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1 Introduction

Fractional differential equations have been increasingly used for many mathematical mod-
els in probability, engineering, physics, astrophysics, economics, etc., so the theory of frac-
tional differential equations has in recent years been an object of investigations with in-
creasing interest [1-15].

Most of the previous research on the fractional differential equations was done provided
that the operator in the linear part is the infinitesimal generator of a strongly continuous
operator semigroup, a compact semigroup, or an analytic semigroup, or is a Hille-Yosida
operator (see, e.g., [2,3,7,11,12]). However, as presented in Example 1.1 and Example 1.2 in
[15], the resolvent operators do not satisfy the required estimate to be a sectorial operator.
In [16], W. von Wahl first introduced examples of almost sectorial operators which are not
sectorial. To the author’s knowledge, there are few papers about the fractional evolution
equations with almost sectorial operators.

Moreover, equations with delay are often more useful to describe concrete systems than
those without delay. So, the study of these equations has attracted so much attention (cf,
e.g., [7,11,17-21] and references therein).

In this paper, we pay our attention to the investigation of the existence of mild solu-
tions to the following fractional differential equations with almost sectorial operators and

infinite delay on a separable complex Banach space X:

‘Diu(t) = Au(t) + f (t,u(®),u;), t€(0,T], )
11
Uy=¢ € P,
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where T > 0, 0 < g < 1. The fractional derivative is understood here in the Caputo sense.
P is a phase space that will be defined later (see Definition 2.1). A is an almost sectorial
operator to be introduced later. Here, f : [0,T] x X x P — X, and u,; : (-00,0] — X is
defined by u,(t) = u(t + 7) for T € (—00,0].

Let us recall the following definition of almost sectorial operator; for more details, we
refer the readers to [22, 23].

Definition 1.1 Let -1<y <0and 0 <w < 7. By ®2,(X) we denote the family of all linear
closed operators A : D(A) C X — X which satisfy

(1) oc(A)C S, ={ze C\ {0};]argz| < w}U {0} and

(2) for every w < ¢ < m, there exists a constant C; such that

HR(z;A)HL(X) <C;lz|” forallze C\S;.
A linear operator A will be called an almost sectorial operator on X if A € ©},(X).
Remark 1.2 Let A € ©,(X), then the definition implies that 0 € p(A).

We denote the semigroup associated with A by T'(¢). For ¢t € S%_w ={z e C\{0}; |argz| <
2

7 -wh

T() =e%(A) = 2%” / e ?R(z;A)dz,

Tg

forms an analytic semigroup of growth order 1 +y, here w <6 < u < 7 —|argt|, the integral
contour I'y := {R,€?} U {R, e~} is oriented counter-clockwise [15, 17, 23]. Moreover, T(¢)
satisfies the following properties.

(i) There exists a constant Cy = Cy(y) > 0 such that

H T(t <Cot’! forallt>0;

Moo
(i) If B >1+y, then D(AP) C 7 = {x € X;lim,_, o150 T(£)x = x};
(iii) The functional equation T'(s + ¢) = T(s)T(¢) for all s, ¢ € S%_w holds. However, it is
not satisfied for £ =0 or s = 0.

We refer the readers to [23] and references therein for more details on T'(¢).

In this paper, we construct a pair of families of operators S,(t) and 7,(¢) ((2.3)-(2.4))
associated with 7T'(¢) and use the fixed point theorem (Theorem 2.11) to study the existence
of a mild solution of Equation (1.1). We obtain the existence theorem based on the theory
on measures of noncompactness without the assumptions that the nonlinearity f satisfies
a Lipschitz-type condition, and the resolvent operator associated with A is compact. An
example is given to show the application of the abstract result.

2 Preliminaries

Throughout this paper, we set J := [0, T] and denote by X a separable complex Banach
space with the norm || - ||, by L(X) the Banach space of all linear and bounded operators
on X, and by C(J, X) the Banach space of all X-valued continuous functions on J with the
supremum norm. We abbreviate || i ||z»¢gr+) with |||lz» for any u € LP(J,R¥).
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We will employ an axiomatic definition of the phase space P from [18-21] which is a
generalization of that given by Hale and Kato [24].

Definition 2.1 A linear space P consisting of functions from R~ into X, with the semi-
norm | - || p, is called an admissible phase space if P has the following properties.
(1) Ifu:(—o0, T] — X is continuous on J and ug € P, then u; € P and u; is continuous

inte],and

[¢©)| <Mlplp, VoeP 2.1)

for a positive constant M.
(2) There exist a continuous function Ci(¢) > 0 and a locally bounded function
Cy(t) > 0in t > 0 such that

lucllp < Ci(e) sup |[u(s)|| + Ca(®)lluollp (2.2)
s€[0,t]

fort € [0,T] and u as in (1).
(3) The space P is complete.

Remark 2.2 Equation (2.1) in (1) is equivalent to ||u(¢)|| < M||us||p.
Based on the work in [15], we give the following definition.

Definition 2.3 Let W,(z) with 0 < g <1 be a function of Wright type (cf, e.g, [15])

= Z ql’lzi— - q) - Z ( Z)l)' nq) Sln(l/lﬂq) zeC.
w0 !

For any x € X, we define operator families {Sq(t)}|te59, and {7;(t)}|te5<7>1 by the semi-
group T'(t) associated with A as follows: ’ ’

[o¢]
Sy(t)x = / \I’q(O')T((th)x do, te So%fw,x eX, (2.3)
0
T,(O)x = / qa\Dq(o)T(atq)x do, te S%_w,x eX. (2.4)
0

Theorem 2.4 ([15]) For each fixed t € S% o Sq(t) and T,(¢) are linear and bounded oper-
2
ators on X. Moreover, forallt >0,-1<y <0,0<g<1,

||Sq(t)x|| <M1 x|, x€eX, 0s)
2.5
| T2@®x| < Mot 1 |x|l, xeX,

Gl Cor(
where M; = 104751*'7 and My =1 ‘21 (qy’)/).

Theorem 2.5 ([15], Theorem 3.2) Fort >0, S;(t) and T,(t) are continuous in the uniform

operator topology. Moreover, for every 7 > 0, the continuity is uniform on [T, 00).
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Remark 2.6 ([15], Theorem 3.4) Let 8 > 1+ y. Then, for all x € D(A#),

lim S,(f)x=x.
t—0;t>0 q() *

Let Bt be a set defined by
Br ={u:(-00, T] — X such that u|(_x,0) € P and ul; € C(J, X)}.

Motivated by [3, 15], when ¢(0) € D(A?) with 8 > 1 + y, we give the following definition
of a mild solution of Equation (1.1).

Definition 2.7 A function u € Br satisfying the equation

u(e) = o(2), t € (-00,0], 2.6)

Sy ()p(0) + [ (t = )T VT, (t — s)f (s, uls), us)ds, te],
is called a mild solution of Equation (1.1).

Remark 2.8 In general, since the operator S,(t) is singular at ¢ = 0, solutions to prob-
lem (1.1) are assumed to have the same kind of singularity at ¢ = 0 as the operator S,(¢).
When ¢(0) € D(A?) with 8 >1 + y, it follows from Remark 2.6 that the mild solution is
continuous at ¢ = 0.

Next, we recall that the Hausdorff measure of noncompactness x (-) on each bounded
subset €2 of a Banach space X is defined by

x(R2) = inf{e > 0; 2 has a finite e-net in X}.

This measure of noncompactness satisfies some basic properties as follows.

Lemma 2.9 ([25]) Let Y be a Banach space, and let U,V C Y be bounded. Then
(1) x(U) =0 ifand only if U is precompact;
(2) x(U) = x(U) = x(convU), where U and conv U mean the closure and convex hull of
U, respectively;
@) x(W)=x(WV)ifucv;
(4) x(UU V) <max{x(U), x(V)}
G) x(U+V)<xU)+ x(V),whereU +V ={x+y;x€ U,y e V};
(6) x(AU)=|rlx(U) forany » € R.

Definition 2.10 A continuous map Q: W C Y — Y is said to be a x -contraction if there
exists a positive constant v < 1 such that x (QU) < v - x(U) for any bounded closed subset
ucw.

Theorem 2.11 ([25]) (Darbo-Sadovskii) If U C X is bounded closed and convex, the con-
tinuous map F : U — U is a x-contraction, then the map F has at least one fixed point
inlU.
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In Section 3, we use the above fixed point theorem to obtain main result. To this end,
we present the following assertion about yx -estimates for a multivalued integral (Theo-
rem 4.2.3 of [26]).

Let 2Y be the family of all nonempty subsets of Y, and let G : [0, 4] — 2¥ be a multifunc-
tion. It is called:

(i) integrable if it admits a Bochner integrable selection g: [0,4] — Y, g(¢) € G(¢) for
ae. te€(0,h];

(ii) integrably bounded if there exists a function # € L}([0, /], Y) such that

1G@)| = sup{ligllig € G®)} <v(¢) ae.te[0,h].

Proposition 2.12 For an integrable, integrably bounded multifunction G : [0,h] — 2%,
where X is a separable Banach space, let

X (G(t)) <ml(t), fora.e tel0,h],
where m e L1([0, h]). Then x(f, G(s)ds) < [, m(s)ds for all t € [0, h].

3 Main result
Throughout this section, let A € ®},(X) with -1 <y <0,0<w < 7. We will use fixed point
techniques to establish a result on the existence of mild solutions for Equation (1.1). For
this purpose, we consider the following hypotheses.
(H1) f:] x X x P — X satisfies f(-,v,w) : ] = X is measurable for all (v,w) e X x P
and f(t,-,-) : X x P — X is continuous for a.e. ¢ € , and there exists a function
u() e LP(J,RY)(p > ;—; > é > 1) such that

“f(tr v, W)H < M(t)(l + ”W”P)

for almost all £ € J;
(H2) For any bounded sets D; C X, D, C P, there exists a nondecreasing function
n(-) € L#(J,R*) such that

X (F&D1D2) <n®(x D)+ sup x(Da(0)).

—00<7=<0

Theorem 3.1 Suppose that hypotheses (H1) and (H2) hold. Then, for every ¢(0) € D(AP)
with B > 1+ y, there exists a mild solution of (1.1) on (oo, T].

Proof Define the map F on the space Br by (Fu)|o = ¢(¢) and

(Fu)(t) = S,(t)9(0) + /0 (t—s) T, (t - $)f (s, u(s),us)ds, te€].

From Theorems 2.4-2.5 and (H1), we infer that Fu € Br.
Let x(-) : (—o0, T] — X be the function defined by

_ (1), t € (-00,0],
%t =
S;()p(0), te].
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Write u(t) = x(¢) + y(£), t € (oo, T]. It is clear that u satisfies (2.6) if and only if y satisfies
yo=0and fort e/,

y(¢) = /0 (t—s)T T (¢ - s)f(s, x(s) + ¥(s), %s + ys) ds.

Set Yo = {y € Br;y0 = 0}. For any y € Yy,

’

I5llv, = sup|y(®)] + llyoll» = sup|(2)
te] te]

thus, (Yo, || - lly,) is a Banach space.
In order to apply Theorem 2.11 to show that F has a fixed point, we let F:Yy— Y be
an operator defined by (]?y)(t) =0,t e (-00,0] and for t €/,

(]?y)(t) = /0 (t—s)T Tt - s)f(s,%(s) + y(8), % + ys) ds.

Clearly, the operator F has a fixed point is equivalent to F has one. So, it turns out to
prove that F has a fixed point.
For L > 0, let us introduce in the space Yj the equivalent norm defined as

),

Iyl = sup(e™ ()
te]
since for any ¥ € L1(J, X),

t
lim sup/ e L9y (s)ds = 0,
0

L—+00 te]

we can take the appropriate L to satisfy

t
M, Cf supf e Lt — )11 y(s) ds < =, (3.1)
0

te]

N =

where C{ = sup,.; C(2).
Consider the set

B, ={ye Yoyl <p}

here p is a constant chosen so that

—(+pqy)

o
EZZ::MZT r lp,q”M”LP'(l"'a):

_ pr-1
where b,y = (-210)7, a = Cf sup,o) 5,06 (0) | + C3 |1, Cs = sup,; Co().

Let {v"},en C B, be a sequence such that v/ — v as n — oo. Obviously, the Lebesgue

dominated convergence theorem enables us to prove that F is continuous.


http://www.advancesindifferenceequations.com/content/2013/1/327

Li Advances in Difference Equations 2013, 2013:327 Page 7 of 11
http://www.advancesindifferenceequations.com/content/2013/1/327

In what follows, we prove that F B, C B,. From (2.2), it follows that
I + yellp < I1%ellp + l1yellp
< Gi(2) sup [[FS)]| + Ca)|Zollp + Ci(2) sup [|y(s)] + D llyoll»
0<s<t 0<s<t
< Gy sup| S, (0)9(0) | + Cligll» + Cr(2) sup ly)]
te] <s<t

<a+Cf Os<ugt||y(s) H (3.2)

Moreover, we see from the Holder inequality that

—(l+pqy) ~(+pgy)

t
/0 -5 ) ds <t Pl < T 320l (3.3)

Fort €],y € B,, by (2.5), (H1) and (3.2)-(3.3), we have

|(Fno)| < /0 (= )77 To(t - 8)f (5,%(s) + ¥(s), % + ) || ds
< MZ/O (t_s)fl—qyﬂ(s)(l +a+Cf OSSI;I;SH)/(J)“) ds
<+ MC; /t(t—s)"l_‘”/u(s) sup |y(o)] ds.
0 0<o<s

Then
t

et H (]?y)(t) || <+ MC; / R (. s)’l’qyu(s)osup (e’L" ||y(o) ||) ds
0 <0<s

t
</l+ ,OMZCT/ e LEI (¢ — )19 1y (s) ds.
0

It results that IIj-:yII* < p by (3.1). Hence, for some positive number p, ]?Bp C B,.

ForyeB,,let§>0, t;,t, € (0, T] such that 0 < £ — £; <6, we get

/(; 1(1.‘1 - )T T (= $)f (5, %(s) + y(s), %5 + ;) ds
_ / ’ (t - s)q‘lﬂ(tQ - s)f(s,a_c(s) + y(s), X +ys) dsH
0

<

/0 1 [(t1 —8)1 —(ty - s)q’l]’];](tl - s)f(s,%(s) +9(s), x5 + ys) ds

+

/0 (b2 = T[Ty =) = Tyt — )] (5 56) + 5(5), % + ) ds

+ . (3.4)

/ ’ (tr =) T (s - s)f (5, %(s) + y(s), % + y5) ds

i

We will show that each term on the right-hand side of (3.4) uniformly converges to zero.
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Combining with (3.2), we have
If (6:%() + y(@), %e + y2) | < (K (@), (3.5)

where K(t) =1+ a + Cf supy_,, [1¥(s)|l.
Taking ¢, — t; and using (3.5), we conclude

/0 1 [(t1 —8)T T —(ty - s)q’l]fl(tl - s)f(s,a_c(s) +9(8), x5 + ys) ds

5]
<M, / (1= 9 = (£ = )7 (81 = )1 u(5)K (5) ds
0
-0

and

”/ 2(1,‘2 - s)q_17;(t2 - s)f(s, x(s) + y(s), xs +ys) ds”

<M, / ) (t2 =)™ (s)K (s) ds

— 0.

For ¢ > 0 small enough, noting that (2.5) and (3.5), we obtain

/ (12 = 9T [Tt = ) = To(ts = 9))f (5. (5) + 3(5), % + ) ds
0

<[ 9T -9 - Tole -9 K0 s

. / (= Talta = 9) ~ Tyt — 9]y 1K) ds

—&

1—¢
< sup [ Tylta =) =Tyt =9)| 1 - / (t2 — )7 ju(s)K (s) ds
0

s€[0,t1—¢]

" /tl (((tz_ 5)7-1 . (tp — )17 )M(S)K(S)ds.

_e \(ty —8)ar+D) ~ (f —5)alv+D)

This together with Theorem 2.5 shows that the right-hand side tends to zero as t; — 4
and ¢ — 0.

Therefore, the set {(J:E ¥)(-);y € B,} is equicontinuous.

For a bounded set 2 C Yj, we define the Hausdorff measure of noncompactness x; on

Y, as follows:

x1(Q) = sup(e‘" sup x (Q(s))),

te] s€[0,¢]
where r > 0 is a constant chosen so that

t
L:=2M, sup/ e It —5) 7 p(s)ds < 1. (3.6)
0

te]

Page 8 of 11
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Forany t €], we set

FQ)©) = {/ (t—s)T T (t - s)f (5, %(s) + y(s), % + y5) ds; y € Q}
0
We consider the multifunction s € [0, t] —o H(s),
H(s) = {(t —s)q_17;(t - s)f(s,%(s) + y(s), % +ys);y € Q}

Obviously, H is integrable, and from (2.5), (H1) and (3.5) it follows that H is integrably
bounded. Moreover, noting that (H2), we have the following estimate for a.e. s € [0, £]:

x ({(& = )T Tt = s)f (5,%(5) + y(5), %s + y5);7 € )

X (€ = 9T Ty (t = )f (5, %(s) + Qs), % + )

< Ma(e =5 1(6)(1(209) + sup x(@(0)))

o€l0,s

x (H(s))

< 2My(t - )" ""n(s) sup x(Q(0)).

o €[0,s]

Applying Proposition 2.12, we obtain

x(f<sz><t))=x( /O H(s)ds) <o, /0 (E- 9 n(s) sup x (<o) ds,

o€l0,s]

which implies

0 (F(@) = sup(e sup x(F(R)(s))

te] s€[0,¢]

t
<2M, sup/ eI (¢ — 5)"1 I (s) (e_” sup x (Q(a))) ds
0

te] o€l0,s]

<Lx(Q). (3.7)

Hence F is a x; -contraction on Y, by Definition 2.10. According to Theorem 2.11, the
operator F has at least one fixed point yin B,,. Let u(t) = %(£) + y(¢), t € (—oo, T], then u(¢)
is a fixed point of the operator F which is a mild solution of Equation (1.1). This ends the
proof. O

4 Application
Let X = L3(R?), we consider the following integrodifferential problem:

aTv(t, %) = Av(t,x) + a(t) cos(|v(t, )|) + [°_ c(t) sin(t?|v(z,%)]) dz,
t€(0,1,x€0,1], (4.1)

v(t,x) = vo(tT,%), -00<T <0,
where

A= (-in+ a)%, D(X) = w3 (R2) (a Sobolev space, see Example 6.3 in [15])

Page 9 of 11
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a(t) € LP([0,1],R") (p > g) and a(t) is nondecreasing, b > 0, ¢ : (—00,0] — R, vy : (—00,0] X
[0,1] — R are continuous functions, and ff)oo lc(T)] dt < o0.

In Example 6.3 of [15], the authors demonstrate that A € ©}(L3(R?)) for some 0 < & <
3 ansd y = —%. We denote the semigroup associated with A by T(¢) and || T(#)||rx) <
Cot 6 (Cy is a constant).

Let the phase space P be BUC(R™, X), the space of bounded uniformly continuous func-
tions endowed with the following norm:

lellp = sup 0||<p(r)H forall g € P,

—00<T<

then we can see that C;(¢) =1 in (2.2).
For ¢ € [0,1], x € [0,1] and ¢ € BUC(R™, X), we set

u(t)(x) = v(t, x),

¢(1)(x) = vo(7,%), T €(-00,0],

0
f(tu(®), ) () = a(t) cos(|u()(x)]) + f c(z) sin(|o(7)(x)|) dz.

Then we can rewrite Equation (4.1) above as abstract Equation (1.1).
Moreover, we have

0

If (& u(®), ) )| < a(t)+tb||<ﬂ||7v/ |c(1)| dr

—00

= u@®1+lglp), fortel0,1],

where pu(¢) := max{a(t), t? ff)oo le(t)|dT}.
For any uj,u; € X, 9,9 € P,

If (& u1(2), @) () = £ (£, u2(2), §) (%) |

0
—00

<a®m(@) - w )] + / ()] - | o(x) - §(2)] d,
which implies that for any bounded sets D; C X, D, C P,

x(f(t,D1,Dy)) < n(t)<x (D1) + sup R (Dz(r))>, te0,1],
—00<T <
where n(t) = u(z).
Thus, problem (4.1) has at least a mild solution by Theorem 3.1 for every ¢(0) € D(Zﬂ )
(B> 2).
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