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Abstract
For the equation

Yy =k k>1,n=12,13,14,

the existence of positive solutions with non-power asymptotic behavior is proved,
namely

y=x*"-x)"%h(log(x*-x)), o= %,x <x*,

where x* is an arbitrary point, h is a positive periodic non-constant function on R.
To prove this result, the Hopf bifurcation theorem is used.

Keywords: asymptotic behavior; Emden-Fowler higher-order equations

Introduction

For the equation

(1) =p(x.y,. ..,y("’l))|y|k sgny, n>2,k>1, 1)

Y
Kiguradze posed the problem on the asymptotic behavior of its positive solutions such
that

lim y(x) = co. (2)

x—>x*—0

He found an asymptotic formula for these solutions to (1) with # = 2 (see [1]) and sup-
posed all such solutions to have power asymptotic behavior for other #, too. The problem
was solved for n = 3 and n = 4 [2]. For these 7, it was proved that all such solutions behave

as

y(x) = C(x* —x)_a (1+0(1), x—a"-0, (3)

© 2013 Astashova; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.advancesindifferenceequations.com/content/2013/1/220
mailto:ast@diffiety.ac.ru
http://creativecommons.org/licenses/by/2.0

Astashova Advances in Difference Equations 2013, 2013:220
http://www.advancesindifferenceequations.com/content/2013/1/220

with

n c <a(a+1)~~~(a+n—1)>ﬁ, @

Po

Ppo = const > 0 - is a limit of p(x, yg, ..., ¥s-1) as x = x* = 0, Yo = 00,..., Y1 —> OO.
So, the hypothesis of Kiguradze was confirmed in this case.
The existence of solutions satisfying (3) was proved for arbitrary n > 2. For 2 <n <11,

an (n — 1)-parametric family of such solutions to equation (1) was proved to exist (see [2],
[3], Ch.I(5.1)).
For the equation

y(”) = yk, k>1, (5)

a negative answer to the conjecture of Kiguradze for large n was obtained. It was proved
[4] that for any N and K > 1, there exist an integer n > N and k € R, 1 < k < K, such that
equation (5) has a solution

y= (x* - x)_ah(log(x* —x)), (6)

where « is defined by (4), /1 is a positive periodic non-constant function on R.
Still, it was not clear how large n should be for the existence of that type of solutions.

Preliminary results
Suppose the following conditions hold:

(A) The continuous positive function p(x,¥o,...,y»-1) has a limit pg = const > 0 as x —
x* = 0,59 = 09,...,Y,-1 = 00, and for some y > 0, it holds

n-1

(B) For some K; > 0 and p > 0 in a neighborhood of x* for sufficiently large yo, ..., V41,
Z0y+++»Zn_1, it holds

[P Y0, Yne1) = P, 205 Zn1) | < K max i -z (8)
Then equation (1) can be transformed (see [2] or [3], Ch.I(5.1)) by using the substitution
x—x=¢", y=(C +v)e™, )

where C and « are defined by (4). The derivatives y(i),j =0,1,...,n -1, become

el Li(wV,. ..,V(j)),
where V) = % and L; is a linear function with

L;j(0,0,...,0) = Ca(@ +1)---(x+j-1) #0

and the coefficient of v¥) equal to 1.
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Thus (1) is transformed into
glrmt Ly(v,V,..., V(")) =(C+ V)ke“ktia(t, wv,..., v(”_n), (10)

where the function p(t, vy, ..., v, 1) is obtained from p(x,yo,...,y,-1) with x,y0,...,¥,1
properly expressed in terms of £, vy,...,v,1. This function tends to py as t — oo, v —
0,...,v" D —0.

Due to condition (8) for the function p(x, yo,...,¥.-1), we obtain the following inequali-
ties for sufficiently large ¢ and sufficiently small vy, ..., v,_1, wo,..., Wy_1:

|ﬁ(t) Vo, .. ~;Vn—l) _ﬁ(t) Wo,eees Wn—1)|

< Ky max e’“(“*j)tiL/_”(vo, S VY Lj_“(wo, e wn,1)|.
j

Since L;(0,0,...,0) #0, the function Lj_“ is a C* one in a neighborhood of 0 and

|ﬁ(t> Voseves Vn—l) _ﬁ(t) Wos..0s Wn—1)| = I(Ze_lw[t max |V] - W]|
J

for some K, > 0.
Solving (10) for v and using formulae (4), we obtain the equation

n-1
Vv = (C+ ) p(t v, v,..., WD) — poCF - Zajv(/), (11)
j=0

where a; are the coefficients of the linear function L,. Equation (11) can be written as

n-1

v = kC*pov — Za/v(’) +f0) +g(t v v,..., ), (12)
=0

where
FW) =po((C+v) = C*—kC*'v) = O(v*) asv— 0,
f =01 asv—0,
gt Vo Vu1) = (C +vo) (B(t, vo, - ., V1) — Po)
= o(ayt - ni:e-ﬂ“*ﬂt) = O(exp (~y min (o, 1)t))
=0

ast — oo,vg — 0,...,v,.1 — 0.

Besides, for sufficiently large ¢ and sufficiently small vy, ..., v,_1, wo, ..., w,_1, it holds

|g(t:VOx~~;Vn—1) —g(t,WO,-.-,Wn—1)|
< [(C+vo)* = (C+wo)*| - |B(t:vos - Vu1) = Po]
+ (C + WO)k|ﬁ(t’ VO;'“rVn—l) —‘ﬁ(t, WO;~~~;WVI—1)|

< ](3 max |W] _ Vj|€7 min (y,u)-min (ot,l)t.
]
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Suppose that V is the vector with coordinates V; = %, j = 0,...,1n — 1. Then equation
(12) can be written as

‘;—‘; =AV +E(V) +G(t, V), (13)

where A is a constant # X # matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
A= ,
0 0 0 0 1
-dy -a1 —dy —ds —Ap-1
with

—ay = ao -k pg = ag —ka(a +1) - (@ +n—1)

=ap—(@+1)---(@+n-1)(a+n)
and eigenvalues satisfying the equation

0 = det(A — 1E) = (-1} (<o — a1k -+ ~ a1 = 27)

=(-D" @+ D@+2)(@+n)-A+a) - (A+a+n-1)),

which is equivalent to

n-1 n-1
[Jo-+ea+p=]]a+a+). (14)
j=0 Jj=0

The mappings F : R” — R” and G : R x R" — R” satisfy the following estimates as

t— o0

IECV)IE = O(IVI?),

IE, (V)1 = OV,

IG(, V)] = O(e™),

IG@E, V) - G(t, W) | < K[|V = W]le™>*

(15)

with some constants 8 > 0, K > 0.

Lemma 1 [3] Suppose that (15) holds and A is an arbitrary constant n x n matrix. Then
there exists a solution V(t) to equation (13) tending to zero as t — oo.

Lemma 2 [3] Let the conditions of Lemma 1 hold. If equation (14) has m roots with nega-
tive real part, then there exists an m-parametric family of solutions V (t) to equation (13)
tending to zero as t — oo.
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If equation (13) has a solution V(¢) tending to 0 as t — oo and V;(¢) is its first coordinate,
then the function

y(x) = (Vo (— log (x* - x)) + C) . (x* —x)fa
with C and « defined by (4) is a solution to (1) such that (2) and (3) hold.

Theorem 1 [2, 3] Suppose that conditions (A) and (B) are satisfied. Then for such x* there
exists a solution to (1) with power asymptotic behavior (3).

Investigating the signs of the real parts of the roots of equation (14), by the Routh-
Hurwitz criterion, we can prove the following theorem.

Theorem 2 [2, 3] Suppose that 3 < n <11 and conditions (A) and (B) are satisfied. Then
there exists an (n — 1)-parametric family of solutions to equation (1) with power asymptotic
behavior (3).

Theorem 3 [2, 3, 5] Suppose that n =3 or n = 4 in equation (1), the continuous positive
function p(x,yo,...,Yu-1) is Lipschitz continuous in Yo, ...,y,1 and has a limit py > 0 as
x— x* =0, y0 = 00,...,¥,-1 = 00. Then any positive solution to this equation with a
vertical asymptote x = x* has asymptotic behavior (3).

To prove the main results of this article, we use the Hopf bifurcation theorem [6].

Theorem (Hopf) Consider the o-parameterized dynamical system x = Lyx + Qy(x) in a
neighborhood of 0 € R" with linear operators L, and smooth enough functions Q(x) =
O(|x|%) as x — 0. Let Lo, and L, be simple complex conjugated eigenvalues of the opera-
tors Ly. Suppose that Re Az = Re Az = 0 for some & and the operator Lg has no other eigen-
values with zero real part.

IfRe %’(&) # 0, then there exist continuous mappings ¢ — «(¢) €R, e — T'(¢) € R, and
& > b(e) € R” defined in a neighborhood of 0 and such that «(0) = &, T(0) = 27/Im X4,
b(0) =0, b(e) #0 for e #0, and the solutions to the problems

% = Lo(e)x + Qu(e) (%),  x(0) = b(e)
are T (g)-periodic and non-constant.

Main results
In this section, the result about the existence of solutions with non-power asymptotic
behavior is proved for equation (5) with # = 12,13, 14.

Theorem 4 For n =12,13,14, there exists k > 1 such that equation (5) has a solution y(x)
with

y(j)(x) = (x* —x)fa*jh,»(log(x* —x)),

where o is defined by (4) and h; are periodic positive non-constant functions on R.
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Proof To apply the Hopf bifurcation theorem, we investigate equation (13) with G(¢, V) =
0 corresponding to the case of the constant function p and the roots of the algebraic
equation (14). F is a vector function with all zero components F(V) = (0,...,0,F,_1(V)),
V=WVo,...,V,1),and

E,a(V) = ((C+ Vo)f = C* = kCVp) = O(Vp?), Vo — 0,

d

WFn—l(V) =0(IVol), Vo—0O.

If equation (14) has a pair of pure imaginary roots, we have to check other conditions of
this theorem and then apply it.

Proposition 1 For any integer n > 11, there exist a« > 0 and q > 0 such that

n-1 n-1
[[@i+a+p=]]a+a+) (16)
j=0 j=0

with i = -1.

Remark 1 In the particular case n = 12, this result was obtained by Vyun [7].

Proof Consider the positive functions p,(«) and o,(«) defined for all « > 0 via the equa-

tions
n-1 n-1
[ [(on(@)® + (@ +/)*) =[ [ +a+)? 17)
j=0 Jj=0

and
n-1
Z arg(oy ()i + o +j) =27 (18)
j=0

supposing argz € [0,2x) for all z € C\ {0}.

First, we prove the functions to be well defined for all @ > 0.

The product ]_[;':_Ol(q2 + (o + j)?) is continuous and strictly increasing as a function of
q>0.

It tends to ]_[;’z_ol(a +j)? < 1’:01(1 +a +j)* as ¢ — 0 and to +00 as ¢ — +oo. Hence, for
any o > 0, there exists a unique g > 0 such that ]_[;'zfl(q2 +(a+j)?) = ]_[7;01(1 +a+j)%.

In the same way, for any « > 0, the sum Z;fol arg(gi + «a + j) is a continuous function of
q > 0 strictly increasing from 0 to %* > 27. So, there exists a unique g > 0 such that the
sum is equal to 27.

Since both the product and the sum considered are C!-functions with positive partial
derivative in g > 0, the implicit function theorem provides both p,(«) and o,(«) to be
C!-functions, too.

Now it is sufficient to prove the existence of & > 0 such that p,(«) and o,(«) are equal
to the same value g, which makes the two sides of (16) be equal.

Compare the functions p,(«) and o,(«) near the boundaries of their common domain.
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Equation (17) defining the function p,(«) may be written as
n-1 n-1
2 " 1
NCHE ’—z+(” 2))TI0)
0 a o -0

This shows that "” — 0aso — +00.

Equation (18) deﬁmng the function o, («r) may be written as

n-1 on(a)
Z arctan —% = 27.
=0 1+ o

This shows that "” ) tan T > 0as o — +00. Thus, p,(a) < 0, () for sufficiently large «.
Now, to prove Pr0p051t10n 1, it is sufficient to show that p,(«) > o,(«) for sufficiently

small &. To compare the functions p,(«) and o, () for small & > 0, we need some lemmas.
Lemma 3 Forall « > 0, it holds p,(a)* < 2(x + 1) — 1.

Proof Suppose that p,(a)? > 2(a + 1) — 1 for some a > 0. Then

n-1 n-1
[ [(pnle)® + (@ +)*) = [ [(2(c + 1) =1 + (@ +)?)
j=0 Jj=0
n-1 n-1
> 2@+j+1) -1+ (a+))?) 1_[1+(oz+/)
j=0 j=0
This contradiction with the definition of p,(«) completes the proof of Lemma 3. O

Lemma 4 For all a > 0, it holds p,.1(a) > p,(a).

Proof According to the definition of p,(«) by (17) and Lemma 3, we have

n

n-1
[ T(on(@)* + (@ +)%) = [ [+ +))* - (pu(@)?® + (o + n)?)

j=0
n-1 n
< 1_[(1+a+j)2~(2(a+n)—1+(oz+n)2) <1_[(1+o:+j)2.

Jj=0

In order to make the first and the last products be equal, we have to replace p,(«) in the

first one by a greater value. This means that p,,1() > p, () and Lemma 4 is proved. [
Lemma 5 Forall o >0, it holds 0,.,1(a) < o, ().

Proof According to the definition of o, () by (18), we have

Zarg(o,,(a)i +o+j) =21 +arg(on()i +a +n) > 27,
=0
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In order to make the sum equal 27, we have to replace o,(c) by a smaller value. So,
ons1(@) < 0,(o) and Lemma 5 is proved. O

Due to Lemmas 3, 4, 5 proved, it is sufficient now for the proof of Proposition 1 to show

that p1p(«) > o12(«) for sufficiently small « > 0.
Lemma 6 It holds p12(a) > 2 for all sufficiently small o > 0.

Proof Straightforward exact calculations show that

1 1
lim ]l_o[(z2 +(a+))?) = 1_()[(4 +/%) =192,175,659,520,000,000 < 2 - 10"
- =

and

11
lim []a+a+)* =212 = 229,442,532,802,560,000 > 2 - 10"
a—> =0

So, for sufficiently small « > 0, we have

1 1
l_[(22 + (« +j)2) <2-10" < l_[(l +a+))>
j=0 j=0

Hence, for these «, in order to avoid contradiction with the definition of p1»(@), the in-

equality p1p(a)? > 22 is necessary. Lemma 6 is proved. O
Lemma 7 It holds o15() < 2 for sufficiently small a > 0.

Proof Consider the limit

11
lim arg(2i ]
OHOZ 2(2i + « +))
j=0
1
. 2 2
=arg2i + arctan2 + arctan1 + arctan 3 + arctan > + Z arctan —
j=5
11
5r
= — +arctan — + Z arctan —
4 3 p: j

[SSI1S)
+
[Sa11 S}
N

ao| +

2
5 +arctan 772 + arctan
.2 1-2.2

5 7
5m 16 13 1 21

= — +arctan — + arctan — + arctan — + arctan —
4 1 19 2 53

16 , 13 1, 21

in 9 ) + 53 T 19

———— +4arctan ——>=— = — + arctan 447 + arctan —.

6 13 1-1.21 4 17
2

11 53

5m
= — 4 arctan
4 1

|
Wi

5
= — 4 arctan
4
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Note that

19\ 447+ 3,809
17

tan| arctan 447 + arctan — | = o =~ .
1-447 - & 4,238

Hence, arctan 447 + arctan 12 > 3% and Z}io arg(2i + o +j) > 27 for sufficiently small o > 0.
Thus, for these «, we have o1,() < 2, which completes the proof of Lemma 7. O

Now Proposition 1 is also proved. d

Proposition 2 For any o > 0 and any integer n > 1, all roots € C to equation (14) are
simple.

Proof Since we consider a polynomial equation of degree #, it is sufficient to prove the
existence of # different roots to (14). We will show that for any integer m such that —» <
m < n, there exists u,, € C satisfying

n-1 n-1
[Tim+i =] Ja+a+)) (19)
j=0 j=0

and
n-1
> arg(im +)) = mn (20)
j=0

with argz denoting the principal value of the argument lying in the open-closed interval
(=7, 7]. Surely, all these 2n complex numbers 11, are different. Those with even m gener-
ate, via the relation A,, + & = W, just n different roots 1, to (14).

We begin to accomplish this plan by noting that the set of u satisfying equation (20)
with m = 0 is the real semi-axis (0, +00) containing a single point satisfying (19), namely
no=1+ca.

Similarly, the set of u satisfying equation (20) with m = # is the real unbounded interval
(—00,1 — n) containing a single point satisfying (19), namely p, =« — n.

Now consider the cases 0 < m < n and the upper complex half-plane. For any w > 0, the
smooth function

n-1 n-1 .
Pu(r) = Z arg(r + wi +j) = Z arccot )
w
j=0 j=0

monotonically decreases from nm to 0 as r increases from —oco to +00. So, for any w > 0

and b € (0, nm), there exists a unique value r such that ¢,(r) = b. Due to the inequality

d¢(4)
dr

rm(w) satisfying ¢, (r,,(w)) = mm.

(r) < 0, the implicit function theorem provides the existence of the smooth functions

Note that if r < —m, then r +j < 0 for all j < m and r + m < 0. Hence,
n-1 m-1

) rejo rejo 0 T
lim E arccot — > lim E arccot — + lim arccot — = mmw + — > mm

w—+0 =0 w w—>+0 =0 w w—+0

and such r cannot be the value of r,,(w) for sufficiently small w > 0.
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Similarly,if r >1—m, thenr+;j>0forallj>m —1and r + m—1> 0. Hence,

n-1 . .
lim Zarccot —] < lim Zarccot —] + 5 + lim Z arccot —]

w—+0 w—+0 w—+0

/4
§(m—1)n+§+0<mn

and such r cannot be the value of r,,(w) for sufficiently small > 0.

So, if w > 0 is sufficiently small, then r,,(w) satisfies the inequality —-m < r,,(w) <1 -m
and thereby is negative.

Consider the product ]_[7:_01 |rm(w) + wi + j| with 0 < m < n and investigate its behavior
for small w > 0.

If j > m, then for sufficiently small w > 0, we have |r,,(w) +j| = ru(w) +j <j and

n-1 n-1
]‘[|rm o)+jl <[ Ti<[1a+). (21)
j=m j=m j=m
If j < m -1, then for sufficiently small w > 0, we have |r,,(w) +j| = —rp(w) —j<m—j=
1+(m—-1-j)
m-1
]_[\rmw)+1\<]_[]1+m 1-j|=[Ja+n, J=m-1-;j (22)
J=0

Combining (21) and (22), we obtain, for sufficiently small w > 0,

n-1 n-1
[ [Irm(@) +j] <]+,
j=0 Jj=0
and
n-1 n-1
l_[|rm(a)) + wi +j| < 1_[(1 +a+)).
j=0 j=0

As for large w, the left-hand side of the above inequality evidently tends to +0o as w —
+00 and hence is greater than its right-hand side for sufficiently large w. By continuity

there exists w,, > 0 such that

n-1 n-1
l_[|rm(a)m) + Wyl +j| = H(l +a+)).
j=0 j=0

Thus, we can take p,, = ry(wm) + w,i € C to satisfy (19) and (20) for 0 < m < n. For
—n < m < 0, we can take the conjugates (,, = t_,,. Thus, the existence of all \,, needed is

proved. This completes the proof of Proposition 2. d
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Lemma 8 [f12 <n <14, « > 0, and q > 0 satisfy the polynomial equation

n-1 n-1
l_[((a +))% + qz) = H(a +j+1)%
j=0 j=0

then 2a + 4 < g* <30 + 5.

Proof 1t can be proved in the same way for all # mentioned. We show this for n = 12.

First, compute the right-hand side of the equation:

1

[J+j+1y

j=0
=o?* + 156022 +11,518¢?% + 535,3920%! +17,581,135¢:%°

+433,823,676a" + 8,353,410,208¢'8 + 128,665,048,512"

+1,612,229,817,0550¢:'° + 16,625,859,652,116¢'> + 142,196,061,4.81,318c 1

+1,013,438,536,648,5120:" + 6,032,418,472,347,2650."
+29,989,851,619,249,2360

+124,253,074,219,885,468c'" + 427,135,043,298,835,872a°
+1,209,806,045,835,003,760a® + 2,795,060,589,044,133,6960”
+5,194,030,186,679,450,688a° + 7,613,724,634,416,755,712°
+8,564,233,279,835,510,784a* + 7,096,936,674,284,421,1200
+4,059,952,667,309,260,8000: + 1,424,017,035,657,216,000c

+229,442,532,802,560,000.

Now, estimate the left-hand side supposing g> > 3« + 5 > 0:

11

H((a +))* +4°)

j=0

1

ZH((O[ +J)* +3a +5)

j=0
> a?* +168a?® + 13,2160 + 647,658 + 22,191,1360%°

+ 565,650,624 +11,143,609,279«'® +174,022,752,156a"

+2,192,303,359,180c'® + 22,557,120,652,044a" +191,221,185,335,728c 4

+1,343,463,278,373,840a" + 7,851,135,965,424, 7512
+38,226,775,470,470,44 8
+155,030,143,411,290,136'° + 522,520,458,095,057,9940°

+1,457,064,439,886,002,624a® + 3,337,255,633,900,992,816a”
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+6,209,925,089,367,687,345a° + 9,237,499,888,429,090,76 4a°
+10,723,421,856,201,549,372a* + 9,360,016,963,404,522,912a>
+5,777,193,048,791,013,360a? + 2,247,088,906,508,241,600«

+413,920,896,501,672,000.

The difference of this polynomial and the previous one is equal to

1

11

1_[((oz+j)2+305+5)—l_[(oz+j+1)2

j=0

j=0

=120% +1,698c?% + 112,266 + 4,610,001¢?° + 131,826,948«

which is positive for any & > 0. This shows that the polynomial equation cannot be satis-

+2,790,199,071a'® + 45,357,703,644a' + 580,073,542,125x
+5,931,260,999,928c" + 49,025,123,854,410™ + 330,024,741,725,328a"
+1,818,717,493,077,486a'* + 8,236,923,851,221,2120/1*
+30,777,069,191,404,668a'° + 95,385,414,796,222,1220°
+247,258,394,050,998,86 4 + 542,195,044,856,859,1200”
+1,015,894,902,688,236,657a° +1,623,775,254,012,335,052c°
+2,159,188,576,366,038,588a* + 2,263,080,289,120,101,792a>
+1,717,240,381,481,752,56 00 + 823,071,870,851,025,600cx

+184,478,363,699,112,000,

fied by o > 0 and g > 0 with g% > 3« + 5.
In the same way, compute

11

11

l_[(a+j+1)2—l_[((a+j)2+2a+4)

Jj=0

Jj=0

=96a?? + 13,1560 + 844,624a?° + 33,778,316"° + 943,838,852c'®

+19,590,096,240a"7 + 313,464,915,984a'® + 3,960,996,926,744a"®
+40,162,617,066,616a™* + 330,203,929,721,796a >
+2,215,299,128,334,8000

+12,163,303,361,220,828a" + 54,651,209,110,677,4760*°
+200,323,721,839,107,2400° + 595,229,721,350,941,648a®
+1,419,051,246,703,474,880a” + 2,673,079,829,956,829,568c°
+3,889,993,689,940,050,432a° + 4,228,750,706,659,177,984a*
+3,257,831,645,648,401,920a° + 1,625,109,784,526,284,8000:

+437,271,322,981,376,000c + 37,266,873,282,560,000.
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Hence, ]_[}io(a +j+1)2> }io((a +/) +q%) if 20 + 4 > g,
This contradiction yields 2 + 4 < g* < 3 + 5. So, Lemma 8 is proved. g

The condition Re d’\“ 2 () # 0 needed for the Hopf theorem, expressed explicitly by means
of the implicit functlon theorem, looks like

n-1 . 2 n-1 2
LY _a
[JXO: 7+ @ +j)2] ' [,ZO 7+ @ +j)2}

n-1
o+j
#]Zoq +( a+]2zl+a+1

j=0

Lemma 9 1f12§n514,a>05md0<q2<3a+5,then

n-1 , 2 -1 2
et 9
|:;):q2+(a+j)2:| +|:/Zoq2+(a+j)2i|

n-1
o+j 1
>Zj: 2 i Zl+a+j’ (23)

~ g+ (a +))? P

Proof Hereafter all sums and products with no limits indicated are over j=0,1,...,n—1.
Multiplying inequality (23) by U, = [](1 + « + /) and then twice by V, = [][¢* + (« +j)?],
we obtain the following equivalent inequality provided « > 0:

w[(Cepv) (X)) v ey Yy, (24)

with the polynomials U; = and Vj = —*—.
/ 1 vty 4> +(ar+))
31"1;/5, w > 0. Substituting this into inequality (24) and multiplying the result by

(1 + w)?*~1, we obtain another equivalent one:

U*[(l + W)(Z(a +1)1’j)2 + B+ 5)(21)1')2]
>Poy (a4 )P ) U )

with P, = [[[3c +5 + (1 + w)(e +/)*] and Py = —— 2

Sa+5+1+w)(a+j)?
Both sides of inequality (25) are polynomials of « and w with non-negative integer co-

Put ¢ =

efficients. So, they can be computed exactly, with no rounding. This rather cumbersome
computation gives the following result for the difference of the left- and right-hand sides
of (25) expressed as

u*[(l ¥ w)(Z(a +1')P;)2 + B+ 5)(21’1')2]
5n-2 (26)

—P.Y (@+ )Py Ui=> A
j=0

with polynomials A; € R[w]. Straightforward though very cumbersome calculations show
that As,_5 = 0, and all other A; in (26) are polynomials with positive coefficients.
This completes the proof of Lemma 9. d
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To apply the Hopf bifurcation theorem, we need to check that equation (14) cannot
have more than a single pair of imaginary conjugated roots. It can be easily obtained by
considering equation (16).

Now, the Hopf bifurcation theorem and the lemmas proved provide, for n = 12,13,14,
the existence of a family a, > 0 such that equation (14) with o = «p has imaginary roots
A = £qi and for sufficiently small ¢, system (13) with o = ¢, has a periodic solution V,(¢)
with period T, — T = 27” as ¢ — 0. In particular, the coordinate V o(£) = v(¢) of the vector
Ve (t) is also a periodic function with the same period. Then, taking into account (9), we

obtain

y(x) = (C + V(— 1n(x* - x)))(x* —x)

Put A(s) = C + v(-s), which is a non-constant continuous periodic and positive for suffi-

ciently small ¢ function and obtain the required equality
y(x) = (x* - x)_ah(ln(x* - x))

In the similar way, we obtain the related expressions for y%(x),j = 0,1,...,7 — 1.
Theorem 4 is proved. d

Conclusions, concluding remarks and open problems

1. Computer calculations give approximate values of « providing equation (14) to have

a pure imaginary root A. They are, with corresponding values of k, as follows:
if n =12, then « ~ 0.56, k ~ 22.4;
if n =13, then a ~ 1.44, k ~10.0;
if n =14, then « = 2.37, k = 6.9.

2. Note that equation (14) has no pure imaginary roots if n < 11. So, the Hopf
bifurcation theorem cannot be applied, but it does not follow that Theorem 4
cannot be proved for some n < 12.

3. Equation (5) with # = 3 has solutions of type (6) with oscillatory % (see [3, 5]).

If n > 15, then the inequality needed for the Hopf bifurcation theorem Re {’Z‘—; (@) #0

cannot be proved in the same way because the estimate g* < 3« + 5 does not hold.
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