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Abstract
This work develops Feynman-Kac formulae for switching diffusion processes. It first
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1 Introduction
Because of the increasing demands and complexity in modeling, analysis, and compu-
tation, significant efforts have been made searching for better mathematical models in
recent years. It has been well recognized that many of the systems encountered in the
new era cannot be represented by the traditional ordinary differential equation and/or
stochastic differential equation models alone. The states of such systems have two com-
ponents, namely, state = (continuous state, discrete event state). The discrete dynamics
may be used to depict a random environment or other stochastic factors that cannot be
represented in the traditional differential equation models. Dynamic systems mentioned
above are often referred to as hybrid systems. One of the representatives in the class of hy-
brid system is a switching diffusion process. A switching diffusion process can be thought
of as a number of diffusion processes coupled by a random switching process. At a first
glance, these processes are seemingly similar to the well-known diffusion processes. A
closer scrutiny shows that switching diffusions have very different behavior compared to
traditional diffusion processes. Within the class of switching diffusion processes, when
the discrete event process or the switching process depends on the continuous state, the
problem becomes much more difficult; see [, ]. Because of their importance, switch-
ing diffusions have drawn much attention in recent years. Many results such as smooth
dependence of the initial data, recurrence, positive recurrence, ergodicity, stability, and
numerical methods for solution of stochastic differential equations with switching, etc.,
have been obtained. Nevertheless, certain important concepts are yet fully investigated.
The Feynman-Kac formula is one of such representatives.
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For diffusion processes, the Feynman-Kac formula provides a stochastic representation
for solutions to certain second-order partial differential equations (PDEs). These repre-
sentations are standard in any introductory text to stochastic differential equations (SDEs);
see, for example, [–], and references therein. The utility of Feynman-Kac formula has
enjoyed a wide-range of applications in such areas as stochastic control, mathematical
finance, risk analysis, and related fields.
This work aims to derive Feynman-Kac formula for switching diffusions. It provides a

probabilistic approach to the study of weakly coupled elliptic systems of partial differen-
tial equations (see [] for weakly coupled systems). Such systems arise in financial math-
ematics and in the form of the so called diffusion-reaction equations, which describe the
concentration of a substance under the influence of diffusion and chemical reactions. The
case where the discrete process is a two state process can be found in [, Section .]. Our
effort is on developing general results, in which the switching process has a finite state
space and is continuous-state dependent.
The rest of the paper is organized as follows.We begin by presenting the necessary back-

ground materials and problem formulation regarding switching diffusions in Section .
The setup is in line with that of []. Then, using the generalized Itô formula and Dynkin’s
formula, we present the Feynman-Kac formula in the context of the Dirichlet problem in
Section , the initial boundary value problem in Section . Finally, we study the Cauchy
problem in Section .

2 Switching diffusions
Let (�,F ,P) be a probability space, and let {Ft} be a filtration on this space satisfying
the usual condition (i.e., F contains all the null sets and the filtration {Ft} is right con-
tinuous). The probability space (�,F ,P) together with the filtration {Ft} is denoted by
(�,F , {Ft},P). Suppose that α(·) is a stochastic process with right-continuous sample
paths (or a pure jump process), finite-state space M = {, . . . ,m}, and x-dependent gen-
erator Q(x), so that for a suitable function f (·, ·),

Q(x)f (x, ·)(i) =
∑

j∈M,j �=i
qij(x)

(
f (x, j) – f (x, i)

)
for each i ∈M. ()

Assume throughout the paper that Q(x) satisfies the q-property []. That is, Q(x) = (qij(x))
satisfies

(i) qij(x) is Borel measurable and uniformly bounded for all i, j ∈M and x ∈R
n;

(ii) qij(x)≥  for all x ∈R
n and j �= i; and

(iii) qii(x) = –
∑

j �=i qij(x) for all x ∈R
n and i ∈M.

Let w(·) be an R
n-valued standard Brownian motion defined on (�,F , {Ft},P), b(·, ·) :

R
n × M → R

n, and σ (·, ·) : Rn × M → R
n × R

n such that the two-component process
(X(·),α(·)) satisfies

dX(t) = b
(
X(t),α(t)

)
dt + σ

(
X(t),α(t)

)
dw(t),

(
X(),α()

)
= (x, i)

()

and

P
{
α(t + δ) = j|α(t) = i,X(s),α(s), s≤ t

}
= qij

(
X(t)

)
δ + o(δ), i �= j. ()
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The process given by () and () is called a switching diffusion or a regime-switching dif-
fusion. Now, before carrying out our analysis, we state a theorem regarding existence and
uniqueness of the solution of the aforementioned stochastic differential equation, which
will be important in what follows.

Theorem  (Yin and Zhu []) Let x ∈ R
n, M = {, . . . ,m}, and Q(x) = (qij(x)) be an

m × m matrix satisfying the q-property. Consider the two component process Y (t) =
(X(t),α(t)) given by ()with initial data (x, i). Suppose that Q(·) :Rn →R

m×m is bounded
and continuous, and that the functions b(·, ·) and σ (·, ·) satisfy

∣∣b(x, i)∣∣ + ∣∣σ (x, i)∣∣ ≤ K
(
 + |x|), i ∈M, ()

for some constant K > , and for each N > , there exists a positive constant MN such that
for all i ∈M and all x, y ∈R

n with |x| ∨ |y| ≤MN ,

∣∣b(x, i) – b(y, i)
∣∣ ∨ ∣∣σ (x, i) – σ (y, i)

∣∣ ≤MN |x – y|, ()

where a∨ b =max(a,b) for a,b ∈R. Then there exists a unique solution to (), in which the
evolution of the discrete component is given by ().

Note that () and () are known as the linear growth and local Lipschitz conditions, re-
spectively. We assume these conditions on b(·, ·) and σ (·, ·) for the remainder of the paper.

2.1 Itô’s Formula
Consider (X(t),α(t)) given in (), and let a(x, i) = σ (x, i)σ ′(x, i), where σ ′(x, i) denotes the
transpose of σ (x, i). Given any function g(·, i) ∈ C(Rn) with i ∈M, define L by

Lg(x, i) := 

tr
(
a(x, i)Dg(x, i)

)
+ b′(x, i)Dg(x, i) +Q(x)g(x, ·)(i), ()

where Dg(·, i) = ( ∂g
∂x

, . . . , ∂g
∂xn ), D

g(·, i) denotes the Hessian of g(·, i), and Q(x)g(x, ·)(i) is
given by (). The choice for L will become clear momentarily.
It turns out that the evolution of the discrete component can be represented as a

stochastic integral with respect to a Poisson random measure p(dt,dz), whose intensity
is dt ×m(dz), wherem(·) is the Lebesgue measure on R. We have

dα(t) =
∫
R

h
(
X(t),α(t–), z

)
p(dt,dz), ()

where h is an integer-valued function; furthermore, this representation is equivalent to
(). For details, we refer the reader to [] and [].
We now state (generalized) Itô’s formula. For each i ∈ M and g(·, i) ∈ C(Rn), we have

g
(
X(t),α(t)

)
– g

(
X(),α()

)

=
∫ t


Lg

(
X(s),α(s)

)
ds +M(t) +M(t), ()

http://www.advancesindifferenceequations.com/content/2013/1/315


Baran et al. Advances in Difference Equations 2013, 2013:315 Page 4 of 13
http://www.advancesindifferenceequations.com/content/2013/1/315

where

M(t) =
∫ t



〈
Dg

(
X(s),α(s)

)
,σ

(
X(s),α(s)

)〉
dw(s),

M(t) =
∫ t



∫
R

[
g
(
X(s),α() + h

(
X(s),α(s), z

))
– g

(
X(s),α(s)

)]
μ(ds,dz).

The compensated or centered Poisson measure μ(ds,dz) = p(ds,dz) –ds×m(dz) is a mar-
tingale measure. For t ≥ , and g(·, i) ∈ C

 (the collection of C functions with compact
support) for each i ∈M,

Ex,ig
(
X(t),α(t)

)
– g(x, i) = Ex,i

∫ t


Lg

(
X(s),α(s)

)
ds, ()

where Ex,i denotes the expectationwith initial data (X(),α()) = (x, i). The above equation
is known as Dynkin’s formula. The condition g ∈ C

 ensures that

g
(
X(t),α(t)

)
– g(x, i) –

∫ t


Lg

(
X(s),α(s)

)
ds is a martingale.

Furthermore, one can show thatL agrees with its classical interpretation, as the (infinites-
imal) generator of the process (X(t),α(t)) given by

Lg(x, i) = lim
t↓

Ex,i[g(X(t),α(t))] – g(x, i)
t

. ()

To see this, pick t sufficiently small so that α(t) agrees with the initial data. Then it follows
that


t

∫ t


Lg

(
X(s),α(s)

)
ds

=

t

∫ t


Lg

(
X(s), i

)
ds→Lg(x, i), t → 

by continuity. Hence by multiplying by t–, then letting t tend to zero, one gets

∣∣∣∣t E
∫ t


Lg

(
X(s),α(s)

)
ds –Lg(x, i)

∣∣∣∣ → , as t → ,

and, consequently, (). Noting (), when the deterministic time t is replaced by a stopping
time τ satisfying τ < ∞ w.p. (recalling that g(·, i) ∈ C

), then

Ex,ig
(
X(τ ),α(τ )

)
– g(x, i) = Ex,i

∫ τ


Lg

(
X(s),α(s)

)
ds. ()

Note that if τ is the first exit time of the process from a bounded domain satisfying τ < ∞
w.p., thenDynkin’s formula holds for any g(·, i) ∈ C and each i ∈Mwithout the compact
support assumption. To proceed, we obtain the following systemofKolmogorov backward
equations for switching diffusions; see also [].
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Theorem  (Kolmogorov backward equation) Suppose that g(·, i) ∈ C
(Rn), for i ∈ M,

and define

u(x, t, i) = Ex,i[g(X(t),α(t))]. ()

Then u satisfies

⎧⎨
⎩

∂u
∂t =Lu for t > ,x ∈R

n, i ∈M,

u(x, , i) = g(x, i) for x ∈R
n, i ∈M.

()

A proof of the theorem can be found in [, Theorem .]; see also Theorem . in the
aforementioned reference.

Remark  We illustrate the proof of the theorem using the idea as in [, p. ]. Fix t > .
Then using () and the Markov property, we have

Ex,i[u(X(r), t,α(r))] – u(x, t, i)
r

=
Ex,i[EX(r),α(r)[g(X(t),α(t))]] – Ex,i[g(X(t),α(t))]

r

=
Ex,i[Ex,i[g(X(t + r),α(t + r))|Fr] – Ex,i[g(X(t),α(t))]

r

=
Ex,i[g(X(t + r),α(t + r))] – Ex,i[g(X(t),α(t))]

r

=
u(x, t + r, i) – u(x, t, i)

r
→ ∂u

∂t
(x, t, i) as r ↓ .

Thus, by the definition of L, () is satisfied.

3 The Feynman-Kac formula
We now state the Feynman-Kac formula, which is a generalization of the Kolmogorov
backward equation.

Theorem  (The Feynman-Kac formula) Suppose that g(·, i) ∈ C
(Rn), and let c(·, i) ∈

C(Rn) be bounded; i ∈M. Define

v(x, t, i) = Ex,i
[
exp

(
–

∫ t


c
(
X(s),α(s)

)
ds

)
g
(
X(t),α(t)

)]
. ()

Then v satisfies

⎧⎨
⎩

∂v
∂t =Lv – cv for t > ,x ∈R

n, i ∈M,

v(x, , i) = g(x, i) for x ∈R
n, i ∈M.

()

Proof To simplify the notation, let

Y (t) = g
(
X(t),α(t)

)
, Z(t) = exp

(
–

∫ t


c
(
X(s),α(s)

)
ds

)
.
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Now, following the argument in Remark , we fix t > . We have

Ex,i[v(X(r), t,α(r))] – v(x, t, i)
r

=
Ex,i[EX(r),α(r)[Z(t)Y (t)]] – Ex,i[Z(t)Y (t)]

r

=
Ex,i[Ex,i[exp (–

∫ t
 c(X(s + r),α(s + r))ds)Y (t + r)|Fr]] – Ex,i[Z(t)Y (t)]

r

=
Ex,i[Ex,i[exp (–

∫ t+r
r c(X(s),α(s))ds)Y (t + r)|Fr]] – Ex,i[Z(t)Y (t)]

r

=
Ex,i[Z(t + r) exp (

∫ r
 c(X(s),α(s))ds)Y (t + r)] – Ex,i[Z(t)Y (t)]

r

=
Ex,i[Z(t + r)Y (t + r)] – Ex,i[Z(t)Y (t)]

r

+
Ex,i[Z(t + r)Y (t + r){exp (∫ r

 c(X(s),α(s))ds) – }]
r

=
v(x, t + r, i) – v(x, t, i)

r

+
Ex,i[Z(t + r)Y (t + r){exp (∫ r

 c(X(s),α(s))ds) – }]
r

.

First, clearly,

v(x, t + r, i) – v(x, t, i)
r

→ ∂v
∂t

(x, t, i), r ↓ .

Furthermore, we claim that

Ex,i[Z(t + r)Y (t + r){exp (∫ r
 c(X(s),α(s))ds) – }]

r
→ c(x, i)v(x, t, i).

To verify this claim, first, note that

Z(t + r)Y (t + r) → Z(t)Y (t), r ↓ ,

by continuity. Now, if we let

f (r) = exp

(∫ r


c
(
X(s),α(s)

)
ds

)
,

for r sufficiently small. Denote the first jump time of α(·) by τ. With α() = i, for any
t ∈ [, τ), α(t) = i. It follows that

f (r) = exp

(∫ r


c
(
X(s), i

)
ds

)
, r ∈ [, τ).

Hence f is differentiable at the origin and

d
dt

f () = f ()c
(
X(), i

)
= c(x, i).

http://www.advancesindifferenceequations.com/content/2013/1/315
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This in turn yields that

Z(t + r)Y (t + r) · 
r

(
exp

(∫ r


c
(
X(s),α(s)

)
ds

)
– 

)

= Z(t + r)Y (t + r)
(
f (r) – f ()

r

)
→ Z(t)Y (t)c(x, i), r ↓ .

Furthermore, the assumptions on the functions c(·, i) and g(·, i) ensure that this forms a
bounded sequence, so we may apply the bounded convergence theorem to yield

lim
r↓ E

x,i
[
Z(t + r)Y (t + r)


r

(
exp

(∫ r


c
(
X(s),α(s)

)
ds

)
– 

)]

= Ex,i
[
lim
r↓ Z(t + r)Y (t + r)


r

(
exp

(∫ r


c
(
X(s),α(s)

)
ds

)
– 

)]

= Ex,i[Z(t)Y (t)c(x, i)] = c(x, i)Ex,i[Z(t)Y (t)] = c(x, i)v(x, t, i)

as claimed. This completes the proof. �

So we have seen that the functions given by () and () necessarily satisfy certain ini-
tial value problems. The remainder of the paper will be dedicated to giving stochastic
representations for solutions to certain partial differential equations (PDEs) related to the
operator L.

4 The Dirichlet problem
Let O ⊂R

n, be a bounded open set, and consider the following Dirichlet problem:

⎧⎨
⎩
Lu(x, i) + c(x, i)u(x, i) = ψ(x, i) in O×M,

u(x, i) = ϕ(x, i) on ∂O×M,
()

where ∂O denotes the boundary of O. To proceed, we impose assumption (A).
(A) The following conditions hold:

. ∂O ∈ C,
. for some ≤ j ≤ r, and all i ∈M, minx∈Ō ajj(x, i) > ,
. a(·, i) and b(·, i) are uniformly Lipschitz continuous in Ō for each i ∈M,
. c(x, i) ≤  and c(·, i) is uniformly Hölder continuous in Ō for each i ∈M,
. ψ(·, i) is uniformly continuous in Ō, and ϕ(·, i) is continuous on ∂O, both for

each i ∈M.
It follows that under (A), the system of boundary value problems has a unique solution;

see [] or []. Our goal is to derive a stochastic representation for this problem, similar to
the Feynman-Kac formula. In order to achieve this, we need the following lemma.

Lemma  Suppose that τ = inf{t ≥  : Xx(t) /∈ O}. That is, τ is the first exit time from the
open set O of the switching diffusion given in () and (). Then τ < ∞ w.p..

Proof We use the idea as in []. Consider a function V :Rn ×M→R defined by

V (x, i) = –A exp(λx), A,λ > , i ∈M.

http://www.advancesindifferenceequations.com/content/2013/1/315
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Clearly V (·, i) ∈ C∞(O) and since V is independent of i ∈M,

Q(x)V (x, ·)(i) =
∑
i�=j

qij(x)
(
V (x, j) –V (x, i)

)
= ,

and, thus,

LV (x, i) = –A exp (λx)
[


aλ + bλ

]
.

Note that as long as λ > –b
a

, it follows thatLV (x, i) < . Hence, by choosing λ andA = A(λ)
sufficiently large, we can make LV (x, i) ≤ – for each i ∈ M. As the function V (·, i) and
its derivatives w.r.t. x are bounded on Ō, we may apply Dynkin’s formula to yield

Ex,iV
(
X(t ∧ τ ),α(t ∧ τ )

)
–V (x, i) = Ex,i

∫ t∧τ


LV

(
X(s),α(s)

)
ds

≤ –Ex,i(t ∧ τ ),

where Ex,i denotes the expectation taken with (X(),α()) = (x, i). This yields that

Ex,i(t ∧ τ ) ≤ V (x, i) – Ex,iV
(
X(t ∧ τ ),α(t ∧ τ )

) ≤  max
x∈Ō,i∈M

∣∣V (x, i)
∣∣ < ∞.

Taking the limit as t → ∞, and using themonotone convergence theoremyields Ex,iτ < ∞,
which in turn leads to τ < ∞ w.p.. �

Theorem  Suppose that (A) holds. Then with τ as in the previous lemma, the solution
of the system of boundary value problems () is given by

u(x, i) = Ex,i
[
ϕ
(
X(τ ),α(τ )

)
exp

(∫ τ


c
(
X(s),α(s)

)
ds

)]

– Ex,i
[∫ τ


ψ

(
X(t),α(t)

)
exp

(∫ t


c
(
X(s),α(s)

)
ds

)
dt

]
. ()

Proof We apply Itô’s formula to the switching process

ũ
(
X(t), t,α(t)

)
:= u

(
X(t),α(t)

)
exp

(∫ t


c
(
X(s),α(s)

)
ds

)
.

To simplify notation, we let

Z(t) = exp

(∫ t


c
(
X(s),α(s)

)
ds

)
.

We have

Ex,iu
(
X(t ∧ τ ),α(t ∧ τ )

)
Z(t ∧ τ ) – u(x, i)

= Ex,i
∫ t∧τ



(
∂

∂s
+L

){
u
(
X(s),α(s)

)
Z(s)

}
ds

http://www.advancesindifferenceequations.com/content/2013/1/315
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= Ex,i
∫ t∧τ


Z(s)

{
u
(
X(s),α(s)

)
c
(
X(s),α(s)

)
+Lu

(
X(s),α(s)

)}
ds

= Ex,i
∫ t∧τ


Z(s)ψ

(
X(s),α(s)

)
ds.

Taking the limit as t → ∞ and noting the boundary conditions, () follows. �

5 The initial boundary value problem
Consider next the initial boundary value problem given by

⎧⎪⎪⎨
⎪⎪⎩
[L + ∂

∂t ]u(x, t, i) + c(x, t, i)u(x, t, i) =ψ(x, t, i) in O× [,T)×M,

u(x,T , i) = ϕ(x, i) in O×M,

u(x, t, i) = φ(x, t, i) on ∂O× [,T]×M,

()

where O is the same as before and

Lf (x, t, i) = 

tr
(
a(x, t, i)Df (x, t, i)

)
+ b′(x, t, i)Df (x, t, i) +Q(x)f (x, t, ·)(i). ()

We will use assumption (A).
(A) The following conditions hold:

. 〈a(x, t, i)y, y〉 ≥ κ|y|, for each i ∈M and for y ∈R
n (κ > ),

. alk(·, ·, i), bl(·, ·, i) are uniformly Lipschitz continuous in Ō× [,T], for each
i ∈M,

. c(·, ·, i) and ψ(·, ·, i) are uniformly Hölder continuous in Ō× [,T], for each
i ∈M,

. ϕ(·, i) is continuous on Ō, φ(·, ·, i) is continuous on ∂O× [,T], for each i ∈ M,
where ∂O denotes the boundary of O,

. ϕ(x, i) = φ(x,T , i), for x ∈ ∂O.
Under (A), it follows that the system of initial boundary value problems has a unique

solution; see [] or []. In order to get a stochastic representation for the solution, we
also require the drift and diffusion coefficients of u to be Lipschitz continuous in the time
variable; namely we require

∣∣b(x, t, i) – b(x, s, i)
∣∣ ∨ ∣∣σ (x, t, i) – σ (x, s, i)

∣∣ ≤ K
(|t – s|), i ∈ M,

in addition to () and ().
Now, for (x, t, i) ∈O× [,T)×M, consider the switching SDE given by

dX(s) = b
(
X(s), s,α(s)

)
ds + σ

(
X(s), s,α(s)

)
dw(s), s ∈ [t,T], ()

with initial data (X(t),α(t)) = (x, i). If we let σ (x, t, i) be the square root of a(x, t, i), then the
following is true.

http://www.advancesindifferenceequations.com/content/2013/1/315
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Theorem  Suppose that (A) holds. Then the solution of the system of initial value prob-
lems in () is given by

u(x, t, i) = Ex,i
[
I{τ<T}φ

(
X(τ ), τ ,α(τ )

)
exp

(∫ τ

t
c
(
X(r), r,α(r)

)
dr

)]

+ Ex,i
[
I{τ=T}ϕ

(
X(T),α(T)

)
exp

(∫ T

t
c
(
X(r), r,α(r)

)
dr

)]

– Ex,i
[∫ τ∧T

t
ψ

(
X(s), s,α(s)

)
exp

(∫ s

t
c
(
X(r), r,α(r)

)
dr

)
ds

]
. ()

Proof Proceeding similarly to the previous theorem, we apply Itô’s formula to the process

u
(
X(s), s,α(s)

)
exp

(∫ s

t
c
(
X(r), r,α(r)

)
dr

)
, s ∈ [t,T].

To simplify notation, we let

Zt(s) = exp

(∫ s

t
c
(
X(r), r,α(r)

)
dr

)
.

We have

Ex,iu
(
X(τ ∧ T), τ ∧ T ,α(τ ∧ T)

)
Zt(τ ∧ T) – u(x, t, i)

= Ex,i
∫ τ∧T

t

(
∂

∂s
+L

){
u
(
X(s), s,α(s)

)
Zt(s)

}
ds

= Ex,i
∫ τ∧T

t
Zt(s)

{
u
(
X(s), s,α(s)

)
c
(
X(s), s,α(s)

)
+Lu

(
X(s), s,α(s)

)}
ds

= Ex,i
∫ τ∧T

t
Zt(s)ψ

(
X(s), s,α(s)

)
ds.

If we note that

u
(
X(τ ∧ T), τ ∧ T ,α(τ ∧ T)

)
Zt(τ ∧ T) =

⎧⎨
⎩
u(X(τ ), τ ,α(τ ))Zt(τ ), τ < T ,

u(X(T),T ,α(T))Zt(T), τ = T

=

⎧⎨
⎩

φ(X(τ ), τ ,α(τ ))Zt(τ ), τ < T ,

ϕ(X(T),α(T))Zt(T), τ = T ,

then by replacing the correct value for

u
(
X(τ ∧ T), τ ∧ T ,α(τ ∧ T)

)
Zt(τ ∧ T)

in the above derivation, one gets (). �
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6 The Cauchy problem
If we letO =R

n in the initial value problem () of the previous section, we get the Cauchy
problem

⎧⎨
⎩
[L + ∂

∂t ]u(x, t, i) + c(x, t, i)u(x, t, i) =ψ(x, t, i) in R
n × [,T)×M,

u(x,T , i) = ϕ(x, i) in R
n ×M.

()

To proceed, we impose assumption (A).
(A) The following conditions hold:

. The functions alk(·, ·, i), bl(·, ·, i) are bounded in R
n × [,T] and uniformly

Lipschitz continuous in (x, t, i) in compact subsets of Rn × [,T]×M, for each
i ∈M.

. The functions alk(·, ·, i) are Hölder continuous in x, uniformly with respect to
(x, t, i) in R

n × [,T]×M, for each i ∈M.
. The function c(·, ·, i) is bounded in R

n × [,T] and uniformly Hölder
continuous in (x, t, i) in compact subsets of Rn × [,T]×M, for each i ∈M.

. The function ψ(·, ·, i) is continuous in R
n × [,T], for each i ∈M, Hölder

continuous in x with respect to (x, t, i) ∈R
n × [,T]×M, and

∣∣ψ(x, t, i)
∣∣ ≤ K

(
 + |x|p), in R

n × [,T]×M.

. The function ϕ(·, i) is continuous in R
n, for each i ∈M, and

|ϕ(x, i)| ≤ K( + |x|p), where K and p are positive constants.
Under (A), it follows that the Cauchy problem has a unique solution; see [] or [].

Moreover, the following is true.

Theorem  Suppose that (A) holds. Then the solution of the Cauchy problem in () is
given by

u(x, t, i) = Ex,i
[
ϕ
(
X(T),α(T)

)
exp

(∫ T

t
c
(
X(s), s,α(s)

)
ds

)]

– Ex,i
[∫ T

t
ψ

(
X(s), s,α(s)

)
exp

(∫ s

t
c
(
X(r), r,α(r)

)
dr

)
ds

]
. ()

Proof As before, by Itô’s formula, one has

Ex,iu
(
X(T),T ,α(T)

)
Zt(T) – u(x, t, i)

= Ex,i
∫ T

t

(
∂

∂s
+L

){
u
(
X(s), s,α(s)

)
Zt(s)

}
ds.

Now, proceeding as in the proof of the initial boundary value problem, we get (). �

Remark  Note by taking c = ψ = , we see that the Kolmogorov backward equation is a
special case of the Cauchy problem by replacing u by

ũ(x, t, i) := u(x,T – t, i).

http://www.advancesindifferenceequations.com/content/2013/1/315
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6.1 Examples
This section presents a couple of examples.

Example  LetO ⊂R
n be an open set, and consider the following weakly coupled system:

⎧⎪⎪⎨
⎪⎪⎩

�u(x, ) + q(x)u(x, ) + q(x)u(x, ) = ψ(x, ) in O,

�u(x, ) + q(x)u(x, ) + q(x)u(x, ) = ψ(x, ) in O,

u(x, ) = u(x, ) =  on ∂O.

()

Where Q(x) =
( q(x) q(x)
q(x) q(x)

)
satisfies the q-property. Such systems are studied in []. It

follows that this Dirichlet problem has the unique solution

u(x, i) = –Ex,i
[∫ τ


ψ

(
x + B(t),α(t)

)
dt

]
,

where B(t) is a standard, n-dimensional Browningmotion, and α(t) is a two-state, discrete
process with generator Q(x).

Example 
Let

Li =


tr
(
a(x, i)Dg(x, i)

)
+ b′(x, i)Dg(x, i); i = , ,

and consider the following stationary system; found in [].

⎧⎪⎪⎨
⎪⎪⎩
Lu(x, ) + q(x)u(x, ) + q(x)u(x, ) =  in O,

Lu(x, ) + q(x)u(x, ) + q(x)u(x, ) =  in O,

u(x, i) = ϕ(x, i) on ∂O.

It follows that the solution of the above problem has the form:

u(x, i) = Ex,iϕ
(
X(τ ),α(τ )

)
exp

{∫ τ


q̃
(
X(s),α(s)

)
ds

}
,

where q̃(x, i) = qii(x) + qij(x) and α(t) is a two-state process satisfying:

P
{
α(t + δ) = j|α(t) = i,X(s),α(s), s≤ t

}
= qij

(
X(t)

)
δ + o(δ).

Hence if the generator Q(x) =
( q(x) q(x)
q(x) q(x)

)
satisfies the q-property, then it follows that

q̃(x, i) =  for all x, so the solution reduces to the form:

u(x, i) = Ex,iϕ
(
X(τ ),α(τ )

)
,

which agrees with the solution to the Dirichlet problem given by:

⎧⎨
⎩
Lu(x, i) =  in O× {, },
u(x, i) = ϕ(x, i) on ∂O× {, }.

http://www.advancesindifferenceequations.com/content/2013/1/315
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Remark  In closing, we make the following remark. Recall that a vector γ = (γ, . . . ,γn)
with nonnegative integer components is referred to as amulti-index. Put |γ | = γ + · · ·+γn,
and define Dγ

x as

Dγ
x =

∂ |γ |

∂xγ
 · · · ∂xγn

n
.

Let us state another condition.
(A) For each i ∈M, b(·, i) and σ (·, i) have continuous partial derivatives with respect

to the variable x up to the second order and that

∣∣Dγ
x b(x, i)

∣∣ + ∣∣Dβ
xσ (x, i)

∣∣ ≤ K
(
 + |x|β)

,

where K and β are positive constants and γ is a multi-index with |γ | ≤ .
In Theorems  and , we used the approach in [] to derive the desired equations. If we
assume that (A) holds, then the functions defined by the stochastic representations ()
and () are smooth and classical solutions to the systems of parabolic equations () and
(), respectively; see [] for further details.
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