∣ + ch.
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Hence

max
D′

h

∣
∣ε

h
∣
∣ ≤ ch, ()

where c = c.
Next, we consider the estimation of ε

h . Let D′
h,k be the set of nodes whose distance from

the point P ∈ D′
h to γ ′

h is
√


 kh,  ≤ k ≤ a∗, where a∗ = [ dt√

h ], [c] denotes the integer part of
c, and dt is the minimum of the half-lengths of the sides of the parallelogram. Furthermore,
D′

h, ≡ D′
h and D′

h, ≡ γ ′
h. Since the vertices with αj = 

 of the parallelogram D′ are never
used as a node of the hexagonal grid for the estimation of |Sv – v| on D′

h,k ,  ≤ k ≤ a∗, we
use the inequality

max
p+q=

∣
∣
∣
∣
∂v(x, y)
∂xp ∂yq

∣
∣
∣
∣ ≤ cρ

λ– on D′\γ ′
m,

for the sixth order derivatives, where ρ is the distance from (x, y) ∈ D′ to γ ′
m. Hence, we

obtain

|Sv – v| ≤ ch/(kh)–λ on D′
h,k ,  ≤ k ≤ a∗. ()

Consider a majorant function of the form

Yk =

{
m if P ∈ D′

h,m,  ≤ m ≤ k,
k if P ∈ D′

h,m, m > k.
()

Hence Yk is a solution of the finite-difference problem

Yk = SYk + μk on D′
h,k ,

Yk = SYk on D′
h\D′

h,k , ()

Yk =  on γ ′
h,

where  ≤ μk ≤ ,  ≤ k ≤ a∗.
We represent the solution of system () as the sum of the solution of the following

subsystems:

ε
h,k = Sε

h,k + μ′
k on D′

h,k ,

ε
h,k = Sε

h,k on D′
h\D′

h,k , ()

ε
h,k =  on γ ′

h,

where  ≤ k ≤ a∗, μ′
k =  when k =  and |μ′

k| ≤ c
h+λ

k–λ when k = , , . . . , a∗.
By (), (), and Lemma ., it follows that

∣
∣ε

h,k
∣
∣ ≤ c

h+λ

k–λ
Yk . ()
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Hence, by taking () and () into consideration, we have

max
D′

h

∣
∣ε

h
∣
∣ ≤

a∗
∑

k=

ε
h,k ≤

a∗
∑

k=

c
h+λ

k–λ
Yk

≤ ch+λ

a∗
∑

k=


k–λ

≤ ch. ()

On the basis of (), (), and (), we have estimation (). �

4 Error analysis of the hexagonal block-grid equations
Let

εh = uh – u, ()

where uh is the solution of system ()-(), and u is the trace of the solution of problem
(), () on Dh,n

∗ . It is easy to show that () satisfies the system of equations

εh = Sεh + r
h on D′

lh,

εh =  on ηl ∩ γm,

εh(rj, θj) = βj

n(j)∑

k=

Rj
(
rj, θj, θ k

j
)
εh

(
rj, θ k

j
)

+ r
jh on th

j ,

εh = S(εh, ) + r
h on ωh,n,

()

where  ≤ m ≤ N ,  ≤ l ≤ M, j ∈ E, and

r
h = Su – u on

M⋃

l=

D′
lh, ()

r
jh = βj

n(j)∑

k=

Rj
(
rj, θj, θ k

j
)[

u
(
rj, θ k

j
)

– Qj
(
rj, θ k

j
)]

–
(
u(rj, θj) – Qj(rj, θj)

)
on

⋃

j∈E

th
j , ()

r
h = S(u, ) – u on ωh,n. ()

Lemma . Let the boundary functions ϕj, j = , , , , in problem (), () satisfy conditions
(), (). Then

max
ωh,n

∣
∣r

h
∣
∣ ≤ ch, ()

where ϕ =
⋃

j= ϕj.

Proof The function S(u,ϕ) is defined as (.) in []. Keeping in mind the positioning
of the points in ωh,n, conditions (), (), and estimation (.) in [], it follows that the



Dosiyev and Celiker Advances in Difference Equations  (2015) 2015:59 Page 10 of 17

fourth order partial derivatives of the exact solution of problem (), () are bounded on DT .
Then estimation () follows from the construction of the operator S. �

Lemma . There exists a natural number n such that for all n ≥ max{n, [ln+χ h–] + },
χ >  being a fixed number,

max
j∈E

∣
∣r

jh
∣
∣ ≤ ch.

Proof The proof follows by analogy to the proof of Lemma . in []. �

Theorem . Assume that conditions (), () hold. Then there exists a natural number n

such that for all n ≥ max{n, [ln+χ h–] + }, χ >  being a fixed number,

max
Dh,n

∗
|uh – u| ≤ ch. ()

Proof Consider an arbitrary parallelogram D′
l∗ and let th

l∗j = D′
l∗ ∩ th

j . Assume that th
l∗j �= ∅,

zh is the solution of system (), and r
h, r

jh, r
h are defined in the same way as ()-() on

D′
l∗ , but are zero on Dh,n

∗ \D′
l∗ . Hence,

V = max
Dh,n

∗
|zh| = max

D′
l∗

|zh|. ()

We represent the function zh as

zh =
∑

k=

zk
h, ()

where

z
h = Sz

h + r
h on D′

l∗ ,

z
h =  on ηh

l∗ ∩ γm,

z
h =  on th

l∗j,

z
h =  on ωh,n ∩ D′

l∗ ,

()

z
h = Sz

h on D′
l∗ ,

z
h =  on ηh

l∗ ∩ γm,

z
h = r

jh on th
l∗j,

z
h =  on ωh,n ∩ D′

l∗ ,

()

z
h = Sz

h on D′
l∗ ,

z
h =  on ηh

l∗ ∩ γm,

z
h =  on th

l∗j,

z
h = r

h on ωh,n ∩ D′
l∗

()
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and

zk
h = , k = , ,  on Dh,n

∗ \D′
l∗ . ()

Hence by ()-(), z
h satisfies the system of equations

z
h = Sz

h on D′
l,

z
h =  on ηh

l ∩ γm,

z
h = βj

n(j)∑

k=

Rj
(
rj, θj, θ k

j
) ∑

k=

zk
h
(
rj, θ k

j
)

on th
lj ,

z
h = S

( ∑

k=

zk
h

)

on ωh,n,

()

where  ≤ m ≤ N ,  ≤ l ≤ M, j ∈ E, and the functions zk
h, k = , , , are assumed to be

known.
As the solution of system (), z

h, is the error function of the finite-difference solution
with step size hl∗ ≤ h of system (), (), by (), the maximum principle and Lemma .,
we have

V = max
Dh,n

∗

∣
∣z

h
∣
∣ ≤ ch. ()

Also, for the solutions of systems () and (), as the operator S has coefficients which
are nonnegative and their sum does not exceed , by the maximum principle, (), Lem-
ma ., and Lemma ., we obtain the inequalities

V = max
Dh,n

∗

∣
∣z

h
∣
∣ ≤ ch, ()

V = max
Dh,n

∗

∣
∣z

h
∣
∣ ≤ ch. ()

Now we consider the solution of v
h. Taking into consideration (), the gluing condition

of D′
l , l = , , . . . , M, and T

j , j ∈ E, for all n ≥ max{n, [ln+χ h–] + } we have the inequality

V = max
Dh,n

∗

∣
∣z

h
∣
∣ ≤ λ∗V +

∑

k=

max
Dh,n

∗

∣
∣zk

h
∣
∣, ()

where  < λ∗ < . By (), (), (), (), (), and (), we have

V = max
Dh,n

∗
|zh| ≤ ch.

Hence () follows. �

For the approximation of (), we consider the following theorem.

Theorem . Let uh be the solution of the system of equations ()-() and let an approxi-
mate solution of problem (), () be found on the blocks T

j , j ∈ E, by (). There is a natural
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number n such that for all n ≥ max{n, [ln+χ h–]}, χ >  being a fixed number, the fol-
lowing estimations hold:

For αj = , p ≥ ,

∣
∣
∣
∣

∂p

∂xp–q ∂yq

(
Uh(rj, θj) – u(rj, θj)

)
∣
∣
∣
∣ ≤ cph on T

j .

For αj = 
 , , ,  ≤ p ≤ 

αj
,

∣
∣
∣
∣

∂p

∂xp–q ∂yq

(
Uh(rj, θj) – u(rj, θj)

)
∣
∣
∣
∣ ≤ cphr/αj–p

j on T
j .

For αj = 
 , , p > 

αj
,

∣
∣
∣
∣

∂p

∂xp–q ∂yq

(
Uh(rj, θj) – u(rj, θj)

)
∣
∣
∣
∣ ≤ cph/rp–/αj

j on T
j \γ̇j,

where j ∈ E,  ≤ q ≤ p, and cp, p = , , . . . , are constants independent of rj, θj, and h.

Proof By taking estimation () into account, the proof follows by analogy to the proof of
Theorem . in []. �

5 Numerical results
Two examples have been solved in order to test the effectiveness of the proposed method.
In Example ., it is assumed that there is a slit in the domain D, thus causing a strong
singularity at the origin. The vertex γ̇ containing the singularity has an interior angle of
απ = π . The exact solution of this problem is assumed to be known. In Example .,
we consider a problem with two singularities. The vertices which contain the singularities
have interior angles of αjπ = 

π , j = , . In this example, the exact solution is not known.
After separating the ‘singular’ part in Example ., the remaining part of the domain is

covered by  overlapping parallelograms, whereas in Example ., the ‘nonsingular’ part
of the domain is covered by only two parallelograms. For the solution of the block-grid
equations, Schwarz’s alternating method is used. In each Schwarz iteration the system of
equations on the parallelograms are solved by the block Gauss-Seidel method. The carrier
function is constructed for each example, taking into consideration the boundary condi-
tions given on the adjacent sides of the vertices in the ‘singular’ parts. Furthermore, the
derivatives are approximated in the ‘singular’ parts for both of the examples.

The results are provided in Tables -, and Figures -.

Example . Consider the open parallelogram D = {(x, y) : –
√


 < y <

√


 , – – y√
 < x <

 – y√
 }. We assume that there is a slit along the straight line y = ,  ≤ x ≤ . Let γj, j =

Table 1 Results obtained for the slit problem

(h–1, n) ‖u – uh‖DNS
‖u – uh‖DS

Rm
DNS

Rm
DS

(16, 70) 5.924280× 10–5 5.191270× 10–7

(32, 70) 3.910378× 10–6 4.794595× 10–8 15.1501 10.8273
(64, 110) 2.478126× 10–7 2.558563× 10–9 15.7796 18.7394
(128, 130) 1.56560× 10–8 1.27915× 10–10 15.8286 20.0021
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Table 2 Results obtained for first derivative of the slit problem

(h–1, n) (16, 70) (32, 70) (64, 110) (128, 130)

‖ε (1)h ‖DS 7.89831× 10–7 9.78871× 10–8 4.29502× 10–9 2.94108× 10–10

Table 3 Results obtained for second derivative of the slit problem

(h–1, n) (16, 70) (32, 70) (64, 110) (128, 130)

‖ε (2)h ‖DS 3.7119× 10–6 9.736× 10–7 2.03211× 10–8 9.30597× 10–10

Table 4 Order of convergence of Example 5.2

2–m 2–5 2–6

R̃m
P1NS

16.257 15.9884

R̃m
P2NS

16.2387 16.0086

R̃m
P1S

19.3268 12.7771

R̃m
P2S

18.2604 14.0755

Table 5 Order of convergence of derivatives in ‘singular’ parts of Example 5.2

2–m 2–5 2–6

R̃m
P1S

13.8404 19.6426

R̃m
P2S

13.7489 19.6505

Figure 1 Domain of the slit problem.

, , . . . , , be the sides of D, including the ends, enumerated counterclockwise starting
from the upper side of the slit (γ ≡ γ), γ =

⋃
j= γj, and γ̇j = γj ∩ γj– be the vertices of D.

Let (r, θ ) ≡ (r, θ) be a polar system of coordinates with pole in γ̇, where the angle θ is
taken counterclockwise from the side γ.

We consider the boundary value problem

�u =  on D,

u = ϕj on γj, j = , , . . . , ,
()

where ϕj is the value of the function v(r, θ ) = .r/ sin θ
 + .r/ sin θ

 + r cos θ +
.r cos θ + θ on γj.
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Figure 2 Approximate solution (a) and exact solution (b) of ∂u
∂x , respectively, using polar coordinates.

Figure 3 Approximate solution (a) and exact solution (b) of ∂2u
∂x2 , respectively, using polar coordinates.

Figure 4 Domain of the problem with two
singularities.
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Figure 5 ∂2Uh
∂x2 in ‘singular’ part P1

S shown by (a) and in P2
S shown by (b).

As ϕ = x + .x + π and ϕ = x + .x, we obtain the carrier function in the form

Q(r, θ ) = θ + 
(
ξ(r, θ ) + ξ(r, π – θ )

)

+ .
(
ξ(r, θ ) + ξ(r, π – θ )

)
,

where ξ(r, θ ) = r((π – θ ) cos (π – θ ) + ln r sin (π – θ ))/π and ξ(r, θ ) = r((π –
θ ) cos (π – θ ) + ln r sin (π – θ ))/π . The following notation is used in the table of re-
sults. Let D′

l , l = , , . . . , , be the open overlapping parallelograms, DNS =
⋃

l= D′
l be the

‘nonsingular’ part, and DS = D\DNS denote the ‘singular’ part of D (see Figure ). In Table ,
the values are obtained in the maximum norm of the difference between the exact and the
approximate solutions, for the values of h = –k , k = , , , , and n, which is the number
of quadrature nodes on Vj. The order of convergence, Rm

D = ‖v–v–m ‖D
‖v–v–(m+) ‖D

has also been in-
cluded. We also present the error obtained between the derivatives of the exact and the
block-grid solutions ε

()
h = r/( ∂u

∂x – ∂Uh
∂x ) and ε

()
h = r/( ∂u

∂x – ∂Uh
∂x ), in the maximum norm,

in Tables  and , respectively. Figures  and  illustrate the shapes of the derivatives ∂u
∂x

and ∂u
∂x of the approximate (a) and the exact (b) solutions. These figures also demonstrate

the highly accurate approximation of the derivatives.

Example . Let P be the open parallelogram P = {(x, y) :  < y <
√


 , – y√

 < x <  – y√
 }, let

γj, j = , , , , be the sides of P, including the ends, enumerated counterclockwise starting
from left (γ ≡ γ, γ ≡ γ), γ =

⋃
j= γj, and γ̇j = γj ∩ γj– be the vertices of P. We look at a

problem with two corner singularities at the vertices γ̇ and γ̇, where αjπ = 
π , j = , .

The two ‘singular’ corners of P are covered by sectors and these areas are denoted by Pi
S ,

i = , , and two overlapping parallelograms cover the ‘nonsingular’ part of the domain,
denoted by Pi

NS , i = ,  (see Figure ).
We consider the boundary value problem

�u =  on P,

u =  on γj, j = , , ()

u =  on γj, j = , .
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The carrier functions constructed for each singularity are Q(r, θ) =  – θ
π

and
Q(r, θ) = θ

π
. We have checked the accuracy of the obtained approximate results uh by

looking at the order of convergence using the formula R̃m
P = ‖u–m –u–m+ ‖P

‖u–m– –u–m ‖P
, which corre-

sponds to , for the pairs (h, n) = (–, ), (–, ), (–, ), (–, ). The results are
presented in Table . Moreover, ∂u

∂x has been approximated in the ‘singular’ part, where u
is the unknown exact solution of problem (). The results are presented in Table  and
illustrated further in Figure .

6 Conclusion
A fourth order square and hexagonal grid version of the block-grid method, for the so-
lution of the boundary value problem of Laplace’s equation on staircase polygons, with
interior angles αj ∈ { 

 , , 
 , }, is extended for the polygons with interior angles αjπ ,

αj ∈ { 
 , 

 , , }, by constructing and justifying the block-hexagonal grid method. Moreover,
the smoothness requirement on the boundary functions away from the singular vertices
(outside of the ‘singular’ parts) is lowered down from the Hölder classes C,λ,  < λ < ,
as in [], to C,λ,  < λ < , which was proved for the -point scheme on square grids (see
[, ]).

The proposed version of the BGM can be applied for the mixed boundary value problem
of Laplace’s equation on the above mentioned polygons. Furthermore, by this method any
order derivatives of the solution can be highly approximated on the ‘singular’ parts, which
are difficult to obtain in other numerical methods.

This method can also be used for the solution of the biharmonic equation by represent-
ing the problem with two problems for the Laplace and Poisson equations.
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