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Abstract
For the equation

y(n) = yk , k > 1,n = 12, 13, 14,

the existence of positive solutions with non-power asymptotic behavior is proved,
namely

y = (x∗ – x)–αh(log(x∗ – x)), α =
n

k – 1
, x < x∗,

where x∗ is an arbitrary point, h is a positive periodic non-constant function on R.
To prove this result, the Hopf bifurcation theorem is used.
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Introduction
For the equation

y(n) = p
(
x, y, y′, . . . , y(n–)

)|y|k sgn y, n ≥ ,k > , ()

Kiguradze posed the problem on the asymptotic behavior of its positive solutions such
that

lim
x→x∗–

y(x) = ∞. ()

He found an asymptotic formula for these solutions to () with n =  (see []) and sup-
posed all such solutions to have power asymptotic behavior for other n, too. The problem
was solved for n =  and n =  []. For these n, it was proved that all such solutions behave
as

y(x) = C
(
x∗ – x

)–α(
 + o()

)
, x→ x∗ – , ()

© 2013 Astashova; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/220
mailto:ast@diffiety.ac.ru
http://creativecommons.org/licenses/by/2.0


Astashova Advances in Difference Equations 2013, 2013:220 Page 2 of 15
http://www.advancesindifferenceequations.com/content/2013/1/220

with

α =
n

k – 
, C =

(
α(α + ) · · · (α + n – )

p

) 
k–

, ()

p = const >  - is a limit of p(x, y, . . . , yn–) as x→ x∗ – , y → ∞, . . . , yn– → ∞.
So, the hypothesis of Kiguradze was confirmed in this case.
The existence of solutions satisfying () was proved for arbitrary n ≥ . For  ≤ n ≤ ,

an (n – )-parametric family of such solutions to equation () was proved to exist (see [],
[], Ch.I(.)).
For the equation

y(n) = yk , k > , ()

a negative answer to the conjecture of Kiguradze for large n was obtained. It was proved
[] that for any N and K > , there exist an integer n > N and k ∈ R,  < k < K , such that
equation () has a solution

y =
(
x∗ – x

)–αh
(
log

(
x∗ – x

))
, ()

where α is defined by (), h is a positive periodic non-constant function on R.
Still, it was not clear how large n should be for the existence of that type of solutions.

Preliminary results
Suppose the following conditions hold:
(A) The continuous positive function p(x, y, . . . , yn–) has a limit p = const >  as x →

x∗ – , y → ∞, . . . , yn– → ∞, and for some γ > , it holds

p(x, y, . . . , yn–) – p =O

((
x∗ – x

)γ +
n–∑
j=

y–γ

j

)
. ()

(B) For some K >  and μ >  in a neighborhood of x∗ for sufficiently large y, . . . , yn–,
z, . . . , zn–, it holds

∣∣p(x, y, . . . , yn–) – p(x, z, . . . , zn–)
∣∣ ≤ Kmax

j

∣∣y–μ
j – z–μ

j
∣∣. ()

Then equation () can be transformed (see [] or [], Ch.I(.)) by using the substitution

x∗ – x = e–t , y = (C + v)eαt , ()

where C and α are defined by (). The derivatives y(j), j = , , . . . ,n – , become

e(α+j)t · Lj
(
v, v′, . . . , v(j)

)
,

where v(j) = djv
dtj and Lj is a linear function with

Lj(, , . . . , ) = Cα(α + ) · · · (α + j – ) 	= 

and the coefficient of v(j) equal to .
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Thus () is transformed into

e(α+n)t · Ln
(
v, v′, . . . , v(n)

)
= (C + v)keαktp̃

(
t, v, v′, . . . , v(n–)

)
, ()

where the function p̃(t, v, . . . , vn–) is obtained from p(x, y, . . . , yn–) with x, y, . . . , yn–
properly expressed in terms of t, v, . . . , vn–. This function tends to p as t → ∞, v →
, . . . , v(n–) → .
Due to condition () for the function p(x, y, . . . , yn–), we obtain the following inequali-

ties for sufficiently large t and sufficiently small v, . . . , vn–, w, . . . ,wn–:

∣∣p̃(t, v, . . . , vn–) – p̃(t,w, . . . ,wn–)
∣∣

≤ Kmax
j

e–μ(α+j)t∣∣L–μ
j (v, . . . , vn–) – L–μ

j (w, . . . ,wn–)
∣∣.

Since Lj(, , . . . , ) 	= , the function L–μ
j is a C∞ one in a neighborhood of  and

∣∣p̃(t, v, . . . , vn–) – p̃(t,w, . . . ,wn–)
∣∣ ≤ Ke–μαt max

j
|vj –wj|

for some K > .
Solving () for v(n) and using formulae (), we obtain the equation

v(n) = (C + v)kp̃
(
t, v, v′, . . . , v(n–)

)
– pCk –

n–∑
j=

ajv(j), ()

where aj are the coefficients of the linear function Ln. Equation () can be written as

v(n) = kCk–pv –
n–∑
j=

ajv(j) + f (v) + g
(
t, v, v′, . . . , v(n–)

)
, ()

where

f (v) = po
(
(C + v)k –Ck – kCk–v

)
=O

(
v

)
as v→ ,

f ′(v) =O(v) as v→ ,

g(t, v, . . . , vn–) = (C + v)k
(
p̃(t, v, . . . , vn–) – p

)

=O

(
e–γ t +

n–∑
j=

e–γ (α+j)t

)
=O

(
exp

(
–γ min (α, )t

))

as t → ∞, v → , . . . , vn– → .

Besides, for sufficiently large t and sufficiently small v, . . . , vn–, w, . . . ,wn–, it holds

∣∣g(t, v, . . . , vn–) – g(t,w, . . . ,wn–)
∣∣

≤ ∣∣(C + v)k – (C +w)k
∣∣ · ∣∣p̃(t, v, . . . , vn–) – p

∣∣
+ (C +w)k

∣∣p̃(t, v, . . . , vn–) – p̃(t,w, . . . ,wn–)
∣∣

≤ Kmax
j

|wj – vj|e–min (γ ,μ)·min (α,)t .
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Suppose that V is the vector with coordinates Vj = v(j), j = , . . . ,n – . Then equation
() can be written as

dV
dt

= AV + F(V ) +G(t,V ), ()

where A is a constant n× nmatrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

    · · · 
    · · · 
    · · · 
· · · · · · · ·
    · · · 

–ã –a –a –a · · · –an–

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

–ã = a – kck–p = a – kα(α + ) · · · (α + n – )

= a – (α + ) · · · (α + n – )(α + n)

and eigenvalues satisfying the equation

 = det(A – λE) = (–)n+
(
–ã – aλ – · · · – an–λn– – λn)

= (–)n+
(
(α + )(α + ) · · · (α + n) – (λ + α) · · · (λ + α + n – )

)
,

which is equivalent to

n–∏
j=

(λ + α + j) =
n–∏
j=

( + α + j). ()

The mappings F : Rn → Rn and G : R × Rn → Rn satisfy the following estimates as
t → ∞:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖F(V )‖ =O(‖V‖),
‖F ′

V (V )‖ =O(‖V‖),
‖G(t,V )‖ =O(e–βt),

‖G(t,V ) –G(t,W )‖ ≤ K‖V –W‖e–βt

()

with some constants β > , K > .

Lemma  [] Suppose that () holds and A is an arbitrary constant n× n matrix. Then
there exists a solution V (t) to equation () tending to zero as t → ∞.

Lemma  [] Let the conditions of Lemma  hold. If equation () has m roots with nega-
tive real part, then there exists an m-parametric family of solutions V (t) to equation ()
tending to zero as t → ∞.

http://www.advancesindifferenceequations.com/content/2013/1/220
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If equation () has a solutionV (t) tending to  as t → ∞ andV(t) is its first coordinate,
then the function

y(x) =
(
V

(
– log

(
x∗ – x

))
+C

) · (x∗ – x
)–α

with C and α defined by () is a solution to () such that () and () hold.

Theorem  [, ] Suppose that conditions (A) and (B) are satisfied. Then for such x∗ there
exists a solution to () with power asymptotic behavior ().

Investigating the signs of the real parts of the roots of equation (), by the Routh-
Hurwitz criterion, we can prove the following theorem.

Theorem  [, ] Suppose that  ≤ n ≤  and conditions (A) and (B) are satisfied. Then
there exists an (n–)-parametric family of solutions to equation ()with power asymptotic
behavior ().

Theorem  [, , ] Suppose that n =  or n =  in equation (), the continuous positive
function p(x, y, . . . , yn–) is Lipschitz continuous in y, . . . , yn– and has a limit p >  as
x → x∗ – , y → ∞, . . . , yn– → ∞. Then any positive solution to this equation with a
vertical asymptote x = x∗ has asymptotic behavior ().

To prove the main results of this article, we use the Hopf bifurcation theorem [].

Theorem (Hopf) Consider the α-parameterized dynamical system ẋ = Lαx + Qα(x) in a
neighborhood of  ∈ Rn with linear operators Lα and smooth enough functions Qα(x) =
O(|x|) as x → . Let λα and λ̄α be simple complex conjugated eigenvalues of the opera-
tors Lα . Suppose that Reλα̃ = Re λ̄α̃ =  for some α̃ and the operator Lα̃ has no other eigen-
values with zero real part.
If Re dλα

dα
(α̃) 	= , then there exist continuous mappings ε �→ α(ε) ∈ R, ε �→ T(ε) ∈ R, and

ε �→ b(ε) ∈ Rn defined in a neighborhood of  and such that α() = α̃, T() = π/ Imλα̃ ,
b() = , b(ε) 	=  for ε 	= , and the solutions to the problems

ẋ = Lα(ε)x +Qα(ε)(x), x() = b(ε)

are T(ε)-periodic and non-constant.

Main results
In this section, the result about the existence of solutions with non-power asymptotic
behavior is proved for equation () with n = , , .

Theorem  For n = , , , there exists k >  such that equation () has a solution y(x)
with

y(j)(x) =
(
x∗ – x

)–α–jhj
(
log

(
x∗ – x

))
,

j = , , . . . ,n – ,

where α is defined by () and hj are periodic positive non-constant functions on R.

http://www.advancesindifferenceequations.com/content/2013/1/220
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Proof To apply the Hopf bifurcation theorem, we investigate equation () with G(t,V ) ≡
 corresponding to the case of the constant function p and the roots of the algebraic
equation (). F is a vector function with all zero components F(V ) = (, . . . , ,Fn–(V )),
V = (V, . . . ,Vn–), and

Fn–(V ) =
(
(C +V)k –Ck – kCk–V

)
=O

(
V

), V → ,

d
dV

Fn–(V ) =O
(|V|

)
, V → .

If equation () has a pair of pure imaginary roots, we have to check other conditions of
this theorem and then apply it.

Proposition  For any integer n > , there exist α >  and q >  such that

n–∏
j=

(qi + α + j) =
n–∏
j=

( + α + j) ()

with i = –.

Remark  In the particular case n = , this result was obtained by Vyun [].

Proof Consider the positive functions ρn(α) and σn(α) defined for all α >  via the equa-
tions

n–∏
j=

(
ρn(α) + (α + j)

)
=

n–∏
j=

( + α + j) ()

and

n–∑
j=

arg
(
σn(α)i + α + j

)
= π ()

supposing arg z ∈ [, π ) for all z ∈C \ {}.
First, we prove the functions to be well defined for all α > .
The product

∏n–
j= (q + (α + j)) is continuous and strictly increasing as a function of

q > .
It tends to

∏n–
j= (α + j) <

∏n–
j= ( + α + j) as q →  and to +∞ as q → +∞. Hence, for

any α > , there exists a unique q >  such that
∏n–

j= (q + (α + j)) =
∏n–

j= ( + α + j).
In the same way, for any α > , the sum

∑n–
j= arg(qi + α + j) is a continuous function of

q >  strictly increasing from  to πn
 > π . So, there exists a unique q >  such that the

sum is equal to π .
Since both the product and the sum considered are C-functions with positive partial

derivative in q > , the implicit function theorem provides both ρn(α) and σn(α) to be
C-functions, too.
Now it is sufficient to prove the existence of α >  such that ρn(α) and σn(α) are equal

to the same value q, which makes the two sides of () be equal.
Compare the functions ρn(α) and σn(α) near the boundaries of their common domain.

http://www.advancesindifferenceequations.com/content/2013/1/220
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Equation () defining the function ρn(α) may be written as

n–∏
j=

(
 +

j
α

+
j

α +
(

ρn(α)
α

))
=

n–∏
j=

(
 +

j + 
α

)

.

This shows that ρn(α)
α

→  as α → +∞.
Equation () defining the function σn(α) may be written as

n–∑
j=

arctan
σn(α)

α

 + j
α

= π .

This shows that σn(α)
α

→ tan π
n >  as α → +∞. Thus, ρn(α) < σn(α) for sufficiently large α.

Now, to prove Proposition , it is sufficient to show that ρn(α) > σn(α) for sufficiently
small α. To compare the functions ρn(α) and σn(α) for small α > , we need some lemmas.

Lemma  For all α > , it holds ρn(α) < (α + n) – .

Proof Suppose that ρn(α) ≥ (α + n) –  for some α > . Then

n–∏
j=

(
ρn(α) + (α + j)

) ≥
n–∏
j=

(
(α + n) –  + (α + j)

)

>
n–∏
j=

(
(α + j + ) –  + (α + j)

)
=

n–∏
j=

(
 + (α + j)

).

This contradiction with the definition of ρn(α) completes the proof of Lemma . �

Lemma  For all α > , it holds ρn+(α) > ρn(α).

Proof According to the definition of ρn(α) by () and Lemma , we have

n∏
j=

(
ρn(α) + (α + j)

)
=

n–∏
j=

( + α + j) · (ρn(α) + (α + n)
)

<
n–∏
j=

( + α + j) · ((α + n) –  + (α + n)
)
<

n∏
j=

( + α + j).

In order to make the first and the last products be equal, we have to replace ρn(α) in the
first one by a greater value. This means that ρn+(α) > ρn(α) and Lemma  is proved. �

Lemma  For all α > , it holds σn+(α) < σn(α).

Proof According to the definition of σn(α) by (), we have

n∑
j=

arg
(
σn(α)i + α + j

)
= π + arg

(
σn(α)i + α + n

)
> π .

http://www.advancesindifferenceequations.com/content/2013/1/220
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In order to make the sum equal π , we have to replace σn(α) by a smaller value. So,
σn+(α) < σn(α) and Lemma  is proved. �

Due to Lemmas , ,  proved, it is sufficient now for the proof of Proposition  to show
that ρ(α) > σ(α) for sufficiently small α > .

Lemma  It holds ρ(α) >  for all sufficiently small α > .

Proof Straightforward exact calculations show that

lim
α→

∏
j=

(
 + (α + j)

)
=

∏
j=

(
 + j

)
= ,,,,, <  · 

and

lim
α→

∏
j=

( + α + j) = (!) = ,,,,, >  · .

So, for sufficiently small α > , we have

∏
j=

(
 + (α + j)

)
<  ·  <

∏
j=

( + α + j).

Hence, for these α, in order to avoid contradiction with the definition of ρ(α), the in-
equality ρ(α) >  is necessary. Lemma  is proved. �

Lemma  It holds σ(α) <  for sufficiently small α > .

Proof Consider the limit

lim
α→

∑
j=

arg(i + α + j)

= argi + arctan + arctan  + arctan


+ arctan



+

∑
j=

arctan

j

=
π


+ arctan


+

∑
j=

arctan

j

=
π


+ arctan

 +




 – 
 · 


+ arctan


 +




 – 
 · 


+ arctan


 +




 – 
 · 


+ arctan


 +




 – 
 · 



=
π


+ arctan



+ arctan



+ arctan


+ arctan




=
π


+ arctan

 +




 – 
 · 


+ arctan


 +




 – 
 · 


=
π


+ arctan + arctan



.

http://www.advancesindifferenceequations.com/content/2013/1/220


Astashova Advances in Difference Equations 2013, 2013:220 Page 9 of 15
http://www.advancesindifferenceequations.com/content/2013/1/220

Note that

tan

(
arctan + arctan




)
=

 + 


 –  · 


= –
,
,

.

Hence, arctan + arctan 
 >

π
 and

∑
j= arg(i+α + j) > π for sufficiently small α > .

Thus, for these α, we have σ(α) < , which completes the proof of Lemma . �

Now Proposition  is also proved. �

Proposition  For any α >  and any integer n > , all roots λ ∈ C to equation () are
simple.

Proof Since we consider a polynomial equation of degree n, it is sufficient to prove the
existence of n different roots to (). We will show that for any integer m such that –n <
m ≤ n, there exists μm ∈C satisfying

n–∏
j=

|μm + j| =
n–∏
j=

( + α + j) ()

and

n–∑
j=

arg(μm + j) =mπ ()

with arg z denoting the principal value of the argument lying in the open-closed interval
(–π ,π ]. Surely, all these n complex numbers μm are different. Those with evenm gener-
ate, via the relation λm + α = μm, just n different roots λm to ().
We begin to accomplish this plan by noting that the set of μ satisfying equation ()

with m =  is the real semi-axis (,+∞) containing a single point satisfying (), namely
μ =  + α.
Similarly, the set of μ satisfying equation () withm = n is the real unbounded interval

(–∞,  – n) containing a single point satisfying (), namely μn = α – n.
Now consider the cases  <m < n and the upper complex half-plane. For any ω > , the

smooth function

φω(r) =
n–∑
j=

arg(r +ωi + j) =
n–∑
j=

arccot
r + j
ω

monotonically decreases from nπ to  as r increases from –∞ to +∞. So, for any ω > 
and b ∈ (,nπ ), there exists a unique value r such that φω(r) = b. Due to the inequality
dφω

dr (r) < , the implicit function theorem provides the existence of the smooth functions
rm(ω) satisfying φω(rm(ω)) =mπ .
Note that if r ≤ –m, then r + j <  for all j <m and r +m ≤ . Hence,

lim
ω→+

n–∑
j=

arccot
r + j
ω

≥ lim
ω→+

m–∑
j=

arccot
r + j
ω

+ lim
ω→+

arccot

ω

=mπ +
π


>mπ

and such r cannot be the value of rm(ω) for sufficiently small ω > .
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Similarly, if r ≥  –m, then r + j >  for all j >m –  and r +m –  ≥ . Hence,

lim
ω→+

n–∑
j=

arccot
r + j
ω

≤ lim
ω→+

m–∑
j=

arccot
r + j
ω

+
π


+ lim

ω→+

n–∑
j=m

arccot
r + j
ω

≤ (m – )π +
π


+  <mπ

and such r cannot be the value of rm(ω) for sufficiently small ω > .
So, if ω >  is sufficiently small, then rm(ω) satisfies the inequality –m < rm(ω) <  –m

and thereby is negative.
Consider the product

∏n–
j= |rm(ω) +ωi + j| with  < m < n and investigate its behavior

for small ω > .
If j ≥ m, then for sufficiently small ω > , we have |rm(ω) + j| = rm(ω) + j < j and

n–∏
j=m

∣∣rm(ω) + j
∣∣ ≤

n–∏
j=m

j <
n–∏
j=m

( + j). ()

If j ≤ m – , then for sufficiently small ω > , we have |rm(ω) + j| = –rm(ω) – j <m – j =
 + (m –  – j)

m–∏
j=

∣∣rm(ω) + j
∣∣ ≤

m–∏
j=

∣∣ + (m –  – j)
∣∣ = m–∏

J=

( + J), J =m –  – j. ()

Combining () and (), we obtain, for sufficiently small ω > ,

n–∏
j=

∣∣rm(ω) + j
∣∣ < n–∏

j=

( + j),

and

n–∏
j=

∣∣rm(ω) +ωi + j
∣∣ < n–∏

j=

( + α + j).

As for large ω, the left-hand side of the above inequality evidently tends to +∞ as ω →
+∞ and hence is greater than its right-hand side for sufficiently large ω. By continuity
there exists ωm >  such that

n–∏
j=

∣∣rm(ωm) +ωmi + j
∣∣ = n–∏

j=

( + α + j).

Thus, we can take μm = rm(ωm) + ωmi ∈ C to satisfy () and () for  < m < n. For
–n <m < , we can take the conjugates μm = μ–m. Thus, the existence of all μm needed is
proved. This completes the proof of Proposition . �
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Lemma  If ≤ n≤ , α > , and q >  satisfy the polynomial equation

n–∏
j=

(
(α + j) + q

)
=

n–∏
j=

(α + j + ),

then α +  < q < α + .

Proof It can be proved in the same way for all nmentioned. We show this for n = .
First, compute the right-hand side of the equation:

∏
j=

(α + j + )

= α + α + ,α + ,α + ,,α

+ ,,α + ,,,α + ,,,α

+ ,,,,α + ,,,,α + ,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,.

Now, estimate the left-hand side supposing q ≥ α +  > :

∏
j=

(
(α + j) + q

)

≥
∏
j=

(
(α + j) + α + 

)

≥ α + α + ,α + ,α + ,,α

+ ,,α + ,,,α + ,,,α

+ ,,,,α + ,,,,α + ,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α
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+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,.

The difference of this polynomial and the previous one is equal to

∏
j=

(
(α + j) + α + 

)
–

∏
j=

(α + j + )

= α + ,α + ,α + ,,α + ,,α

+ ,,,α + ,,,α + ,,,α

+ ,,,,α + ,,,,α + ,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,α

+ ,,,,,,

which is positive for any α ≥ . This shows that the polynomial equation cannot be satis-
fied by α >  and q >  with q ≥ α + .
In the same way, compute

∏
j=

(α + j + ) –
∏
j=

(
(α + j) + α + 

)

= α + ,α + ,α + ,,α + ,,α

+ ,,,α + ,,,α + ,,,,α

+ ,,,,α + ,,,,α

+ ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,α + ,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,,α + ,,,,,,α

+ ,,,,,α + ,,,,,.
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Hence,
∏

j=(α + j + ) >
∏

j=((α + j) + q) if α + ≥ q.
This contradiction yields α +  < q < α + . So, Lemma  is proved. �

The conditionRe dλα

dα
(α̃) 	=  needed for theHopf theorem, expressed explicitly bymeans

of the implicit function theorem, looks like

[ n–∑
j=

α + j
q + (α + j)

]

+

[ n–∑
j=

q
q + (α + j)

]

	=
n–∑
j=

α + j
q + (α + j)

n–∑
j=


 + α + j

.

Lemma  If  ≤ n≤ , α >  and  < q < α + , then

[ n–∑
j=

α + j
q + (α + j)

]

+

[ n–∑
j=

q
q + (α + j)

]

>
n–∑
j=

α + j
q + (α + j)

n–∑
j=


 + α + j

. ()

Proof Hereafter all sums and products with no limits indicated are over j = , , . . . ,n – .
Multiplying inequality () by U∗ =

∏
( + α + j) and then twice by V∗ =

∏
[q + (α + j)],

we obtain the following equivalent inequality provided α > :

U∗
[(∑

(α + j)Vj

)
+ q

(∑
Vj

)]
> V∗

∑
(α + j)Vj

∑
Uj ()

with the polynomials Uj = U∗
+α+j and Vj = V∗

q+(α+j) .
Put q = α+

+w , w > . Substituting this into inequality () and multiplying the result by
( +w)n–, we obtain another equivalent one:

U∗
[
( +w)

(∑
(α + j)Pj

)
+ (α + )

(∑
Pj

)]
> P∗ ·

∑
(α + j)Pj ·

∑
Uj ()

with P∗ =
∏
[α +  + ( +w)(α + j)] and Pj = P∗

α++(+w)(α+j) .
Both sides of inequality () are polynomials of α and w with non-negative integer co-

efficients. So, they can be computed exactly, with no rounding. This rather cumbersome
computation gives the following result for the difference of the left- and right-hand sides
of () expressed as

U∗
[
( +w)

(∑
(α + j)Pj

)
+ (α + )

(∑
Pj

)]

– P∗
∑

(α + j)Pj
∑

Uj =
n–∑
j=

�jα
j

()

with polynomials�j ∈R[w]. Straightforward though very cumbersome calculations show
that �n– = , and all other �j in () are polynomials with positive coefficients.
This completes the proof of Lemma . �
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To apply the Hopf bifurcation theorem, we need to check that equation () cannot
have more than a single pair of imaginary conjugated roots. It can be easily obtained by
considering equation ().
Now, the Hopf bifurcation theorem and the lemmas proved provide, for n = , , ,

the existence of a family αε >  such that equation () with α = α has imaginary roots
λ = ±qi and for sufficiently small ε, system () with α = αε has a periodic solution Vε(t)
with period Tε → T = π

q as ε → . In particular, the coordinateVε,(t) = v(t) of the vector
Vε(t) is also a periodic function with the same period. Then, taking into account (), we
obtain

y(x) =
(
C + v

(
– ln

(
x∗ – x

)))(
x∗ – x

)–α .

Put h(s) = C + v(–s), which is a non-constant continuous periodic and positive for suffi-
ciently small ε function and obtain the required equality

y(x) =
(
x∗ – x

)–αh
(
ln

(
x∗ – x

))
.

In the similar way, we obtain the related expressions for y(j)(x), j = , , . . . ,n – .
Theorem  is proved. �

Conclusions, concluding remarks and open problems
. Computer calculations give approximate values of α providing equation () to have

a pure imaginary root λ. They are, with corresponding values of k, as follows:
if n = , then α ≈ ., k ≈ .;
if n = , then α ≈ ., k ≈ .;
if n = , then α ≈ ., k ≈ ..

. Note that equation () has no pure imaginary roots if n≤ . So, the Hopf
bifurcation theorem cannot be applied, but it does not follow that Theorem 
cannot be proved for some n < .

. Equation () with n =  has solutions of type () with oscillatory h (see [, ]).
. If n ≥ , then the inequality needed for the Hopf bifurcation theorem Re dλα

dα
(α̃) 	= 

cannot be proved in the same way because the estimate q < α +  does not hold.
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