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1 Introduction

Let F be the set of all formal power series in the variable ¢ over C with
{f(t) Z—tk]akec} &)
k=0 ke

Suppose that P is the algebra of polynomials in the variable x over C and that P* is the
vector space of all linear functionals on P. The action of the linear functional L on a poly-
nomial p(x) is denoted by (L|p(x)).

Let f(t) € F. Then we consider a linear functional on [P by setting

[fOW)=a, (1> 0) (see 1, 2]). 2)
From (1) and (2), we note that

(E1x") = m8,x  (m,k > 0) (see [1, 3-5]), (3)
where &, is the Kronecker symbol.

Let f1.(¢) = Y ro <L|xn>tk Then we see that {f7(¢)|x") = (L|x"). The map L — fi(¢) is a

vector space isomorphism from P* onto F. Henceforth, F is thought of as both a for-

mal power series and a linear functional. We call F the umbral algebra. The umbral cal-
culus is the study of umbral algebra. The order O(f(¢)) of the nonzero power series f(t)
is the smallest integer k for which the coefficient of tX does not vanish. If O(f(¢)) = 0
then f(¢) is called an invertible series. If O(f(£)) = 1, then f(¢) is called a delta series. Let
O(f(2)) =1 and O(g(t)) = 0. Then there exists a unique sequence s,(x) of polynomials such
that (g(£)f (t)¥|s,(x)) = n!8,.x for n,k > 0. The sequence s, () is called the Sheffer sequence
for (g(¢),f(t)) which is denoted by s,(x) ~ (g(¢),f(¢)) (see [1, 3, 6]). If 5,(x) ~ (1, (¢)), then
su(x) is called the associated sequence for f(2). By (3), we easily see that (¢ |p(x)) = p(y).
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Let f(¢) € F and p(x) € P. Then we have

o k S k
fo=3 PO = 3 P (e, 6,70, @
k=0 k=0
From (4), we note that
pP0) = (Flp@), (1P W) =p"0). ®)
By (5), we easily see that
k
Ep) = p9) = 72D > 0) (see [2,3, 6, 7). (6)
dxk

Let ¢,,(x) be exponential polynomials which are given by

Z ¢1;((‘x) K= i) (see [2, 6, 8]). 7
k=0

Thus, by (7), we get
Pu(x) = Y Sa(m k)t ~ (1,log (1+ 1)), (8)
k=0

where S;(n, k) is the Stirling number of the second kind.
The Stirling number of the first kind is defined by

(x)n=x(x_1)...(x_n+1):Zsl(}’l,k)xk. (9)
k=0

Thus, by (9), we get
Si(n, k) = %(tﬂ(x)n) (see [2, 5]). (10)

Let p,(x) ~ (1,f(2), gu(x) ~ (1,g(¢)). Then the transfer formula for the associated se-
quences is given by

qn(x) = x(%) xpu(x)  (see[2,8]). (11)

The nth harmonic number is H, = )/, % (n>1)and Hy = 0.

In general, the hyperharmonic number H\ of order r is defined by

ifn<0orr<O,
ifr=0,n>1, (see [9, 10]). (12)

ifr,n>1

H =

n

M = O
Il =

NN

:,\

S
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From (12), we note that HY is the ordinary harmonic number H,,. It is known that
-1
mm{“” ymwﬁmn (see [9, 10]). (13)

" r—1

The generating functions of the harmonic and hyperharmonic numbers are given by

= log(1—-¢
ZHntn - _M (14)
—~ 1-t¢
and
o0
log(1-t¢

HY¢" = —%, respectively. (15)

n=1 -

The purpose of this paper is to give some new and interesting identities involving har-
monic and hyperharmonic numbers which are derived from the transfer formula for the
associated sequences.

2 Identities involving harmonic and hyperharmonic numbers
From (7) and (8), we note that

$u(®) = Y Sa(mj)ad ~ (1,log (1 +£)) (16)
j=0
and
(-1)"pu(—2) ~ (1,~log (1 - £)). (17)

Let us assume that
4u(x) ~ (LE(L- 1)), (18)

From (11), (18) and x” ~ (1, ), we note that

— -1, _ 1—¢) ™ n—1
qn(x) x(t(l—t)’) x " =x(1—t) "%
g o k-1
= x ( )( t)kxn1=x2< ) k. n-1
k=0 k k=0 k
i k-1 Py |
=x (n =117k = (n— 1)k
k k
k=0 k=1
" (mm+n-k-1
= ( k )(n —1),5xk. (19)
k=1 n
Now, we use the following fact:
o0
log(1—t
S HOP = _log@-1) (20)

~ 1-9r °
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For n > 1, by (11), (17) and (18), we get

-1 —O\"
0) =5 EES0) s

= x(Z Hl(:)ltl> D)"Y Sy(m ) (Y
=0

j-1

= (-1)" Z Sa(m,j)(~1Yx (i H}ﬁt’) o
j=1 1=0
i -1>"zs2<n,;><-w‘x(z( S HY, ) )xf
=/

j=1 1=0 \l+-+ly=

n j-1

=" Y SmNEWHD, Y G- D™

j=1 1=0 lj+-+ly=l

noJj
_1)" Z Z Z Sz(}’l ])( 1)1H11+1 ’ Hl(,:i-l(] - 1)1'—kxk

j=1 k=1 lj+-+ly=j-k

Z Z 3 (WSmpH ) - HY G- Dy pa. (21)

k=1 U j=k lL+--+ly=j-k

Therefore, by comparing coefficients on both sides of (19) and (20), we obtain the following

theorem.

Theorem1 Forn>1,r>1,1<k <n, we have

— k- ¢ /
(m Y 1) 01=Duk= (1Y 3" Salm)DVH ) - H G =1k

n -
k j=k li+-+ly=j-k

We recall the following equation:

[e¢]

(log(1+t)) Z(l Sl(l+n,n)t (22)

For n > 1, from (11), (17) and (18), we have

_ log1-9\"
qn(x) = (7“1_” ) (=1)"¢u(-x)

-5(PEL) o

_1)n Z Sz(n,j)(—l)jx(@)n(l ~ t)_mxj—l
j=1

nJj-1
Y Sy G D M (G e

j=1 1=0

Page 4 of 15


http://www.advancesindifferenceequations.com/content/2013/1/235

Kim and Kim Advances in Difference Equations 2013, 2013:235
http://www.advancesindifferenceequations.com/content/2013/1/235

"\ . N frmal-1) ~
=(-1) jzﬂ:sz(”’])(—l)] 12:0: ( ] >(/ ~Dwx ; (m + n)!

x Sy(m + n, n)(=t)"x 1

w1 j-1-1 ,
B ; amf(rn+l-1 n (-1
=3 D ( ! >(m+n)!(j—1—l—m)!

j=1 =0 m=0

x S1(m + n, n)Sg(n,j)x/_l_m

n n j-k .
~ " wifrm+l-1 n! (-1
= Z{ZZ(_D < l )(j—l—k+n)!(k—1)!

k=1 | j=k I=0

X Si(j—l—k+n, n)Sz(n,j)}xk.

Therefore, by (19) and (23), we obtain the following theorem.

Theorem 2 Forr,n>1,1<k < n, we have

(rn +n—-k- 1>(n T

n-k
n j-k )
= (—1)" yfrnrl=1 n! (j—1)
v ;;( ) ( l )(j—l—k+n)!(k—1)!

x §1(G =1 -k + n,n)Sy(n,j).

Here we invoke the following identity:

e o\t —rlog(l-1¢))
Z( 9 mH,, )t ST Ay

n=l \m

Let us consider the following associated sequence:
qn(®) ~ (1,61 - )"*?).

For n > 1, by (19) and (25), we get

" ((r+3)m—-k-1 .
qn(x) = ( )(I’l - l)n,kx .
k; n-k

Let us assume that
pn(®) ~ (1,¢(1-rlog(1-1))).
For n > 1, by (11), (27) and " ~ (1,t), we get

pnlx) = 7x(;)nx_lx”
t(1-rlog(1-1¢))

=x(1-rlog1-¢) " s

(23)

(25)

(26)

(27)
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=0

,_.

n—

:xi<"+ 1) (log (1 - )2
(""r

n+tl n-1-1
=x r Sl(]+ll)t”l -l
+l)'
=0 j=0
n-1 n-1-1

1
Zl‘rl(n+l )n )51(I+” nj-1

=0 j=0

n n-k
[-1\ [n-1
- ZW(”* )(" )sl(n—k,l) #
el e ) k-1

For n > 1, from (11), (25) and (27), we can derive the following equation:

—rl - n
@) =x(%) 5 pul)

A5 S

x S1(n—a,l) }x“‘l

_ n n-a ; n+l-1 n—1 )
_;:;}:l!r< ) )(a_1>51(n a,l)}

Lz g %)}ﬂ}a-l

Jj=0 Ujr1+-+jn=j \m1=1 my=

n n-a a J1+l jntl
295 3D ol D oltly SETREAREEY

a=1 1=0 k=1 ji+--+jp=a-k \m1=1 my=

-1 -1
< 1 (" *l’ ) 1)51(;4 ~ D@~ D)

k=1 Ca=k 1=0 ji+-+jy=a-k \m=1 mpy=

< (") (07 )sin-ane —1)ak}xk.

Therefore, by (26) and (29), we obtain the following theorem.

Theorem 3 Formn,r>1,1 <k < n, we have

r+3m-k-1
( n—k )(Vl—l)n—k

n n-a 1+l Jn+l
355 (S S e o
a=k [=0 mp=1

=0 ji+--+jp=a—k \m1=1

x (” - 1) <”‘ 1)51(n-a,1)(a— Dys.
l a-1

(28)

(29)
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Here we use the following identity:

o]

. t(1-rlog(1-1¢))
> nHDE" = g (30)

n=1

Let us consider the following associated sequence:
(@) ~ (Ll =) (31)

For n > 1, from (19) and (31), we have

=Y ((r "k 1) (1= Dyoid. (32)

— n-k
Let us assume that
Pn(x) ~ (1, t(l —rlog(1- t))). (33)

Then, from (28) and (33), we note that, for n > 1,

n n—k
=SS0 () (st o
=0

k=1

For n > 1, by (11), (32) and (33), we get

gn(x) = x(t(l—rlo—g(l—t)))”x_lpn(x)

t(l—t)”l
_ = .H(V)tj—l ! -1 ¢ ”’”l‘l n+l-1 n-1 S( l) a
=X Z] j X Z Z v ] -1 1\n—a, X
j=1 a=1 \ [=0

_ n [ n-a e +Il-1\/n-1 )
_;:lo”r< ! )(a_1>51<n aJ)}

a-1
X X < Z (]1+1)(]n+1)]—11(1'21]—[1(:11)t]xﬂ1

J=0 Ni+tju

n n-a a-1
D333 (Dol RN I

a=1 [=0 j=0 \jj+--+jn=j

X (n " ll B 1) (Z : i)Sl(n —a,l)(a- 1),»x“_7

- Z:ZZ( > (/‘1+1)~~~(/'n+1>H,§’11---1@?;11)zw

k=1 Ca=k =0 \ji+-+jp=a-k

x (””"1) (n_I)Sl(n—a,l)(a—l)a_k}xk. (35)
/ a—1

Therefore, by (32) and (35), we obtain the following theorem.
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Theorem 4 For n,r >1,1 <k < n, we have

(r+2n-k-1
( n—k )(n_l)n—k

_ZX_:< Z (i+1)---G +1)H1+1"'Hj(:)+1

a=k =0 \jj+--+jy=a-k

x (” - 1) (" - 1)51(;4 —a, )@ —1)ur.
) a-1

Now, we utilize the following identity:

i n_t—log(l—t)
;(I’l +1)Hnt = w

Let us consider the following associated sequence:
qn(x) ~ (1, t(1- t)z).

For n > 1, from (19) and (37), we have

qn(x) = Z (Snn__kk_ 1) (n— l)n_kxk.

k=1

Let us assume that

pu(x) ~ (1,£-log (1 -2)).

We observe that

n

[o¢] t” [o¢] t
t—log(l—t):t+§ —=2t+§ —.
n n
n=1 n=2

From (11), (39), (40) and x” ~ (1,t), we can derive the following equation:

t ! —-1.n
= grsm) <
tn 1
=27 x<1+2 2n>
=0\ [ T !
:2‘”x2( / (; o ) P

1=0
n+l— 1)

=27"x ) (-1)
=0

)
> (]

)l!rl

n-1-1
1
% tm+lxr1—1
ng Z 2my +2)-- - (my +2)

=0 mp+---+mj=m

(37)

(39)

(40)
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n-1 n-1-1 !
1\ (n+l-1
:27;1 —_—
> )0

=0 m=0 my+---+mj=m
}k

n—l-m

) (n = 1)t
(

my+2)---(my+2)

(n— 1)k

o iy N\ (n+i-1
Z Z (_§)< [ )(Wt1+2)---(nu+2)

T
i

For n > 1, by (11), (37), (39) and (41), we get

—log(1-8)\"
qn(x) = x(%(_t)zt)) x7pa()
00 n n n—-a !
= x<Z(] + 2)]_IjJrltj) x_lz_n Ziz Z <_%>
a=1 Ui=0 my+-+my=n-l-a

j=0

n+l-1 (n—-1)y-0 B
X( l )(ml+2)~~(m;+2)x

HEL G0

1=0 my+--+mj=n—l-a

(n_l)n—tz } ﬂ—l( . .
xz Z (h+2)-(n+2)

X
(my +2)- - (my +2) j=0 \j1+++jn=j

a=1

X Hjjyq - ']_[jn+1> (a—-1)"

A N\ /n+1-1
2y Y () (7))
a=1 [=0 k=1 my+-+mj=n—l-aji+-+jp=a—k

(1= Dyeala~ Dk .
ol K 1 2) G+ 2)Hyr - i

(my+2)---(m; +2)

¥y Y ()"

n
= 27},1
k=1 Ca=k =0 my+--+mj=n—I-aji+--+jp=a—k

(n—1Dyala — gk Gr+2) - Gn+ 2Hy1 - Hypt }xk.

“ it 2) (i +2)

Therefore, by (38) and (42), we obtain the following theorem.

Theorem 5 Forn>1,1<k < n, we have

3n—-k-1
(}’1—1),,_](
n-k
. " N\ /n+l-1
ryy r oy ()0
a=k =0 my+---+mj=n—l-aji++jp=a-k
(n=Dp-al@a—Dgr ,, ,
2)- Gy +2)Hi 1+ Hi 1.
(m1+2)(ml+2)(]1+ ) (] + ) }11 ]nl

(41)
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Now, we recall the following identity:

Z 2H ¢ = tHl1+2t-(1+¢t)log(1- t)}.

43
TnE (43)
n=1
Let us consider the following associated sequence:
an(®) ~ (Lt - 1)), (44)
For n > 1, from (19) and (44), we can derive the following equation:
" (an—k-1
HOEDY ( ek )(n — Dy (45)
k=1
Let us assume that
Pulx) ~ (1,t{l+2t—(1+t)10g(l—t)}). (46)
We observe that
1+2t—(1+t)log(1—t):1+2t+(1+t)Z—,
j=1
t]+1
=1+2t+t+ - + -
j=1 j
t1+2
=1+3t
oy Z j+ 2 ] +1
o0
2j+3 ;
=1+3t+ 72, (47)
Z G+

For n > 1, by (11), (46), (47) and x” ~ (1, ¢), we get

Pulx) = x< ¢ ) xLx"
Hl1+2t-(1+2)log(1-1)}

! n+il-1 > 2j+3 :
— _1) - _ AT gl I, n-1
_xZ( 1)( ; )<3+§(j+1)(/’+2)t] )tx
1-1\ /(1
-3 > (—1)1(’” l 1) (a):-;’-“m—l)n_k

1=0 a=0 k=1 ji+-+jq=n-a—k-I

M52 +3) \ &
* (H:il(ii A1)+ 2))"
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n n—k n—-k—I nil-1 /
SIS s () (e

k=1 1=0 a=0 11+'--+ja=rlfa—k—l

M@i+3) \]| 4
X(Tﬁi@?iiiiﬁ)}x' (48)

For n > 1, from (11), (44), (46) and (48), we have

t(1+2t - (1+t)10g(1 1)
T

n n-mn-m-l
=1\ 1\,
E ( 1)( )(ﬂ)g (n_l)n—m

m=1 a=0 ji+-+jg=n—-a-m-I

“M

=1

Xm: > (" ’ ; - 1) (fl)Bl"“(n T

a=0 ji+-+jg=n—-a—-m-I

[T, (2 +3) 2
X(Hz Ui + D)Gis +2) )bXO:bl

X(—]—[”Z]ﬁB) )xnii Z 1_[]9+1)2Hb+1 toxm 1
H 10 + )0 +2) b=0 by++by=b l

1

n n-mn

=%

=1

n

[ T + 1*Hpam = 1)p2
i=1

~+by=

+-- b

n n-mn-m-l

Y r oy a0

m=k 1=0 a=0 jj+--+jg=n—-a-m-1lby+-+by=m—k

n

=1

x 3l—u(n _ 1) (m _ 1) k(n?l(zji + 3) H?:l(bi + 1)2Hbi+1) xk. (49)
o " [T G+ DG +2)
Therefore, by (45) and (49), we obtain the following theorem.
Theorem 6 Forn>1,1<k <n, we have
4 k-1
(”_k>m Dk
n n-mn-m-l nal—1 I
EEE T T
m=k 1=0 a=0 ji+-+jg=n—a-m-lby+--+by=m-k a
¢ (2 +3) ], (b + 1)2H,,
X (n=1)p_m(m - 1)mk<nll( i : ).lel(. +1) b’“).
[ 151G + DG + 2)
Here we invoke the following identity:
i i CH. | - t{l+2t—(1+¢t)log(1-1¢)} (50)
1-o* '
b=1 \ c=1

Let us consider the following associated sequence:

qn(x) ~ (L1 -1)%). (51)
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From (19) and (51), we note that

B (5”n‘_k n 1) (1= 1), 48 52)

k=1

Let us assume that
Pn(x) ~ (L£(1+2¢ - (L+¢)log(1-1))). (53)

For n > 1, from (48) and (49), we have

n n—k n—k-1 nel—1 !
pa@) = [ > > (—1)1( l ) (ﬂ) 37 (n — 1)

1=0 a=0 jj+--+jg=n—a—k-I

n?:l(zji+3) k
" (m)} - 54

For n > 1, from (11), (51), (53) and (50), we can derive the following identity:

qu(x) = x(t{l 2t —t((llitt))iog - t)})nx‘lpn(x)
00 b+l
(Bl
=0

00 b1+1 by+1
:xz Z [Z ch cH,, - Cn}tb

n [ n-mn-m-I
y { e )l(n+l 1><z>31a
m=1 /=0 i1+ 4, a

a=0 ji+--+jg=n—a—-m—I

[T +3) m-1
<o ) }x
n n-mn-m-1l

> oY (—1>l(” i f } 1) (fl)?ﬁ'“(n Do

m=1 [=0 a=0 jj+--+jz=n—a-m-I

(s )5 ¥ (5 5a-
| 2= T - "'ch}
l_[L l(ll + 1)(]l +2) b=0 by+--+by=b \ c1=1 =

x (m — l)bxmfb

Xn::in m n-m-1 Z Z (_1)l(n+§—1)

k=1 k 1=0 a=0 ji+--+jg=n—-a-m-1by+-+by=m-k

Dot [T, (2 +3)
X (a>3 (1= Dol 1)m_k(—ml S 2)>

b1+1 by+l n
X Z...ch?Hci}xk. (55)

c1=1 cp=1 i=1

Therefore, by (52) and (55), we obtain the following theorem.
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Theorem 7 Forn>1,1<k <mn, we have

Sn—k-1
( >(n_1)nk
n-k

n n-mn-m-I
=1\ 1\,
X

m=k 1=0 a=0 j+--+jg=n—a—m—1by+-+by=m-k
. b1+1 bu+l n
[151(2ji +3) >
X (n—1)y_m(m —1),,_ = ciH,..
(1~ D >mk(mlm+%+2) Zl > [Ter.

Here we use the following identity:

gn(zn e = B0 _(iji logll~ 2} (56)
Let us consider the following associated sequence:

qn(x) ~ (1,6(1 - 2)%). (57)
By (19) and (57), we get

0 - ; (" o-vt =, 58)
Let us assume that

Pu) ~ (Ltf3(1 + ) - (£ +3)log (1 - 1)}). (59)
We see that

3(1+1£)— (¢ +3)log(1—£) = 3+6t+i a1 (60)

n(n+1)

For n > 1, from (11), (59), (60) and x" ~ (1, ), we have

_ L ! -1,.n
_x(t{3(1+t)—(t+3)10g(1—t)}) o
= x(3(1 +1)—(t+3)log(1 - t))_"ac"_1

—x<3+6t+z(l 1) ) XL (61)

Pn(x)

From (61), by the same method of (48), we get

G [ nal-1\(1
> b O

1=0 a=0 jj+-+jz=n—-a—I-k

T (4ji+5) ‘
X (1 —=1)uk < ] m) }x (62)

~
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For n > 1, by (11), (56), (57), (59) and (62), we get

x7'pu(x)

2() = x(t{3(1+t)— (t+3)10g(1_t)})n

t1-1¢)3

= x(Z(b +1)(2b + 3)Hh+1tb) 7 pa(x)

b=0

oo b
:xZ( Z (H(bi+1)(2bi+3)Hbi+1>tb)

b=0 \bj+-+by=b \ i=1
n n-m n-m-1 i1 /
ST () ()
m=1 U1=0 a=0 jj+-+jz=n—a-l-m a

S 4i+5) m-1
X (1 =1)p_m 1;[ m}x

n n-mn-m-I
309 35 SID SN iy [ (A ERTa

m=1 [=0 a=0 j1+m+ja:n_a_l_

- 4- i 5 n
X (l_[ 3(j; +}1)+(] N 2)) Z Z <l_[(bi +1)(2b; + g)Hle)

b=0 by+--+by=b \ i=1

x (m — l)bxm’b

By the same method, we can derive the following identity from (63):

wrSEEY vz

k=1 Um=k [=0 a=0 j++jz=n—a—l-mbi+-+by=m-k

n+l=1\(I\.,, S (4 +5)
X ( l ) (61)2 (I’l - 1)n—m(m - 1)m—k (ll;[ 3(]; N 1)(]; N 2))

x [ ]®: + 1)(2b: + 3)Hp, 1 }xk.

i=1
By comparing coefficients on both sides of (58) and (64), we get

dn—-k-1
( n—k >(n_1)n—k

n  n-mn-m-l

Yy oy x ("))

m=k 1=0 a=0 jj+--+jq=n—a—l-mby+--+by=m—-k

l-a } (4]l _ 5)
X 2 (Vl - l)n—m(m - l)m_k (11:1[ m)

X (l_[(bi +1)(2b; + 3)Hbl.+1>.

i=1

(63)

(64)

(65)
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Remark Recently, several authors have studied the g-extension of harmonic and hyper-
harmonic numbers (see [11-13]).
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