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Abstract
This paper considers a kind of degenerate parabolic systems. First, we consider the
initial boundary value problem of the two-species degenerate parabolic cooperative
system. By using the method of a parabolic regularization and energy estimate, we
establish the existence of the weak solution of the problem. Then we establish the
comparison principle and discuss the uniqueness and the uniform bound. At last, we
consider the periodic boundary value problem of the system. By constructing a pair
of ordered upper and lower solutions, we establish the existence of nontrivial
nonnegative periodic solutions.

1 Introduction
In this paper, we consider the following degenerate parabolic cooperative system

ut = div
(|∇u|p–∇u

)
+ uα(a – bu + cv), (x, t) ∈ QT = � × (,T), (.)

vt = div
(|∇v|q–∇v

)
+ vβ (d + eu – fv), (x, t) ∈QT = � × (,T), (.)

u(x, t) = , v(x, t) = , (x, t) ∈ ∂� × [,T], (.)

u(x, ) = u(x), v(x, ) = v(x), x ∈ �, (.)

where � is a bounded domain in R
n with smooth boundary ∂�, p,q > ,  < α < p – ,

 < β < q– ,  < (p– –α)(q– –β), a = a(x, t), b = b(x, t), c = c(x, t), d = d(x, t), e = e(x, t),
f = f (x, t) are strictly positive smooth functions and periodic in time t with period T > ,
u(x) and v(x) are nonnegative smooth functions.
Our motivation for the present study comes from population dynamics, to be specific,

such model can be used to describe the population dynamics behavior. We refer to [, ]
for a survey on this model. The functions u and v represent the spatial densities of two
species at time t, the diffusion terms div(|∇u|p–∇u) and div(|∇v|q–∇v) represent the
effect of dispersion in the habitat, which models a tendency to avoid crowding, and the
speed of the diffusion is rather slow since p,q > , the boundary conditions (.) describe
the living environment at the boundary, a, d are their respective net birth rate, b and f are
intra-specific competitions, whereas c and e are those of inter-specific competitions.
Recently, degenerate cooperative systems have been the subject of extensive study, and

most of theworks are devoted to the existence, uniqueness, regularity properties and some
other interesting properties of the weak solutions (one can see [–]). Since such models
can describe nonlinear diffusion phenomenon, they are introduced into the discussion
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of population dynamics. For example, Vishnevskĭı [] studied the behavior at large time
of solutions to mixed problems for weakly connected cooperative parabolic systems and
obtained the monotonicity of the solutions. Pozio, Tesei [] investigated the coexistence
of prey-predator or competing species, subject to density dependent diffusion in an inho-
mogeneous habitat. They proved that coexistence arises in suitable domains, where favor-
able conditions are satisfied and also investigated the support properties and attractivity of
the resulting stationary solutions. Later, Delgado and Suarez [] studied the stability and
uniqueness for a cooperative degenerate Lotka-Volterra model. For the semilinear case
with p = q = , some results of this kind cooperative systems have already been obtained.
The basic questions which have been considered are existence, uniqueness and boundary
behavior of solutions, for details, one can see [–] and the references therein.
In this paper, we are particularly interested in the discussion of the existence of weak

solutions of the initial boundary value problem and the nontrivial nonnegative periodic
solutions to problem (.)-(.), as well as their attractivity character. When investigating
this point, we shall make use of the results obtained in [] for the case of a single equa-
tion and also the method of monotone iteration. First, by parabolic generalized method,
we establish the existence of the global generalized solution of the initial boundary value
problem (.)-(.). Then we establish the comparison principle and show that the weak
solution of (.)-(.) is uniformly bounded under the condition that

blfl > cMeM,

where sM = sup{s(x, t)|(x, t) ∈ �×R}, sl = inf{s(x, t)|(x, t) ∈ �×R}. At last, by constructing
a pair of ordered upper and lower solutions, we establish the existence of the nontrivial
nonnegative periodic solutions and the attractivity of the maximal periodic solution.
Since (.), (.) are degenerate at points where∇u = ,∇v = , problem (.)-(.)might

not have classical solutions in general. Therefore, we focus our main efforts on the discus-
sion of weak solutions in the sense of the following.

Definition . A nonnegative vector function (u, v) is called a weak solution of the prob-
lem (.)-(.) if

u ∈ Lp
(
,T ;W ,p

 (�)
) ∩ L∞(QT ), ut ∈ L(QT ),

v ∈ Lq
(
,T ;W ,q

 (�)
) ∩ L∞(QT ), vt ∈ L(QT ),

and for all  ≤ τ < T and all test functions ϕi ∈ C(Qτ ) with ϕi|�×[,τ ) =  (i = , ), (u, v)
satisfies∫∫

Qτ

u
∂ϕ

∂t
– |∇u|p–∇u · ∇ϕ + uα(a – bu + cv)ϕ dxdt

=
∫

�

u(x, τ )ϕ(x, τ )dx –
∫

�

u(x)ϕ(x, )dx, (.)
∫∫

Qτ

v
∂ϕ

∂t
– |∇v|q–∇v · ∇ϕ + vβ (d + eu – fv)ϕ dxdt

=
∫

�

v(x, τ )ϕ(x, τ )dx –
∫

�

v(x)ϕ(x, )dx, (.)

where Qτ = � × (, τ ).
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Similarly, we can define a weak supersolution (u, v) (subsolution (u, v)) if they satisfy the
inequalities obtained by replacing ‘=’ with ‘≤’ (‘≥’) in (.), (.) with additional assump-
tions φi|�×[,τ ) ≥  (i = , ).

Definition . A vector-valued function (u, v) is said to be a T-periodic solution of the
problem (.)-(.) if it is a solution in [,T] such that u(·, ) = u(·,T), v(·, ) = v(·,T) in
�. A vector-valued function (u, v) is said to be a T-periodic supersolution of problem
(.)-(.), if it is a super-solution in [,T] such that u(·, ) ≥ u(·,T), v(·, ) ≥ v(·,T) in �.
A vector-valued function (u, v) is said to be aT-periodic subsolution of problem (.)-(.),
if it is a subsolution in [,T] such that u(·, )≤ u(·,T), v(·, ) ≤ v(·,T) in �.

This paper is organized as follows: In Section , we establish the existence and unique-
ness of the weak solution of the problem (.)-(.). In Section , we establish the existence
of the nontrivial nonnegative periodic solutions by constructing a pair of ordered upper
and lower solutions and the method of monotone iteration technique.

2 Initial boundary value problem
To establish the existence ofweak solution of the initial boundary value problem (.)-(.),
we consider the following regularity problem

∂uε

∂t
= div

((|∇uε| + ε
) p–

 ∇uε

)
+ uα

ε (a – buε + cvε), (x, t) ∈ QT , (.)

∂vε

∂t
= div

((|∇vε| + ε
) q–

 ∇vε

)
+ vβ

ε (d + euε – f vε), (x, t) ∈QT , (.)

uε(x, t) = , vε(x, t) = , (x, t) ∈ ∂� × [,T], (.)

uε(x, ) = uε(x), vε(x, ) = vε(x), x ∈ �, (.)

where uε(x) and vε(x) are both nonnegative and bounded functions inC∞
 (�) and satisfy

the following conditions:

 ≤ uε ≤ ‖u‖L∞(�),  ≤ vε ≤ ‖v‖L∞(�), (.)

up–ε → up– , vq–ε → vq– , inW ,
 (�) as ε → . (.)

By the result of [], the regularity problem (.)-(.) admits a classical solution (uε , vε).
So we just need to establish a necessary energy estimate for the classic solution (uε , vε)
and then establish the existence of weak solution of the initial boundary value problem
by letting ε → . For convenience, here and below, C denotes various positive constants
independent of ε.

Lemma . Assume that (uε , vε) is a solution of the regularity problem(.)-(.), then
there exist constants r, s >  which are sufficiently large such that


q – β – 

<
p + r – 
q + s – 

< p – α – ,

and

‖uε‖Lr (QT ) ≤ C, ‖vε‖Ls(QT ) ≤ C.
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Proof Multiplying (.) by ur–ε (r > ) and integrating over�, integrating by parts, we have

∫
�

∂uε
r

∂t
dx≤ –

r(r – )pp

(p + r – )p

∫
�

∣∣∇u
p+r–

p
ε

∣∣p dx + r
∫

�

uα+r–
ε (a – buε + cvε)dx. (.)

By Poincaré’s inequality, we have

K
∫

�

up+r–ε dx ≤
∫

�

∣∣∇u
p+r–

p
ε

∣∣p dx,
where K denotes a positive constant only dependent on |�|, N . Substituting the formula
above into (.), we have

∫
�

∂urε
∂t

dx≤ –
Kr(r – )pp

(p + r – )p
∫

�

up+r–ε dx + r
∫

�

uα+r–
ε (a – buε + cvε)dx. (.)

By Young’s inequality, we have

rauα+r–
ε ≤ Kr(r – )pp

(p + r – )p
up+r–ε +CK– α+r–

p–α– , (.)

rcuα+r–
ε vε ≤ Kr(r – )pp

(p + r – )p
up+r–ε +CK– α+r–

p–α– v
p+r–
p–α–
ε . (.)

Substituting (.) and (.) into (.), we have

∫
�

∂urε
∂t

dx≤ –
Kr(r – )pp

(p + r – )p
∫

�

up+r–ε dx +CK– α+r–
p–α–

∫
�

v
p+r–
p–α–
ε dx +CK– α+r–

p–α– . (.)

Similarly, multiplying (.) by vs–ε (s > ) and integrating over �, we have

∫
�

∂vsε
∂t

dx ≤ –
Ks(s – )qq

(q + s – )q
∫

�

vq+s–ε dx +CK– β+s–
q–β–

∫
�

u
q+s–
q–β–
ε dx +CK– β+s–

q–β– . (.)

Combining (.) with (.), we have

∫
�

(
∂urε
∂t

+
∂vsε
∂t

)
dx

≤ –
Kr(r – )pp

(p + r – )p
∫

�

up+r–ε dx +CK– α+r–
p–α–

∫
�

v
p+r–
p–α–
ε dx

–
Ks(s – )qq

(q + s – )q
∫

�

vq+s–ε dx +CK– β+s–
q–β–

∫
�

u
q+s–
q–β–
ε dx

+CK– α+r–
p–α– +CK– β+s–

q–β– . (.)

Since that


q – β – 

< p – α – ,

we can choose r, s large enough such that


q – β – 

<
p + r – 
q + s – 

< p – α – .

http://www.advancesindifferenceequations.com/content/2013/1/281


Sun et al. Advances in Difference Equations 2013, 2013:281 Page 5 of 16
http://www.advancesindifferenceequations.com/content/2013/1/281

Then by Young’s inequality, we have

∫
�

u
q+s–
q–β–
ε dx ≤ r(r – )(p – )K

q+s–
q–β–

C(p + r – )p
∫

�

up+r–ε dx +CK–γ , (.)

∫
�

v
p+r–
p–α–
ε dx≤ s(s – )(q – )K

p+r–
p–α–

C(q + s – )q
∫

�

vq+s–ε dx +CK–γ , (.)

where

γ =
(q + s – )q

(q – β – )[(q – β – )(p + r – ) – (q + s – )]
,

γ =
(p + r – )p

(p – α – )[(p – α – )(q + s – ) – (p + r – )]
.

Combine (.) with (.) and (.), when r, s are sufficiently large, we have

∫
�

(
∂urε
∂t

+
∂vsε
∂t

)
dx ≤ –

K


∫
�

(
up+r–ε + vq+s–ε

)
dx +C

(
K–θ +K–θ

)
+CK– α+r–

p–α– +CK– β+s–
q–β– ,

where

θ =
(q + s – ) + (p + r – )(β + s – )
(q – β – )(p + r – ) – (q + s – )

, θ =
(p + r – ) + (q + s – )(α + r – )
(p – α – )(q + s – ) – (p + r – )

.

Furthermore, by Young’s inequality and Hölder’s inequality, we can obtain

∫
�

(
∂urε
∂t

+
∂vsε
∂t

)
dx

≤ –
K


∫
�

(
urε + vsε

)
dx +C

(
K–θ +K–θ

)
+K |�| +CK– α+r–

p–α– +CK– β+s–
q–β– .

Thus by Gronwall’s inequality, we have

∫
�

(
urε + vsε

)
dx ≤ C.

The proof is complete. �

By Lemma . and choosing uε , vε , ∂uε

∂t ,
∂vε
∂t as the test functions, we can easily show the

following estimates.

Lemma . Assume that (uε , vε) is a solution of problem (.)-(.), then

‖∇uε‖Lp(QT ) ≤ C, ‖∇vε‖Lq(QT ) ≤ C,∥∥∇(uε)t
∥∥
L(QT )

≤ C,
∥∥∇(vε)t

∥∥
L(QT )

≤ C.

In order to obtain the maximum norm estimate of the approximate solution, we intro-
duce the following lemma.

http://www.advancesindifferenceequations.com/content/2013/1/281
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Lemma . (See []) Assume that ϕ(t) is a nonnegative monotone increasing function
defined in [k, +∞), satisfying

φ(h) ≤
(

M
h – k

)α[
φ(k)

]β , ∀h > k ≥ k,

where α > , β > . Then we have

ϕ(k + d) = ,

with

d =M
[
φ(k)

] β–
α 

β
β– .

Lemma . Assume that (uε , vε) is a solution of problem (.)-(.), then

‖uε‖L∞(QT ) ≤ C, ‖vε‖L∞(QT ) ≤ C. (.)

Proof Let l = ‖uε(x)‖L∞(�), multiplying (.) by (uε – k)+χ [t, t] and integrating overQT ,
where k denotes a various positive constant satisfying k > l, we have

∫∫
QT

∂uε

∂t
(uε – k)+χ [t, t]dxdt

=
∫∫

QT

div
((|∇uε| + ε

) p–
 ∇uε

)
(uε – k)+χ [t, t]dxdt

+
∫∫

QT

uα
ε (a – buε + cvε)(uε – k)+χ [t, t]dxdt.

Integrating by parts, we have




∫∫
QT

∂

∂t
(uε – k)+χ [t, t]dxdt ≤ –

∫∫
QT

∣∣∇(uε – k)+
∣∣pχ [t, t]dxdt

+
∫∫

QT

|uε|α+(a + cvε)χ [t, t]dxdt.

Let Ik(t) =
∫
�
(uε – k)+ dx, we can see that Ik(t) is absolutely continuous in [,T], and there

exists a σ such that Ik(σ )
�= sup Ik(t). Set t = σ – ε, t = σ , we have


ε

∫ ε

σ–ε

∫
�

∂

∂t
(uε – k)+ dxdt +


ε

∫ ε

σ–ε

∫
�

∣∣∇(uε – k)+
∣∣p dxdt

≤ 
ε

∫ ε

σ–ε

∫
�

uα+
ε (a + cvε)dxdt. (.)

Since

∫ ε

σ–ε

∫
�

∂

∂t
(uε – k)+ dxdt = Ik(σ ) – Ik(σ – ε) ≥ ,

http://www.advancesindifferenceequations.com/content/2013/1/281
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we have


ε

∫ ε

σ–ε

∫
�

∣∣∇(uε – k)+
∣∣p dxdt ≤ 

ε

∫ ε

σ–ε

∫
�

uα+
ε (a + cvε)dxdt.

Letting ε → +, from (.), we have

∫
�

∣∣∇(
uε(x,σ ) – k

)
+

∣∣p dx ≤
∫

�

uα+
ε (x,σ )

(
a + cvε(x,σ )

)
dx.

Set

Ak(t) =
{
x : uε(x, t) > k

}
, μk = sup

t∈(,T)

∣∣Ak(t)
∣∣,

we have

∫
Ak (σ )

∣∣∇(uε – k)+
∣∣p dx≤

∫
Ak (σ )

uα+
ε (a + cvε)dx.

By Sobolev’s theorem

(∫
Ak (σ )

(uε – k)ω+ dx
) 

ω

≤ C(N ,ω,�)
(∫

Ak (σ )

∣∣∇(uε – k)+
∣∣p dx) 

p
,

where

p < ω <

{
+∞, p ≥ N ,
Np
N–p , p <N .

Combining with Hölder’s inequality, we have

(∫
Ak (σ )

(uε – k)ω+ dx
) p

ω

≤ C
∫
Ak (σ )

∣∣∇(uε – k)+
∣∣p dx

≤ C
∫
Ak (σ )

uα+
ε (a + vε)dx

≤ C
(∫

Ak (σ )
urε dx

) α+
r

(∫
Ak (σ )

(a + vε)
r

r–α– dx
) r–α–

r

≤ C
(∫

Ak (σ )
(a + vε)

r
r–α– dx

) r–α–
r

≤ C
(∫

Ak (σ )
(a + vε)s dx

) 
s ∣∣Ak(σ )

∣∣ s(r–α–)–r
sr

≤ Cμ
s(r–α–)–r

sr , (.)

http://www.advancesindifferenceequations.com/content/2013/1/281
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where r > ω(α+)
ω–p , s > ωr

ω(r–α–)–r , and C denotes a various positive constant which is inde-
pendent of ε. Applying Hölder’s inequality, we have

Ik(t) ≤ Ik(σ )

=
∫

�

(uε – k)+ dx =
∫
Ak (σ )

(uε – k)+ dx

≤
(∫

Ak (σ )
(uε – k)ω+ dx

) 
ω

μk
ω–
ω

≤ Cμk
s(r–α–)–r

psr + ω–
ω . (.)

Furthermore, for any h > k, t ∈ [,T], we have

Ik(t) ≥
∫
Ak (t)

(uε – k)+ dx ≥ (h – k)
∣∣Ah(t)

∣∣.
Combining with (.), we have

μh ≤ C
(h – k)

μk
s(r–α–)

psr + ω–
ω .

By Lemma ., we have

μl+d = sup
∣∣Al+d(t)

∣∣ = ,

where

d = C

ω μl

β–
 

β
β– ,

β =
s(r – α – )

psr
+

ω – 
ω

=  +
[sω(r – α – ) –ωr – psr]

psrω
> .

That is, uε ≤ l + d a.e. in QT .
Similarly, we also have the same results for vε . The proof is complete. �

Theorem . The initial boundary value problem (.)-(.) has a weak solution (u, v).

Proof From Lemma ., Lemma ., we can see that there exists a subsequence {(uεk , vεk )}
of {(uε , vε)} and a vector valued function (u, v) satisfying

u ∈ Lp
(
,T ;W ,p

 (�)
) ∩ L∞(QT ), v ∈ Lq

(
,T ;W ,q

 (�)
) ∩ L∞(QT )

such that

uεk → u, a.e. in QT ,

∂uεk

∂t
→ ∂u

∂t
, weakly in L(QT ),

∇uεk → ∇u, weakly in Lp(QT ),

http://www.advancesindifferenceequations.com/content/2013/1/281
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|∇uεk |p–∇uεk →W , weakly in L
p–
p (QT ),

vεk → v, a.e. in QT ,

∂vεk

∂t
→ ∂v

∂t
, weakly in L(QT ),

∇vεk → ∇v, weakly in Lq(QT ),

|∇vεk |q–∇vεk →W , weakly in L
q–
q (QT ).

A rather standard argument as that in [] shows that Wxj = |∇u|p–uxj , Wxj = |∇v|p–vxj
a.e. inQT . Then we can prove that (u, v) meets Definition .. Thus we complete the proof.

�

In order to establish the uniqueness of the solution of (.)-(.), we need the following
comparison principle.

Lemma. Assume that (u, v) is the subsolution of problem (.)-(.), and it has an initial
condition (u, v), (u, v) is the supersolution, which has a positive lower bound of problem
(.)-(.) and has an initial condition (u, v). If u ≤ u, v ≤ v, then u(x, t) ≤ u(x, t),
v(x, t)≤ v(x, t) on QT .

Proof Suppose that

∥∥u(x, t)∥∥L∞(QT )
,
∥∥ū(x, t)∥∥L∞(QT )

,
∥∥v(x, t)∥∥L∞(QT )

,
∥∥v̄(x, t)∥∥L∞(QT )

≤ M,

andM is a positive constant, by Definition ., we have

∫ t



∫
�

–u
∂φ

∂t
+ |∇u|p–∇u∇φ dxdτ +

∫
�

u(x, t)φ(x, t)dx –
∫

�

u(x)φ(x, )dx

≤
∫ t



∫
�

uα(a – bu + cv)φ dxdτ ,

∫ t



∫
�

–ū
∂φ

∂t
+ |∇ū|p–∇u∇φ dxdτ +

∫
�

ū(x, t)φ(x, t)dx –
∫

�

ū(x)φ(x, )dx

≥
∫ t



∫
�

ūα(a – bū + cv̄)φ dxdτ .

Let

φ(x, t) =Hε

(
up–(x, t) – ūp–(x, t)

)
,

and Hε(s) is the approximate monotonically increasing smooth function of function H(s)
and

H(s) =

{
, s > ,
, others.

http://www.advancesindifferenceequations.com/content/2013/1/281
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Obviously, H ′
ε(s)→ δ(s) as ε → . Then we have

∫
�

(u – ū)Hε

(
up– – ūp–

)
dx –

∫ t



∫
�

(u – ū)
∂Hε(up– – ūp–)

∂t
dxdτ

+
∫ t



∫
�

H ′
ε

(
up– – ūp–

)∣∣∇(
up– – ūp–

)∣∣ dxdτ

≤
∫ t



∫
�

a
(
uα – ūα

)
Hε

(
up– – ūp–

)
+ c

(
uαv – ūαv

)
Hε

(
up– – ūp–

)
dxdτ .

Let ε → , and notice that

∫ t



∫
�

H ′
ε

(
up– – ūp–

)∣∣∇(
up– – ūp–

)∣∣ dxdτ ≥ ,

we have

∫
�

[
u(x, t) – ū(x, t)

]
+ dx ≤ C

∫ t



∫
�

(
uα – ūα

)
+ + v

(
uα – ūα

)
+ + uα(v – v̄)+ dxdτ ,

where C is a positive number, which only depends on ‖a(x, t)‖C(Qt ), ‖c(x, t)‖C(Qt ). Let (u, v)
be a supersolution, which has a lower bound σ , notice that for x, y > ,

(
xα – yα

)
+ ≤ C(α)(x – y)+, α ≥ ,(

xα – yα
)
+ ≤ xα–(x – y)+ ≤ yα–(x – y)+, α < ,

and ‖u(x, t)‖L∞(QT ) ≤ M, we have

∫ t



∫
�

(
uα – ūα

)
+ + v

(
uα – ūα

)
+ + uα(v – v̄)+ dxdτ

≤ C
∫ t



∫
�

(u – ū)+ + (v – v̄)+ dxdτ .

So

∫
�

[
u(x, t) – ū(x, t)

]
+ dx ≤ C

∫ t



∫
�

(u – ū)+ + (v – v̄)+ dxdτ ,

and C is a positive number, which depends on α, σ ,M. Similarly, we have

∫
�

[
v(x, t) – v̄(x, t)

]
+ dx≤ C

∫ t



∫
�

(u – ū)+ + (v – v̄)+ dxdτ .

Then from Gronwall’s lemma, we see that u≤ u, v≤ v. The proof is completed. �

Theorem . Assume that blfl > cMeM , then initial-boundary value problem (.)-(.)
has a unique weak solution, which is uniformly bounded on � × [,∞).

Proof It is easy to obtain the uniqueness of a weak solution of the initial-boundary value
problem (.)-(.) by the comparison principle. In order to prove the uniform bound, we
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just need to construct a bounded positive supersolution. Let

ρ =
aMfl + dMcM
blfl – cMeM

, ρ =
aMeM + dMbl
blfl – cMeM

,

for blfl > cMeM , we have ρ,ρ >  and

aM – blρ + cMρ = , dM + eMρ – flρ = .

Let

(u, v) = (ηρ,ηρ),

and η >  is a constant such that (u, v) ≤ (ηρ,ηρ). Then we have

ut – div
(|∇u|p–∇u

)
=  ≥ uα(a – bu + cv),

vt – div
(|∇v|p–∇v

)
=  ≥ uβ (d + eu – f v).

Namely, (u, v) = (ηρ,ηρ) is a positive supersolution of problem (.)-(.). So the weak
solution (u, v) of (.)-(.) is uniformly bounded. �

3 Periodic solutions
In this section, we will establish the existence of the nontrivial nonnegative periodic so-
lutions by constructing a pair of ordered upper and lower solutions and the method of
monotone iteration technique.

Lemma. Let blfl > cMeM , then (.)-(.) has a pair of ordered T-periodic supersolutions
and T-periodic subsolutions.

Proof Firstly, we construct a T-periodic subsolution of problem (.)-(.). Let λ be the
first characteristic value, and let φ be the uniqueness solution of the following problem:

–div
(|∇φ|p–∇φ

)
= λ|φ|p–φ, x ∈ �,

φ = , x ∈ ∂�,

and let μ be the first characteristic value, and let ψ be the uniqueness solution of the
following problem:

–div
(|∇ψ |q–∇φ

)
= λ|ψ |q–ψ , x ∈ �,

ψ = , x ∈ ∂�.

According to the classic theory [], we have

λ,μ > , φ(x),ψ(x) >  in �, |∇φ| > , |∇ψ(x)| >  in ∂�,

M =max
{
max
x∈�̄

φ(x),max
x∈�̄

ψ(x)
}
<∞.

http://www.advancesindifferenceequations.com/content/2013/1/281


Sun et al. Advances in Difference Equations 2013, 2013:281 Page 12 of 16
http://www.advancesindifferenceequations.com/content/2013/1/281

Let

(u, v) =
(
εφ

p
p– (x), εψ

q
q– (x)

)
,

where ε >  is a small constant. We now show that (u, v) is a subsolution of (.)-(.)
and also is a T-periodic subsolution, since it is time independent. Choosing nonnegative
function ϕ(x, t) ∈ C(Q̄T ) as the test function, we have

∫∫
QT

u
∂ϕ

∂t
+ div

(|∇u|p–∇u
)
ϕ + uα(a – bu + cv)ϕ dxdt

+
∫

�

u(x, )ϕ(x, ) – u(x,T)ϕ(x,T)dx

=
∫∫

QT

[
uα(a – bu + cv) + div

(|∇u|p–∇u
)]

ϕ dxdt

=
∫∫

QT

uα(a – bu + cv)ϕ dxdt –
∫∫

QT

|∇u|p–∇u∇ϕ dxdt

=
∫∫

QT

uα(a – bu + cv)ϕ dxdt –
(

pε
p – 

)p– ∫∫
QT

|∇φ|p–φ∇φ∇ϕ dxdt

=
∫∫

QT

uα(a – bu + cv)ϕ dxdt

–
(

pε
p – 

)p– ∫∫
QT

|∇φ|p–∇φ∇(φϕ) – |∇φ|pϕ dxdt

=
∫∫

QT

uα(a – bu + cv)ϕ dxdt

–
(

pε
p – 

)p– ∫∫
QT

–div
(|∇φ|p–∇φ

)
φϕ – |∇φ|pϕ dxdt

=
∫∫

QT

uα(a – bu + cv)ϕ dxdt

–
(

pε
p – 

)p– ∫∫
QT

(
λ|φ|p–φ – |∇φ|p)ϕ dxdt. (.)

Similarly, for any nonnegative function ϕ(x, t) ∈ C(Q̄T ), we have

∫∫
QT

v
∂ϕ

∂t
+ div

(|∇v|q–∇v
)
ϕ + vβ (d + eu – f v)ϕ dxdt

+
∫

�

v(x, )ϕ(x, ) – v(x,T)ϕ(x,T)dx

=
∫∫

QT

vβ (d + eu – f v)ϕ dxdt

–
(

qε
q – 

)q– ∫∫
QT

(
μ|ψ |q–ψ – |∇ψ |q)ϕ dxdt. (.)
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Nowwe just need to show the nonnegativity of the right of (.) and (.). Since φ = ψ = ,
|∇φ|, |∇ψ | >  in ∂�, there exists δ >  such that

λ|φ|p–φ – |∇φ|p ≤ ,

μ|ψ |q–ψ – |∇ψ |q ≤ , x ∈ �̄δ ,

with

�̄δ =
{
x ∈ �|dist(x, ∂�) ≤ δ

}
.

Let

ε ≤ min

{
al

bMMp/p– ,
dl

fMMq/q–

}
,

we have

(
pε
p – 

)p– ∫ T



∫
�δ

(
λ|φ|p–φ – |∇φ|p)ϕ dxdt

≤  ≤
∫ T



∫
�δ

uα(a – bu + cv)ϕ dxdt,

(
qε
q – 

)q– ∫ T



∫
�δ

(
μ|ψ |q–ψ – |∇ψ |q)ϕ dxdt

≤  ≤
∫ T



∫
�δ

vβ (d + eu – f v)ϕ dxdt.

Which show that (u, v) is a positive T-periodic subsolution of problem (.)-(.) in the
domain �̄δ × (,T). In addition, for some σ > , let

φ(x),ψ(x)≥ σ > , x ∈ �\�̄δ ,

and take

ε ≤ min

{
al

bMMp/p– ,
(
al(p – )p–

λpp–

) 
p––α 

Mp/p– ,

dl
fMMq/q– ,

(
dl(q – )q–

μqq–

) 
q––β 

Mq/q–

}
,

then we have

εαφ
pα
p– a – bεα+φ

p(α+)
p– + cεαφ

pα
p– εψ

q
q– –

(
pε
p – 

)p–

λφp ≥ ,

εβφ
qβ
q– d + eεφ

p
p– εβφ

qβ
q– – f εβ+φ

q(β+)
q– –

(
qε
q – 

)q–

μψq ≥ .
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Namely

∫∫
QT

uα(a – bu + cv)ϕ dxdt –
(

pε
p – 

)p– ∫∫
QT

(
λ|φ|p–φ – |∇φ|p)ϕ dxdt ≥ ,

∫∫
QT

vβ (d + eu – f v)ϕ dxdt –
(

qε
q – 

)q– ∫∫
QT

(
μ|ψ |q–ψ – |∇ψ |q)ϕ dxdt ≥ .

By the related equalities above, we see that

(u, v) =
(
εφ

p
p– (x), εψ

q
q– (x)

)

is a subsolution of (.)-(.) and also is a T-periodic subsolution.
Let

(u, v) = (ηρ,ηρ),

and η, ρ, ρ are chosen as those in Theorem .. Obviously, (u, v) is a positive T-periodic
supersolution of problem (.)-(.).
Obviously, by choosing a suitable positive constant η, ε, we have

u(x, t)≤ u(x, t), v(x, t)≤ v(x, t).

The proof is complete. �

Lemma . [] Let u(x, t) be a weak solution of problem (.)-(.). Then there exist con-
stants λ ∈ (, ) and K >  such that

∣∣u(x, t) – u(x, t)
∣∣ ≤ K

(|x – x|λ + |t – t|λ/p
)

for every pair of points (x, t), (x, t) ∈QT .

For the solution (u(x, t), v(x, t)) of problem (.)-(.) with the initial condition (u(x),
v(x)), we can define the Poincaré mapping as follows:

Pt : L∞(�)× L∞(�) → L∞(�)× L∞(�).

According to Lemma ., Lemma . and Theorem ., we can see that the mapping Pt is
well defined in t >  and also an ordered preserving and compact map.

Theorem . Let blfl > cMeM , and there exists a pair of nontrivial nonnegative T-periodic
subsolutions (u(x, t), v(x, t)) and T-periodic supersolutions (u(x, t), v(x, t)) of problem (.)-
(.)with u(x, )≤ u(x, ), v(x, )≤ v(x, ).Then problem (.)-(.) has a pair of nontrivial
nonnegative periodic solutions

(
u∗(x, t), v∗(x, t)

)
,

(
u∗(x, t), v∗(x, t)

)
,
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which satisfy

u(x, t)≤ u∗(x, t)≤ u∗(x, t)≤ ū(x, t), v(x, t)≤ v∗(x, t)≤ v∗(x, t)≤ v̄(x, t). (.)

Proof Take u(x, t), u(x, t) as those in Lemma .. By choosing suitable B(x, δ), B(x, δ′),�′,
k, k, K , we can obtain u(x, )≤ u(x, ). According to Lemma ., we have

PT
(
u(·, )) ≥ u(·,T).

By Definition ., we have PT (u(·, ))≥ u(·, ). Then we have P(k+)T (u(·, )) ≥ PkT (u(·, )),
∀k ∈ N. Similarly, we can also obtain P(k+)T (ū(·, )) ≥ PkT (ū(·, )), ∀k ∈ N. Then by using
Lemma ., we have

PkT
(
u(·, )) ≥ PkT

(
ū(·, )), ∀k ∈N.

Hence, we can see that

u∗(x, ) = lim
k→∞

PkT
(
u(x, )

)
, u∗(x, ) = lim

k→∞
PkT

(
ū(x, )

)
for almost every x ∈ �. Since PT is a compact operator, the limit above also exists in L∞(�).
In addition, (u∗(x, ),u∗(x, )) are also the fixed points of the Poincare mapping PT . Us-
ing the method similar to that in [], we can prove that the even extension of function
u∗(x, t), which is the solution of problem (.)-(.) with initial value u∗(x, ), is just the
nontrivial nonnegative periodic solution of problem (.)-(.). The existence of u∗(x, t)
can be obtained similarly. In addition, by Lemma ., we can conclude (.). The proof is
complete. �

Now we consider the asymptotic behavior of the corresponding initial boundary value.
Using the similar method as document [], we have the following results.

Theorem . If blfl > cMeM , then there exists a maximal periodic solution (u(x, t), v(x, t))
of problem (.)-(.). In addition, let (u(x, t), v(x, t)) be the solution of the initial boundary
problem with the nonnegative initial value (u(x), v(x)), then for any ε > , there exists a
time T which is large enough such that

 ≤ u(x, t)≤ ū(x, t) + ε,  ≤ v(x, t)≤ v̄(x, t) + ε, x ∈ �, t ≥ T .
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