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Abstract
Asymptotic properties of solutions of a difference equation of the form

Aan = an(l’),Xg(n)) + bn

are studied. We present sufficient conditions under which, for any polynomial ¢(n) of
degree at most m - 1 and for any real s < 0, there exists a solution x of the above
equation such that x, = ¢@(n) + o(n°). We give also sufficient conditions under which,
for given real s < m -1, all solutions x of the equation satisfy the condition

xp = @(n) + o(n*) for some polynomial ¢(n) of degree at most m - 1.
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1 Introduction
Let N, Z, R denote the set of positive integers, the set of all integers and the set of real
numbers, respectively. For p,k € Z,let N(p) = {p,p+1,...}, N(p, k) = {p,p + 1,..., k}.

Let m € N(1). In this paper we consider the difference equation of the form

A"xy = ayf (1, %6 () + bu, (E)
anb, €R, f:NxR—>R, c:N—=>7Z, limo (1) = oco.

By a solution of (E) we mean a sequence x : N — R satisfying (E) for all large n. We denote
the space of all sequences x: N — R by SQ. We denote the Banach space of all bounded
sequences x € SQ with the norm ||x|| = sup{|x,| : » € N} by BS. If x, y in SQ, then xy denotes
the sequence defined by pointwise multiplication xy(n) = x,7,. Moreover, |x| denotes the
sequence defined by |x|(n) = |x,| for every n. We use the symbols ‘big O” and ‘small 0’ in
the usual sense, but for a € SQ, we also regard o(a) and O(a) as subspaces of SQ. More
precisely, let o(1) = {x € SQ : x is convergent to zero}, O(1) = {x € SQ : x is bounded}, and
for a € SQ, let

o(a) =ao(l) = {ax 1x € 0(1)}, O(a) =a0() = {ax 1x € O(l)}.

For m € N(-1), let Pol(m) denote the space KerA™*!, i.e., the space of all polynomial se-
quences of degree at most m. Now we can define asymptotically polynomial sequences.
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We say a sequence x € SQ is asymptotically polynomial of degree at most m if
x € Pol(m) + o(n’)

for some s € (—oo, m]. Note that if £,s € R, then the condition o(#°) C o(#n?) is equivalent
to s < t. Hence Pol(m) + o(#*) C Pol(m) + o(n?) if s < ¢t. In particular if s < 0, then Pol(m) +
o(n*) C Pol(m) + o(1) and the inclusion is proper. Note also that if kK € N(0,7) and s €
(—00, k], then x € Pol(m) + o(»°) if and only if

1

Xy = Cg™ + Cpt”" o+ it + o(ns)

for some fixed constants ¢,,, ..., cx. For k € N(1), we use the factorial notation
P =nn-1)---(n-k+1) withn® =1.

The integer part of real number ¢ is denoted by |£].

The purpose of this paper is to study the asymptotic behavior of solutions of equation
(E). In Section 2 we present some preliminary results. Main results appear in Sections
3 and 4. We establish sufficient conditions under which, for some natural k and for any
¢ € Pol(m—1) such that g oo = O(1*), there exists a solution x of (E) such that x = ¢ + o(°).
We also give sufficient conditions under which all solutions are asymptotically polyno-
mial. The proofs of main theorems are based on the Schauder fixed point theorem (The-
orem 3.1) and on the discrete Bihari-type inequality (Theorem 4.1).

Asymptotically polynomial solutions appear in the theory of both differential and differ-
ence equations. Especially in the theory of second-order equations, the so-called asymp-
totically linear solutions, i.e., asymptotically polynomial solutions of degree at most one,
are considered. Asymptotically linear solutions of differential equations are considered,
for example, in papers [1-11]. A historical survey of this topic can be found in [12]. The
asymptotic linearity of a solution x, called in some papers ‘property (L), usually means
(passing over some additional properties of a derivative) one of the following two condi-
tions:

x(t)=at+b+o(1) or x(t)=at+o(t).

In [9] and [10] the condition of the form x(¢) = at + o(t%) for some d < (0,1) is also consid-
ered.

Asymptotically polynomial solutions of differential equations of higher order appear, for
example, in papers [13-17]. In [14], Naito presented necessary and sufficient conditions
under which some neutral differential equation of order m possesses a solution x such
that

x(t)

tlim ra =a, forsome fixedk e N(1,m—-1)andaecR.
—00

Note that the condition lim,_, o x(£)/£X = a can be written in the form x(¢) = at* + o(£X).

In [17], Hasanbulli and Rogovchenko obtained sufficient conditions under which every
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nonoscillatory solution x of some neutral differential equation of order 1 has the property

lim &

t—o0 tm-1

=acR, ie,x(t)=at™+ o(t”’_l).

In [15], Philos, Purnaras and Tsamatos presented sufficient conditions under which, for
given m € N(1) and k € N(0, m — 1), every solution of the equation " (£) = f(¢, x(¢)) fulfills
the condition x(¢) = ¢y + ¢1t + - - - + cxt* + o(1). Moreover, they obtained sufficient condi-
tions under which, for every polynomial function ¢ of degree at most m — 1, there exists a
solution x of this equation such that x(¢) = ¢(¢) + o(1).

Asymptotically linear solutions of difference equations are studied, for example, in pa-
pers [18—22]. Asymptotic linearity, similarly as in the continuous case, usually means one
of the following two conditions:

x,=an+b+o(l) or x(n)=an+on).

Asymptotically polynomial solutions of difference equations of higher order appear, for
example, in papers [23—30]. In [25], Popenda and Drozdowicz presented necessary and
sufficient conditions under which the equation A™x, = a,f(x,) has a convergent solution
(i.e., a solution that is asymptotically polynomial of degree zero). In [26], Zafer obtained
sufficient conditions under which the equation A™x, = F(n,%,,) + b, has a solution x

) = g e R, ie., x, =an™ Y + o(n”V). It is easy to see that the

such that lim,_ o x,,/n"
last condition is equivalent to x, = an’™ ! + o(#™!). In [28] sufficient conditions under
which, for any ¢ € Pol(m — 1), there exists a solution x of the equation A™x,, = a,f(x,,) + b,
such that x, = ¢(n) + o(1) are presented. In [30] sufficient conditions under which every
solution x of the equation A™x, = a,,F(n,%q()) + b, has the property x, = ¢(#n) + o(1) for
some ¢ € Pol(m —1) are presented. Moreover, sufficient conditions under which, for every
¢ € Pol(m — 1) there exists a solution x of this equation such that x, = ¢(n) + o(1), are

presented.

2 Asymptotically polynomial sequences

In this section we obtain some technical results which will be used in the next sections. The
solutions of ‘the simplest’ difference equation A™x,, = 0 are the polynomial sequences. In
Theorem 2.1, which is the main result of this section, we show that if a € SQ is sufficiently
‘small’ then the solutions of the ‘equation’ A™x, = O(a) are asymptotically polynomial se-
quences. This result will be used in the proofs of our main Theorems 3.1 and 4.1. Lem-
mas 2.1, 2.2 and 2.3 are used in the proof of Theorem 2.1, Lemma 2.4 is used in the proof
of Theorem 2.2 and Lemma 2.5 is used to justify an important example (see Remark 4.1
and Example 4.2).

Lemma 2.1 Assume that s € (-1,00), m € N(1) and A"x, = o(n®). Then x,, = o(n**").
Proof Induction on m. Let m = 1. Using de 'Hospital theorem, we obtain

) Ans+1 ) (ﬂ + 1)s+1 _ ns+1 ) (1 + n—l)s+1 -1
lim lim = lim

n—oo 1S n—00 n-lpstl n—00 n-l
S+ DA+ (-n72)
= lim

n—00 —n2

=s+1.
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So, by the assumption Ax = o(#*), we obtain

Ax, . Ax, . Ax, . nt 0
=lim =lim — lim —

lim T I T = =0.
Anst n Antt nt Anst s+1

Since s > -1, the sequence (n**!) is increasing to infinity. By the Stolz-Cesaro theorem, we
obtain x, = o(#°*!). Hence the assertion is true for m = 1. Assume that it is true for some
m > 1, and let A", = o(#°*). Then A" Ax, = o(»n®), and by an inductive hypothesis, we
get Ax, = o(n**). Hence, by the first part of the proof, we obtain x,, = o(#**""*1). The proof

is complete. g

For k € N(0), n € N(1), let

Sk_(n+k—1) _nn+l)---(n+k-1) (n+k-1)W

ne k k! k!

Lemma 2.2 Assume that m € N(1), and let the series 3 " x,, be absolutely convergent.
Then there exists exactly one sequence z such that z = o(1) and A"z = (-1)"x. The sequence
z is defined by

2 § : 2 : Kig = § i +1 xVH'I z :Sk—n+lxk
i1=niy= Im=im-1 k=n

Moreover,

o0
FARS Zk’”’llxkl for any n e N(1).
k=n

Proof The first assertion is an immediate consequence of Lemma 4 in [31]. The second

assertion follows from the inequality s>}, | < k", O

Lemma 2.3 Assume that u is a positive and nondecreasing sequence, m € N(1) and
oo
an‘lunlanl < 00.
n=1

Then there exists a sequence w € o(u™) such that A"w = a.

Proof Since u is positive and nondecreasing, we have Y >, " !|a,| < co. By Lemma 2.2,
there exist sequences x,z € o(1) such that A”x = (-1)"a and A"z = (-1)""|ua|. Moreover,

using Lemma 2.2, we obtain

-1 -1 -1 -1
tntn] = |7 tntn + Sy nlpir + -+ | <SP lan] + Sy ul @] + -

-1 -1 -1
= S;n Un|an| +5;n Ups1|@nia| + Sg" Uni2|@ni2| + -+ - = 2, = o(1).

Hence x = o(#7!), and we can take w = (-=1)"x. a
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Theorem 2.1 Assume that m € N(1), s € (—oo,m — 1], A"x € O(a), and

oo

Z "1, < oco.

n=1

Then x € Pol(m —1) + o(#®).

Proof Assume that s < 0. Since A”x € O(a), we have Y n" 17| A"x,| < co. Let u, = n™*.

By Lemma 2.3, there exists a sequence w = o(#*) such that A”w = A”x. Then
x—-weKerA” =Pol(m-1) and x=x-w+w e Pol(m-1)+o(r’).

Let s € (0,m —1]. Choose k € N(1,m — 1) such that k —1 <s < k. Then

oo
Z "KLk | AT ) < o0,

n=1

and by Lemma 2.3 there exists w = o(#*¥) such that A”*w = A"x. Choose z € SQ such

that A*z = w. Since s — k > -1, so by Lemma 2.1, z = o(n*). Moreover,
A"z = A" * ARz = ARy = ATy,
Hence x = x — z + z € Pol(m — 1) + o(n*). The proof is complete. O

Lemma 2.4 Lets € R and n € N(2). Then

Anf = i (/S() .

k=1

Proof If |x| <1, then (1 +x)* = )2, (z)xk. Hence

ncAn’ =n*((n+1)° —n') = (1 + %)S —1= i (2)71"( —1= i (Z)n—k,
k=0 k=1
and we obtain the result. |
Theorem 2.2 Ifm € N(1) and s € R, then
A" = s s o(ns_m) = O(ns_"’). 1)

Proof First we show, by induction on 1, that there exists a sequence ¢ such that
oo
A" = sy Z an’ k. 2)
k=m+1

For m =1 this assertion follows from Lemma 2.4. Assume it is true for some m > 1. By

Lemma 2.1 and by an inductive hypothesis, we obtain sequences ¢/, b, &', b, ¢ and c such
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that
o
m+l_s _ m_s _ r_s—k m) S—m ’ s—k
A" = AA"n = +Zc An +chAn
k=m+1 k=m+1
oo o0
- S(m) ((S _ m)ns—m—l + Zbkns—m—k + Z Ck - —k—1 + Z bt k—/)
k=2 k=m+1
o0 o0
_ S(m+l)ns—m—1 " Zb;(/ns—m—k + Z C;;ns—k—l
k=2 k=m+1
0
_S(m+1)ns—m—1+ Z ;(/ + Z Ck 11’1 m+1 e Z C/<Vl
k=m+2 k=m+2 k=m+2
Hence we obtain (2). The assertion (1) is an easy consequence of (2). O

Lemma 2.5 Assume thats,a € R and m € N(-1). The following conditions are equivalent:
1) (n“) € Pol(m) + o(ns), (2) a<s or aeN(0,m).

Proof If a < s, then (n”) € o(n*) C Pol(m) + o(n®). If a € N(0, m), then
(rz“) € Pol(m) C Pol(m) + o(ns).

Assume that a > s and a ¢ N(0, m). Obviously, (n*) ¢ o(n*). Hence the assumption (1) €

K+ o(n*) +

Pol(m) + o(n®) implies the existence of a nonzero constant ¢ such that n* = cn
o(n*) for some k € N(0, m). If k > a, then dividing by #¥, we obtain o(1) = ¢ + o(1), which is
impossible. If k < a, then dividing by n*, we have 1 = o(1), which is impossible too. Hence,

in this case, (n*) ¢ Pol(m) + o(#*). The proof is complete. O

3 Asymptotically polynomial solutions

In this section we consider the first issue of the Abstract. In Theorem 3.2 we establish
sufficient conditions under which, for any ¢ € Pol(m — 1) and for any real s < 0, there
exists a solution x of (E) such that x = ¢ + o(#*). However, the main result of the section
is more general Theorem 3.1 in which we establish sufficient conditions under which, for
some natural k and for any ¢ € Pol(# — 1) such that ¢ o o = O(rX), there exists a solution
x of (E) such that x = ¢ + o(#*). In the second part of the section (Theorems 3.3, 3.4 and
Corollary 3.1), we present some consequences of Theorem 3.1.

Theorem 3.1 generalizes Theorem 2 of [28]. The method of the proof of Theorem 3.1
shows certain similarities to the method used in the continuous case in the proof of The-
orem 1 of [15].

In this section we regard N x R as a metric subspace of the plane R2. Moreover, we
assume a,b € SQ, m € N(1), s € (—o00,0] and

[e¢]

o0
Z " ay,| < oo, Z "B, < 0. (3)
e

n=1
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Theorem 3.1 Assume that k € N(0), g : [0, 00) — [0, 00) is continuous, f is continuous and

t
[f(n, t)| §g(}|1—i) for (n,t) e NxR. (4)
Then for any ¢ € Pol(m — 1) such that ¢ o o = O(n*), there exists a solution x of (E) such
that
xX=¢+ o(ns).

Proof Let x be a solution of equation (E), and let ¢ € Pol(m — 1), ¢(o (1)) = O(1*). Let us
denote y, = x, — ¢(n). Then A"y, = A"x, and equation (E) takes the form

Amyn = dr(f(n:ya(n) + ¢’fr(n)) + bn' (E%)

Hence, we have to prove that equation (E*) has a solution y such that y = o(n*). Let ny =
min{n € N:o (k) > 1 for all k > n}. For y € SQ, we define y and y by

— | Yoo + Pomy forn=ny,

Vo =a,f(n,y )+ b,
"o for 11 < g, In = anf (1,,)

Let T = {y € SQ: |ly|l < 1}. Since ¢(o(n)) = O(#*), there exists a constant L such that
(3,/n*) < L for y € T. Hence, by the continuity of g, there exists a constant M > 1 such
that g(|y, |/ n*) < M for every y € T and every n. Moreover,

5al < Mlau| +1bnl < M(|an + |bal) (5)

for every y € T and every n. Let

oo
dn =M 570 (141 + 1By “

j=n

Choose p such that p > ng and d,, <1 for n > p. Let
S={z€SQ: |z, <d, forn>pandz,=0forn<p}.

Then S C T and S is a convex subset of the Banach space BS. Moreover, as in the proof of

Theorem 1in [30], one can show that S is compact. If y € T, then [y| < M(|a| + |b|). Hence,
by (3) we have Y o2, n""(y,| <co. Fory € T, let

H) ) = | V" Ensfudy fornzp,

0 forn<p.

Then, for y € S and n > p, by (5) and (6), we get

o]

m-1 ~
E :Sj—m—lyi

j=n

|H»)(n)| =

o0
m-1 |~
<Y sl <d.
j=n
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Hence H(S) C S. Let ¢ > 0. Choose &; > 0 and &, > 0 such that & + &y = €. There exists
q > p such that 2d, < &; for n > g. Choose « > 0 such that

q
-1
o Zsj”fn+l|a,| <.
J=p

Lety € S, and letj € {p,...,q}. By the continuity of f at a point (j,7)), there exists §; > 0
such that [y; —s| < §; implies |[f(j,¥;) —f(j,s)| < «. Let § = min{8p, 8p+1,...,9,}, and let z € S,
"y_Z” <8. If} € {pr--wq}; then W/ _z/| = |ya(/) _Zg(j)| < 8. Hence

5) =% = |aif (.5) - aif (,7))] < |ajla

and
a a
-1 o~ o~ -1
Zs}ﬁml [y — 7| < Zsﬁn+1|aj|a < e
Jj=p Jj=p

Moreover, by (5) and (6), we have

00 00 00
1 i~ ~ —-1 |~ -1
Zsjyﬁnﬂlyj _Zil = E S}Tn+1|yj| + § :Sﬁn+1|Zj| = dq + dq < é2.
J=4 J=4

j=a

Hence

|H) - H)| = sup| HO)n) - H)(m)| = sup| 3 74, G - %)
n>p n>p j=n

[o¢] q o0
m-1 |~ m-1 |~ m-1 1~
<D oSl =B <Y s -G+ Y st -Fl <erer=e.
J=pP j=p j=a

This shows that the map H is continuous. By the Schauder fixed point theorem, there exists
a sequence y € S such that H(y) = y. Then y,, = (-1)" Z;fn sj’f;}rﬁl} for n > p. By Lemma 2.2
we obtain

Amyn :5;n = ﬂnf(n:yn) +b, = ﬂnf(nvyo(n) + (pa(n)) +by,
for n > p. Hence y is a solution of (E*). Moreover, by (5) we have
|Amyn| = Wn' SM(|LZ”| + |bn|)

Hence A”y = O(|a| + |b]), and by Theorem 2.1 we obtain y € Pol(m — 1) + o(#°). Moreover,
s <0and y=o0(1). Hence y = o(n®). The proof is complete. d

Remark 3.1 Let k; denote the greatest natural number such that for every polynomial
@ € Pol(ky), there exists a solution x of (E) such thatx = ¢ + o(1). Note that ifin Theorem 3.1
o (n) = n — p for some fixed integer p, then the condition ¢ (o (1)) = O(#*) takes the form
@(n) = O(r*). Hence k; = min(k, m — 1). But if the sequence o is of another form, then k;
may be greater than k. In the following example, we have k =1 and k; = 2.
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Example3.1 Letm=3,5=0,k=1,0(n) = |/n), b, =0, g(x) =x,

X ~ 6no (n)
Joux) =20 s e 3

Then the conditions of Theorem 3.1 are satisfied and equation (E) takes the form

6LVl )
(W) +1)(n+3)® W

Agxn =

7)

Note, that for a polynomial ¢, the condition ¢(|+/#]) = O(#) is equivalent to the condition

¢ € Pol(2). Thus, by Theorem 3.1, for any ¢ € Pol(2), equation (7) has a solution (x,) such

that x,, = ¢, + o(1). One such solution is x, = n” + %

Theorem 3.2 Assume that o (n) = O(n), g : [0,00) — [0, 00) is continuous, f is continuous

and
Lf(n,t)| Sg(%) for (n,t) e N x R.

Then, for any ¢ € Pol(m — 1), there exists a solution x of (E) such that x = ¢ + o(n®).

Proof Let ¢ € Pol(m —1). Choose M, K such that |¢(n)/n™!| < M and o (n)/n < K. Then

< MK™ 1,

‘w(a(n)) _ ‘(ﬂ(a(n))o(n)’"‘1
nm—l - o (n)m—lnm—l

Hence ¢ o o = O(n"!). Now the assertion follows from Theorem 3.1.

We say that a function f : N x R — R is locally equibounded if for every ¢ € R, there
exists a neighborhood U of ¢ such that f is bounded on N x U. Obviously, every bounded
function f : N x R — R is locally equibounded. O

Example 3.2 Let fi(n,t) = t and f5(n, £) = n. Then f; is continuous, unbounded and locally

equibounded, f; is continuous but not locally equibounded.

Example 3.3 Letg:R — R be continuous, and let f(n, ) = g(¢). Then f is continuous and
locally equibounded. If gy, ...,g,-1 : R — R are continuous and f(#,£) = gy modp(t), then f

is continuous and locally equibounded.

Example 3.4 Assume that g,/: R — R are continuous, o, 8 € SQ are bounded, and let
f(n,t) = ang(t) + Buh(t). Then f is continuous and locally equibounded.

Theorem 3.3 Ifc € R, U is a neighborhood of ¢ and the function f|N x U is bounded and
continuous, then there exists a solution x of (E) such that x = ¢ + o(n*). Moreover, if f is
continuous and locally equibounded, then for any ¢ € R, there exists a solution x of (E) such

that x = ¢ + o(n®).
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Proof Choose o, B € R such that @ <c< 8 and [, 8] C U. Let

fn,a) fort<a,
fi:NxR—R, filn,t) =1 f(n,8) forte(a,p),
f(n,B) fort>p.

Then f; is continuous and bounded. Choose M > 0 such that |fi(n,t)| < M for any (#,£).
Let g: [0,00) — [0,00), g(t) = M, and let k > m — 1. Then

Lfl(n, t)| <M :g(ltl/nk)
for any (n,t) € N x R. Hence, by Theorem 3.1, there exists a solution x of the equation
A%, = anfi (1, %0(2)) + by

such that x = ¢ + o(#*). Since o(n) — 00, %,(n) € (@, B) for large n. Hence fi(n,%5(n)) =
f(n,%5(n)) for large n. Therefore x is a solution of (E). The second assertion is an easy con-
sequence of the first one. O

Theorem 3.4 Assume that o(n) = O(n?) for some p > 0, A € (0,00), ¢ € Pol(m — 1) and
that at least one of the following conditions is satisfied:

(1) f is continuous and bounded on N x [, 00) and ¢(n) — oo,

(2) f is continuous and bounded on N x (—o00,A] and ¢(n) — —o0,

(3) f is continuous and bounded on N x ((—o0o,—A] U [A, 00)) and ¢ is nonconstant.
Then there exists a solution x of (E) such that x = ¢ + o(n®).

Proof Assume (1) is satisfied. Let

f(m,) fort<ax,

fi:NxR—-R, Siln 1) = f(n,t) fort>A.

Then f; is continuous and bounded. Choose M > 0 such that |fi(n, )| < M for any (n, ).
Let g : [0,00) — [0,00), g(t) = M, and let k > (m — 1)p. Then ¢ o o = O(r¥) and

A t)| <M :g(ltl/nk)
for any (n,t) € N x R. Then, by Theorem 3.1, there exists a solution x of the equation
A"x, = anfi(n, X6 (n) + by,

such that x = ¢ + o(n°). Moreover, x,(,) > A for large n. Therefore x is a solution of (E). The

assertion (1) is proved. (2) is analogous to (1) and (3) is a consequence of (1) and (2). [

Corollary 3.1 Assume that o (n) = O(n?) for some p >0, c e R, 1 € (0,00), ¢ € Pol(m - 1),
g:R — R and that at least one of the following conditions is satisfied:
(1) g is continuous on some neighborhood of ¢ and ¢ = c,

(2) g is continuous and bounded on [, 00) and ¢(n) — oo,
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(3) g is continuous and bounded on (—oo, L] and ¢(n) — —oo,
(4) g is continuous and bounded on (—0o, —\] U [A,00) and ¢ is nonconstant.
Then there exists a solution x of the equation

A"%y = ang(Xo(n)) + bn (E1)
such that x = ¢ + o(n°).
Proof This is a consequence of Theorems 3.3 and 3.4. 0
Example 3.5 Assume that (-1)"a, >0, b, =0,s=0, c € R and

1 fort<g,

£) =
g 0 fort>c.

By Corollary 3.1, for every nonconstant polynomial ¢ € Pol(m — 1), there exists a solution
x of (E1) such that x = ¢ + o(1). Moreover, by Corollary 3.1, for every real ¢; # c, there exists
a solution x of (E1) such that x = ¢; + o(1). We will show that a solution of (E1), which is
convergent to ¢, does not exist. Assume that 7 is even. Then a,, > 0. Let x be a solution of
(E1) such that limx,, = c. Then

AN %, = A% = a,g (%o () = O

for large n. Moreover, A" x, = A" (¢ + o(1)) = o(1). Hence A" x,, < 0 for large n. Thus
AA" 2%, < 0 for large # and so on. After (m — 1)-steps, we obtain Ax, < 0 for large 7.
Choose p such that Ax,, < 0 for n > p. Then x,, > cfor n > p.If x,,, = c for some m > p, then
x, = ¢ for every n > m and A"x, = 0 for n > m. On the other hand, if o (1) > m, we obtain
A"%, = ang(Xo(n)) = ang(c) = a, > 0, which is impossible. Hence x,, > ¢ for n > p. Choose
p1 such that o (n) > p for every n > p;. Then g(x, () = 0 for n > p;. Hence A™x, = 0 for
n > p1, and there exists a polynomial sequence ¢ € Pol(m — 1) such that x, = ¢(n) for
n > p1. But the only polynomial ¢ € Pol(m — 1) which satisfies the condition ¢(#n) = ¢ + o(1)
is the constant polynomial ¢(#) = c. Hence we again obtain x, = ¢ for large n, which is
impossible. Similarly, if 7 is odd, one can show that a solution of (E1), which is convergent
to ¢, does not exist.

4 Approximations of solutions

In this section we consider the second issue of the Abstract. In Theorem 4.1 we establish
sufficient conditions under which, for given real s < m — 1, all solutions x of (E) satisfy
the condition x = ¢ + o(#*) for some ¢ € Pol(m — 1). In the second part of the section, we
present some consequences of Theorem 4.1. Moreover, in Example 4.2 we show that the
assertion of Theorem 4.1 is in some sense optimal.

Theorem 4.1 generalizes Theorem 4 of [26]. The way Theorem 4.1 is proved partially
resembles the methods used in the continuous case in the proofs of Theorem 1 in [5] and
Theorem 2 in [15].

In this section we assume a,b € SQ, m € N(1), s € (—oo, m — 1] and

[e¢]

o0
Z " ay,| < oo, Z "B, < 0. (8)
n=1

n=1
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Lemma 4.1 Assume that ¢ : [0,00) — [0,00) is a continuous and nondecreasing function
such that ¢(t) > 0 for t > 1 and floo @(s) ™ ds = co. Let ¢ > 0 and let a, u be sequences of
nonnegative real numbers such that

o0 n-1
E a,<o0 and u,<c+ E anp(u,) foranyn.
n=1 i=1

Then the sequence u is bounded.
Proof The assertion is an easy consequence of Theorem 1 in [32]. g
The next lemma can be found in [33].

Lemma 4.2 Let (a,) be a sequence of real numbers, and let p,m € N(1), n € N(p + 1). Then

n-1 ipy-1 i1 n-1 (1 — k — 1)L

E E E a; = E —ar.
— 5 m—1)!
im=pim-1=p  01=p k=p ( )

Theorem 4.1 Assume thato(n) <n,g:[0,00) — [0,00) is nondecreasing and continuous,

f is continuous, and assume that

It] % gy
(m 1) < (—> orall (n,t) e N x R, / — =00 9)
lf ’ ¢ nm1 f 1 g(®)
and x is a solution of (E). Then x € Pol(m — 1) + o(n®).
Proof Assume that x is a solution of (E). Then, by (9) for large #n, we have
- %0 ()|
| A", | < |an|g( g ) +1byl. (10)

From the identity x,, = x, + Y77 Ax;, we get |x,| < |x1| + Y75 |Ax|. Similarly, |Ax;| <
|Axy| + Z;:} |A%x;|. Hence we have

n-1 i1 n-1 i1
| < | + Z(mxu + Z|A2x,-|) < Z(w +|Ax | + Z|A2x,-|).
i=1 j=1 i=1 j=1
Analogously, |A%x;| < |A%x] + ’,‘(_:11 |A%x;| and then

| < }:Z_ll(w + A% + i(wm + jika!))

j=1 k=1

n-1 i-1 j-1
< (|x1|+|Ax1|+|A2x1‘+Z|A3xk|),
-1

i=1 j k=1

and so on. After m — 1 steps, we get

n-1 iyu-1 iz-1 in-1
x| < Z Z ---Z(Ixﬂ +|Axy| + -+ |A”’x1| +Z|A’”xi1|).

im=lim_1=1  ip=1 i1=1
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Let A = |x1| + |Axy| + - - - + |A"x;|. By Lemma 4.2 we obtain
n-1

(n— k 1)m=2 o1 .
o] < Z —2)! ( +Z|A x1|)
j=1

k=1
Using the inequality

(n—k-1)m=2
(m - 2)!

m-2

we have |x,| <n™ (A + > "|A™x;|). Hence

|xa(n| |xan <A+ Z|Amx|<A+Z|Amxl|

nm—l 0— (n)m 1 —

5A+§(|a,| <|]0(1)|) +|b; |) <B+Z|“;|g(|x“(’ |>,

Jj=1 Jj=1

where B=A + Z * 1b;|. By Lemma 4.1, the sequence (|x4(,)|/#™") is bounded. Hence, by
(10) and the continuity of g, there exists a constant M > 1 such that

| A", | < anM + 1b,] < M(jay| + b))

for all large n. Hence A”x = O(|a| + |b]), and from Theorem 2.1, we obtain x € Pol(m —1) +

o(#*). The proof is complete. O

Corollary 4.1 Assume that o(n) < n, a € (0,1], p > a(m — 1) and x is a solution of the

equation

i g Fowl®
n — “%n

+b,.
n? "

Then x € Pol(m —1) + o(#®).

Proof Letg:[0,00) — [0,00), g(¢) = t* and f(n,t) = |¢t|*/n”. Then

e _ | el \" 2l
o] =m0 = 55 < 2055 - () =)

Hence the assertion follows from Theorem 4.1. O

Corollary 4.2 Assume that o(n) <n,a € (0,1], p > a(m - 1),

o0 (e e}
Z WP g, < 00, Z Wb, | < 0o
n=1 n=1

and x is a solution of the equation A" x,, = a,|Xs)|* + b,. Then x € Pol(m — 1) + o(#®).

Page 13 0of 16
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Proof 1f a, = na,, then ) 2 n”"=¥|a/ | < 0o and « is a solution of the equation

%6 () |*
A%, =a, ol b,,.
np

Hence x € Pol(m — 1) + o(n*) by Corollary 4.1. O

Example 4.1 Letm>2,s=1,

f(n,X) =0, g(x) =1, a, =0, bn — (_l)m—l (Wl - 1)! )
(n + m)z

Then the conditions of Theorem 4.1 are satisfied and equation (E) takes the form

(m—-1)!

m _(_1ym-1
A"x, = (-1) T

(11)
The general solution x of (11) can be written in the form

2

n-1 1
X = Cp " 4 Cpat™ 2+ vt Co + E =
k=1

Using the formula Zj k™' =1Inn + o(1) = o(n), we obtain x € Pol(m — 1) + o(n). Note that
x ¢ Pol(m —1) + o(1).

Remark 4.1 If the assumptions of Theorem 4.1 are satisfied, then every solution of (E) is

an element of the space
Pol(m —1) + o(ns).

We will show that for every ¢ > 0, there exist sequences 4, b and a function f such that the

assumptions of Theorem 4.1 are satisfied and equation (E) has a solution x such that
x ¢ Pol(m —1) + o(ns_g).

Example 4.2 Letm e N(1),0(n)=n,¢>0,0<r<g,s€(-oco,m—1],s— 1 ¢ N(0), b, =0,
B=s—hpu=m-s—1+A10<a<r/u,x,=n,

g(t) =1, f(n,t) :g<n|”tl|_1> = (HZL)& and a, = i A",
Since 0 < <1, we have [ g7(t) dt = 0o. By Lemma 2.5,
x€Pol(m—1)+o(n’) and «x ¢ Pol(m—1)+o(n’*).
By Theorem 2.2,

nm—s—lan — nm—s—lnau Amnﬁ — nm—s—1+auo(nﬂ—m) — O(nauﬂﬂ—s—l).
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Moreover, it + B—s—1< A+ B —s—1=-1. Hence n”""'a, = O(n®) for some 8§ < —1.

Therefore Y o) n"*7|a,| < co. Moreover,

anf (n,%,) + by, = n** A" nP (nl_’”n‘g)a = prl=me B Ay B O A B = AT,

Hence « is a solution of the equation A”x,, = a,f(n,x,) + b,.
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