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Abstract
In this paper, a predator-prey system with sex-structure and sexual favoritism is
considered. Firstly, the impact of the sexual favoritism coefficient on the stability of
the ordinary differential equation (ODE) model is studied. By choosing sexual
favoritism coefficient as a bifurcation parameter, it is shown that a Hopf bifurcation
can occur as it passes some critical value, and the stability of the bifurcation is also
considered by using an analytical method. Secondly, the impact of the time delay on
the stability of the delay differential equation (DDE) model is investigated, where time
delay is regarded as a bifurcation parameter. It is found that a Hopf bifurcation can
occur as the time delay passes some critical values. Using the normal form theory and
center manifold argument, the explicit formulae which determine the stability,
direction and other properties of bifurcating periodic solutions are derived. Numerical
simulations are performed to support theoretical results and some complex dynamic
behaviors are observed, including period-halving bifurcations, period-doubling
bifurcations, high-order periodic oscillations, chaotic oscillation, fast-slow oscillation,
even unbounded oscillation. Finally, a brief conclusion is given.
MSC: 34K13; 34K18; 34K60; 37D45; 37N25; 92D25
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1 Introduction and formulation of themodel
Sex ratio means the comparison of male and female individual number in populations.
Usually, we assume the sex ratio is  : . However, to some wildlife, the sex ratio of popula-
tions will change with the kinds, mate, environment conditions, social behavior, resource,
adaptability, heredity, gene structure, etc. (see [–]). The animal’s sex ratio will change
with different animals in the different life history stage. Along with the growth of the age,
themale individuals tend to relatively decrease, but there exists a variety of birds forwhich,
on the contrary, the male individuals relatively increase. In isolated populations, males
compete locally for mates and resource, sex ratio will affect the dynamic behavior of the
population []. Sex ratio is a basic dynamic factor for the analysis of populations, and it
has important influence on the dynamic state of populations.
Based on the classical Lotka-Volterra model, Liu et al. [] introduced the following sex-

structure model:
⎧⎪⎨
⎪⎩
m′(t) = bf (t) – dm(t) – k(m(t) + f (t))m(t) – cm(t)x(t),
f ′(t) = f (t)(β – k(m(t) + f (t)) – cx(t)),
x′(t) = x(t)(–a – bx(t) + cm(t) + cf (t)),

(.)
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where m(t) and f (t) are the male, female individuals of the prey population, x(t) is the
predator population. The parameters a, b, b, b, c, c, d, d, k are positive, b, b, d,
d are constants of proportionality for male and female prey growth and death (b > d,
where β = b – d), a is the constants of proportionality for a predator, c is the preda-
tion coefficient for a predator and c/c ( < c/c < ) is the rate of conversing prey into
a predator, respectively. The authors obtained the conditions for the equilibrium stability
of system (.).
Moreover, Boukal et al. [] considered sex-selective predation using several simple

predator-prey models, for example, male-biased predation is frequently related to prey
traits shaped by sexual selection, predators and parasitoids are attracted by mating sig-
nals of their male prey; female-biased predation is often related to prey traits shaped by
fecundity selection since it is easier or more rewarding to detect them than prey. The au-
thor found that long-term effects of sex-selective predation depend on the interplay of
predation bias and prey mating system, given the conclusion that ‘predation on the “less
limiting” prey sex can yield a stable predator-prey equilibrium, while predation on the
other sex usually destabilizes the dynamics and promotes population collapses’. For the
methods, models, data, results, and more details, see [].
Considering system (.) with sexual favoritism (sex-selective predation), Liu et al. []

introduced the following ODE model:

⎧⎪⎨
⎪⎩
m′(t) = bf (t) – dm(t) – σ cm(t)x(t),
f ′(t) = f (t)(β – cx(t)),
x′(t) = x(t)(–a + σ cm(t) + cf (t)),

(.)

where σ is the sexual favoritism coefficient, σ >  means that the predator prefers predat-
ing male prey to female prey,  < σ <  means that the predator prefers predating female
prey to male prey, and σ =  means there is no sexual favoritism. The authors obtained the
conditions for the equilibrium stability of system (.). But, how does the dynamic behav-
ior go when the positive equilibrium loses stability? Does there exist a periodic solution
or other rich dynamic behaviors?
Delays play an important role in the dynamics of populations. Delay can cause the loss

of stability and can bifurcate various periodic solutions. Recently, there has been extensive
work dealing with time delay systems (see [–]). In many processes of the real world,
especially inmany biological phenomena, the present dynamics, the present rate of change
of the state variables depend not only on the present state of the processes but also on the
history of the phenomenon, i.e., on past values of the state variables. We assume that the
reproduction of the predator after predating the prey is not instantaneous and needs some
discrete time delay required for gestation of the predator (see [–]). Thenwe formulate
the following DDE model:

⎧⎪⎨
⎪⎩
m′(t) = bf (t) – dm(t) – σ cm(t)x(t),
f ′(t) = f (t)(β – cx(t)),
x′(t) = –ax(t) + σ cm(t – τ )x(t – τ ) + cf (t – τ )x(t – τ ),

(.)
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where τ (τ > ) is the time required for the gestation of the predator. The initial conditions
for (.) are

(
ϕ(θ ),ϕ(θ ),φ(θ )

) ∈ C+ =
{
[–τ , ],R

+
}
, ϕ(θ ) > ,ϕ(θ ) > ,φ(θ ) > ,

where R
+ = {(m, f ,x) ∈R

,m≥ , f ≥ ,x≥ }.
To the best of our knowledge, few papers focus on the predator-prey system with sex-

structure. Recently, Xiong and Zhang [] have studied a predator-prey model with sex-
structure. They obtained the sufficient and realistic conditions for the existence of a posi-
tive periodic solution by constructing a V functional, and using the result of the existence
of positive periodic solutions, the global attractivity of a positive periodic solution was
also obtained. Based on system (.), Li and Xiong [] investigated the discrete periodic
sex structure model and obtained sufficient and realistic conditions for the existence and
global attractivity of a positive periodic solution for it. The pest management strategy of a
prey-predator system model with sexual favoritism was considered by Pei et al. [], and
the conditions for a global asymptotically stable pest-eradication periodic solution and
permanence of the system were established. The local asymptotic stability of system (.)
has been studied by Liu et al. []. However, by choosing σ as a bifurcation parameter,
we obtain Hopf bifurcation conditions for system (.). In model (.), we introduce time
delay due to the gestation of the predator. So, we believe that this is the first time that a
predator-preymodel with sex-structure and time delay has been formulated and analyzed.
This paper is organized as follows. In Section , we first focus on the stability of the

equilibrium point and the Hopf bifurcation of ODE system (.) by choosing σ as a bifur-
cation parameter. The stability of the bifurcation is also considered by using an analytical
method introduced by Kazarinov []. In Section , we investigate the existence of Hopf
bifurcations and the estimation of the length of delay to preserve the stability of DDE sys-
tem (.). By using the normal form theory and center manifold argument introduced by
Hassard [], we derive the explicit formulae for determining the stability, direction, and
other properties of bifurcating periodic solutions. Finally, in Section , numerical simula-
tions are performed to support the theoretical results. Numerical results show that ODE
system (.) considered has chaotic behavior under some parameter sets of values and the
Hopf bifurcation of DDE system (.) is subcritical, and the bifurcating periodic solutions
are unstable under certain conditions.

2 ODEmodel (1.2)
2.1 Stability of equilibrium and the existence of a Hopf bifurcation
Obviously, system (.) has one boundary equilibrium E = (, , ) and a unique positive
equilibrium

E* =
(
m*, f *,x*

)
=
(

ab
c(d + σb + σβ)

,
a(d + σβ)

c(d + σb + σβ)
,
β

c

)
.

Let E = (m̄, f̄ , x̄) be any arbitrary equilibrium. Then the characteristic equation about E
is given by

det(E) =

∣∣∣∣∣∣∣
–d – σ cx̄ – λ b –σ cm̄

 β – cx̄ – λ –c f̄
σ cx̄ cx̄ –a + σ cm̄ + c f̄ – λ

∣∣∣∣∣∣∣ = . (.)
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By verifying the characteristic roots of Eq. (.) at each equilibrium, it is easily seen that
the equilibrium E is always unstable.
Characteristic Eq. (.) about E* is given by

H(σ ) = λ + h(σ )λ + h(σ )λ + h(σ ),

where

h(σ ) = d + σβ > , h(σ ) =
aβ(d + σ b + σβ)

d + σb + σβ
> ,

h(σ ) = aβ(d + σβ) > .

Let

H(σ ) = h(σ )h(σ ) – h(σ ) =
σabβ(σ – )(d + σβ)

d + σb + σβ
,

obviously, σ = σ =  is the unique positive root of H(σ ) = . By the Routh-Hurwitz crite-
rion, E* is locally asymptotically stable if σ >  and unstable if  < σ < . Furthermore,

dH(σ )
dσ

∣∣∣∣
σ=σ

=
abβ[(d + σβ)(σ – ) + σβ(σ – ) – σ (b + β)(d + σβ)(σ – )]

(d + σb + σβ)

∣∣∣∣
σ=σ

=
abβ(d + β)
(d + b + β)

> .

According to the above analysis and the result [], we obtain the following theorem.

Theorem . The positive equilibrium E* is locally asymptotically stable when σ >  and
unstable when  < σ < . There exists a critical value σ =  such that a single Hopf bifurca-
tion occurs at σ = σ for decreasing σ , i.e., there exists a nontrivial orbitally periodic orbit
of system (.) if σ ∈ (σ – ε,σ).

2.2 Hopf bifurcation analysis
We deal with the Hopf bifurcation of system (.) using an analytical method intro-
duced by Kazarinov []. We first introduce some definitions. Suppose that Cn is a lin-
ear space defined on the complex number field C. For any vectors x = (x,x, . . . ,xn)T and
y = (y, y, . . . , yn)T , where xi, yi ∈ C (i = , , . . . ,n), 〈x, y〉 =∑n

i= x̄iyi is the inner product of
the vectors x and y.
Consider the following nonlinear system:

x′ = Ax + F(x), x ∈R
, (.)

where F(x) =O(‖x‖) is a smooth function, and it can be expanded into

F(x) =


B(x,x) +



C(x,x,x) +O

(‖x‖), (.)
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where

Bi(x, y) =
∑

j,k=

∂Fi(ξ )
∂ξj ∂ξk

∣∣∣∣
ξ=

xjyk , Cj(x, y, z) =
∑

j,k,l=

∂Fi(ξ )
∂ξj ∂ξk ∂ξl

∣∣∣∣
ξ=

xjykzl

for i = , , . From (.) and (.), we have

B(x, y) =

⎛
⎜⎝

–c(xy + xy)
–c(xy + xy)

c(xy + xy + xy + xy)

⎞
⎟⎠

and C(x, y, z) = (, , )T . In Eq. (.), if the matrix A only has a pair of pure imaginary
eigenvalues λ, = ±αi, α > , and other eigenvalues are negative, there exists a single Hopf
bifurcation. Let q ∈ C

n be a complex eigenvector corresponding to the eigenvalue λ, then
we have Aq = iαq, Aq̄ = –iαq̄. At the same time, we introduce the adjoint eigenvector p ∈
C

n which satisfies the following conditions:

ATp = –iαp, ATp̄ = iαp̄, 〈p,q〉 = . (.)

The two-dimensional center manifold can be parameterized by w = R
 = C, by means of

x =H(w, w̄), which is written as

H(w, w̄) = wq + w̄q̄ +
∑

≤j+k≤


j!k!

hjkwjw̄k +O
(|w|),

with hjk ∈C
, hjk = h̄kj.

Substituting these expressions into (.) and (.) one has

Hw(w, w̄)w′ +Hw̄(w, w̄)w̄′ = F
(
H(w, w̄)

)
. (.)

The complex vectors hij are to be determined so that Eq. (.) can be written as follows:

w′ = iαw +


Gw|w| +O

(|w|),
withG ∈C. Solving the linear system obtained by expanding (.), the coefficients of the
quadratic terms of (.) lead to

h = –A–B(q, q̄), h = (iαI –A)–B(q,q), (.)

where I is the unit ×  matrix.
The coefficients of the cubic terms are also uniquely calculated, except for the termww̄,

whose coefficient satisfies a singular system for

(iαI –A)h = C(q,q, q̄) + B(q̄,h) + B(q,h) –Gq, (.)

which has a solution if and only if

〈
p,C(q,q, q̄) + B(q̄,h) + B(q,h) –Gq

〉
= .
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Therefore

G =
〈
p,C(q,q, q̄) + B

(
q̄, (iαI –A)–B(q,q)

)
– B

(
q,A–B(q, q̄)

)〉
, (.)

and the first Lyapunov coefficient l, which decides, by the analysis of third-order terms at
the equilibrium, its stability, if negative, or instability, if positive, is defined by

l =

α

ReG.

A Hopf point is called transversal if the curves of complex eigenvalues cross the imagi-
nary axis with a non-zero derivative. In a neighborhood of a transversal Hopf point with
l 	= , the dynamic behavior of system (.), reduced to the family of parameter-dependent
continuations of the center manifold, is orbitally topologically equivalent to the complex
normal form

w′ = (γ + iα)w + lw|w|, (.)

w ∈ C, γ , w, l are smooth continuations of , α and the first Lyapunov coefficient at the
Hopf point [], respectively. When l <  (l > ), a family of stable (unstable) periodic
orbits can be found on this family of center manifolds which shrink to the equilibrium
point at the Hopf point.

3 DDEmodel (1.3)
3.1 Existence of a Hopf bifurcation
In Section , we know that ODE system (.) has a unique positive equilibrium E*. Then
DDE system (.) also has a unique positive equilibrium E*. The linearization of system
(.) at the positive equilibrium E* is

⎧⎪⎨
⎪⎩
m′(t) = –(d + σ cx*)m(t) + bf (t) – σ cm*x(t),
f ′(t) = –cf *x(t),
x′(t) = σ cx*m(t – τ ) + cx*f (t – τ ) + a(x(t – τ ) – x(t)).

(.)

The associated characteristic equation of system (.) is

∣∣∣∣∣∣∣
–d – σβ – λ b –σ cm*

 –λ –cf *

σ cx*e–λτ cx*e–λτ a(e–λτ – ) – λ

∣∣∣∣∣∣∣ = , (.)

that is,

M(λ) +N(λ)e–λτ = , (.)

where

M(λ) = λ +mλ
 +mλ +m, N(λ) = nλ + nλ + n,

m = d + σβ + a > , n = –a < ,

http://www.advancesindifferenceequations.com/content/2013/1/219
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m = a(d + σβ) > , n = –a(d + σβ) +
aβ(d + σβ + σ b)

d + σβ + σb
,

m = , n = aβ(d + σβ) > .

From Section ., we know that the equilibrium E* is locally asymptotically stable in the
absence of delay if σ ∈ (,∞). Suppose that λ = iω, ω > , is a root of Eq. (.), and sepa-
rating the real and imaginary parts, one can get that

{
mω

 = (n – nω) cosωτ + nω sinωτ ,
ω –mω = nω cosωτ – (n – nω) sinωτ .

(.)

Adding up the squares of the corresponding sides of the above equations leads to

ω + pω + qω + r = , (.)

where

p =m
 – m – n = (d + σβ) > ,

q =m
 + nn – n , (.)

r = –n < .

When q > , from Eq. (.) we know that Eq. (.) has a unique positive root ω. From Eq.
(.) we have

cosωτ =
mω


(n – nω

) + nω(ω
 –mω)

(n – nω
) + (nω)

.

Thus,

τn =


ω
cos–

[
mω


(n – nω

) + nω(ω
 –mω)

(n – nω
) + (nω)

]
+
nπ

ω
, n = , , , . . . . (.)

Let λ(τ ) = v(τ ) + iω(τ ) be the roots of Eq. (.) such that when τ = τn satisfying v(τn) = 
and ω(τn) = ω, we can claim that d(Reλ)

dτ |τ=τn > . In fact, differentiating both sides of (.)
with respect to τ , we get

[(
λ + mλ +m

)
+ (nλ + n)e–λτ – τ

(
nλ + nλ + n

)
e–λτ

]dλ
dτ

= λ
(
nλ + nλ + n

)
e–λτ ,

then

(
dλ
dτ

)–

=
λ + mλ +m

λ(nλ + nλ + n)e–λτ
+

nλ + n
λ(nλ + nλ + n)

–
τ

λ

=
λ + mλ +m

–λ(λ +mλ +m)
+

nλ + n
λ(nλ + nλ + n)

–
τ

λ

=
λ +m

–λ(λ +mλ +m)
+

nλ – n
λ(nλ + nλ + n)

–
τ

λ
.
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Therefore,

sign

[
d(Reλ)
dτ

]
λ=iω

= sign

[
Re

(
dλ
dτ

)–]
λ=iω

= sign

{
Re

[
λ +m

–λ(λ +mλ +m)
+

nλ – n
λ(nλ + nλ + n)

–
τ

λ

]}
λ=iω

=


ω

sign

{
Re

[
ω
(m + ωi)

mω

 + (ω

 –mω)i
+

nω
 + n

(n – nω
) + nωi

]}

=


ω

sign

[
(mω


 –m)(m +mω


) + ω

(ω
 –mω)

(mω

 –m) + (ω

 –mω)

+
(n – nω

)(nω
 + n)

(n – nω
) + (nω)

]

=

�
sign

[
m

ω

 + ω


(
ω
 –mω

)
+
(
n – nω


)(
nω

 + n
)]

=

�
sign

[
ω

 +
(
m

 – m – n
)
ω
 + n

]
=


�
sign

[
ω

 + pω
 + n

]
,

where � = ω
[(n – nω

) + (nω)] > . According to the Hopf bifurcation theorem for
functional differential equations [], we have the following result.

Theorem . Suppose that σ ∈ (,∞). (i) There exists a τ such that for τ ∈ [, τ) the
positive equilibrium E* of system (.) is asymptotically stable and unstable when τ > τ.
(ii) System (.) can undergo aHopf bifurcation at the positive equilibrium E* when τ = τn

(n = , , , . . .), where τn is defined by (.).

Remark . It must be pointed out that Theorem . cannot determine the stability and
the direction of bifurcating periodic solutions, that is, the periodic solutions may exist
either for τ > τ or for τ < τ, near τ. Furthermore, we can investigate the stability of the
bifurcating periodic orbits by analyzing higher-order terms according to Hassard et al.
[] by using normal form theory and center manifold theorem and prove that the Hopf
bifurcation is subcritical and bifurcating periodic solutions are unstable.

3.2 Estimation of the length of delay to preserve stability
We consider system (.) and the space of all real-valued continuous functions defined on
[–τ ,∞) satisfying the initial conditions on [–τ , ]. Taking Laplace transform of the system
given by (.)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(s + d + σ cx*)m̄(s) = b f̄ (s) – σ cm*x̄(s) +m(),
sf̄ (s) = –cf *x̄(s) + f (),
(s + a)x̄(s) = e–sτ σ cx*(m̄(s) +K(s)) + e–sτ cx*(f̄ (s) +K(s))

+ e–sτa(x̄(s) +K(s)) + x(),

(.)

http://www.advancesindifferenceequations.com/content/2013/1/219


Li and Xiong Advances in Difference Equations 2013, 2013:219 Page 9 of 24
http://www.advancesindifferenceequations.com/content/2013/1/219

where

K(s) =
∫ 

–τ

e–stm(t) dt, K(s) =
∫ 

–τ

e–stf (t) dt, K(s) =
∫ 

–τ

e–stx(t) dt,

and m̄(s), f̄ (s), x̄(s) are the Laplace transforms ofm(t), f (t), x(t), respectively.
Following along the lines of [] and using Nyquist criterion [], it can be shown that

the conditions of local asymptotic stability of E* given by [] are

ImH(iη) > , (.)

ReH(iη) = , (.)

where H(λ) =M(λ) +N(λ)e–λτ = , and η is the smallest positive root of Eq. (.).
We have already shown that E* is stable in the absence of delay when σ ∈ (,∞). Hence,

by continuity, all eigenvalues will continue to have negative real parts for sufficiently small
τ >  provided one can guarantee that no eigenvalues with positive real parts bifurcate
from infinity as τ increases from zero. This can be proved using Butler’s lemma [], al-
ready stated before. In fact, Eqs. (.) and (.) give

mη – η
 > –nη cosητ +

(
n – nη


)
sinητ , (.)

mη

 =

(
n – nη


)
cosητ + nη sinητ . (.)

Equations (.) and (.), if satisfied simultaneously, are sufficient conditions to guar-
antee stability. We shall utilize them to get an estimate on the length of delay. Our aim is
to find an upper bound η+ on η, independent of τ , and then to estimate τ so that (.)
holds for all values of η,  ≤ η ≤ η+, and in particular at η = η.
Maximizing the right-hand side of Eq. (.) subject to | sinητ | ≤ , | cosητ | ≤ , we

obtain

mη

 ≤ n – nη

 + |n|η (n < ). (.)

Hence, if

η+ =
|n| +

√
n + n(m + n)
(m + n)

, (.)

then, clearly, from (.) we have η ≤ η+.
From inequality (.) we obtain

η
 <m + n cosητ – n

sinητ

η
+ nη sinητ . (.)

As E* is locally asymptotically stable for τ = , therefore, for sufficiently small τ > , (.)
will continue to hold. Substituting (.) in (.) and rearranging, we get

(
n – nη

 –mn
)
(cosητ – ) +

[
(n –mn)η +

mn
η

]
sinητ

<m(m + n) – nnη. (.)
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Using the bounds

{
(n – nη

 –mn)(cosητ – )≤ 
η


+τ

|n – nη
+ –mn|,

[(n –mn)η + mn
η

] sinητ ≤ [(n –mn)η
+ +mn]τ

(it can be easily shown that n –mn is positive), we obtain from (.)

Qτ
 +Qτ <Q,

where

Q =


η
+
∣∣n – nη

+ –mn
∣∣, Q =

[
(n –mn)η

+ +mn
]
,

Q =m(m + n) – n + nη.

Hence, if

τ+ =
√
Q

 + QQ –Q

Q
,

then stability is preserved for  ≤ τ ≤ τ+.

3.3 Direction and stability of a Hopf bifurcation
In Section ., we have obtained the conditions under which a family of periodic solutions
bifurcates from the positive equilibrium of system (.) when the delay crosses through
the critical values τn. In this subsection, we shall study the direction of these Hopf bifur-
cations and the stability of bifurcated periodic solutions arising throughHopf bifurcations
by applying the normal form theory and center manifold theorem introduced by Hassard
et al. [].
Let u =m(τ t), u = f (τ t), u = x(τ t), τ = τn +μ, where τn is defined by (.), μ ∈ R, then

system (.) can be transformed as an FDE in C = C([–, ],R).

u′ = Lμ(ut) +H(μ,ut), (.)

where u(t) = (u,u,u)T ∈R
 and Lμ : C →R, H :R×C →R are given respectively by

Lμ(ϕ) = (τn +μ)

⎛
⎜⎝
–d – σβ b –σ cm*

  –cf *

  –a

⎞
⎟⎠

⎛
⎜⎝

ϕ()
ϕ()
ϕ()

⎞
⎟⎠

+ (τn +μ)

⎛
⎜⎝

  
  

σ cx* cx* a

⎞
⎟⎠

⎛
⎜⎝

ϕ(–)
ϕ(–)
ϕ(–)

⎞
⎟⎠ (.)

and

H(μ,φ) = (τn +μ)

⎛
⎜⎝

–σ cφ()φ()
–cφ()φ()

σ cφ(–)φ(–) + cφ(–)φ(–)

⎞
⎟⎠ . (.)
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By theRiesz representation theorem, there exists amatrixwhose components are bounded
variation functions η(θ ,μ) in [–, ] such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ), φ ∈ C

(
[–, ],R). (.)

In fact, we choose

η(θ ,μ) = (τn +μ)

⎛
⎜⎝
–d – σβ b –σ cm*

  –cf *

  –a

⎞
⎟⎠ δ(θ )

– (τn +μ)

⎛
⎜⎝

  
  

σ cx* cx* a

⎞
⎟⎠ δ(θ + ), (.)

where δ(θ ) is a Dirac function, then (.) is satisfied.
For φ ∈ C([–, ],R), define

A(μ)φ =

{
dφ(θ )
dθ , – ≤ θ < ,∫ 
– dη(μ, s)φ(s), θ = 

(.)

and

R(μ)φ =

{
, – ≤ θ < ,
H(μ,φ), θ = .

(.)

Then system (.) can be transformed into an operator differential equation of the form

u′
t = A(μ)ut + R(μ)ut , (.)

where ut = u(t + θ ), θ ∈ [–, ]. The adjoint operator A* of A is defined by

A*(μ)ψ =

{
–dψ(s)

ds ,  < s ≤ ,∫ 
– ψ(–t) dη(, t), s = ,

(.)

associated with a bilinear form

〈
ψ(s),φ(s)

〉
= ψ̄()φ() –

∫ 

θ=–

∫ θ

ξ=
ψ̄T (ξ – θ ) dη(θ )φ(ξ ) dξ , (.)

where η(θ ) = η(θ , ), we know that ±iτnω are eigenvalues of A(). Thus they are also
eigenvalues of A*. To determine the Poincaré normal form of the operator A, we need to
calculate the eigenvector q of A belonging to the eigenvalue iω and the eigenvector q* of
A* belonging to the eigenvalue –iω.
Suppose that q(θ ) = (,ρ,ρ)Teiωθ is the eigenvector ofA() corresponding to iω. Then

A()q(θ ) = iωq(θ ). It follows from the definition of A(), (.) and (.) that

⎛
⎜⎝
–d – σβ – iω b –σ cm*

 –iω –cf *

σ cx*e–iωτn cx*e–iωτn a(e–iωτn – ) – iω

⎞
⎟⎠q() =

⎛
⎜⎝




⎞
⎟⎠ .
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We, therefore, derive that

q() = (,ρ,ρ)T =
(
,
f *(d + σβ + iω)
bf * + iωσm* ,

–iω(d + σβ + iω)
c(bf * + iωσm*)

)T

.

On the other hand, suppose that q*(s) = D(,α,α)eiωs is the eigenvector of A*() corre-
sponding to –iω. Similarly, we can get

q*() =D(,α,α) =D
(
,
iω – (d + σβ + σb)

iωσ
,
d + σβ – iω

σ cx*eiωτn

)
.

In order to assure 〈q*(s),q(θ )〉 = , we need to determine the value of D. From (.), we
have

〈
q*(s),q(θ )

〉
=D

{
(, ᾱ, ᾱ)(,ρ,ρ)T–

∫ 

θ=–

∫ θ

ξ=
(, ᾱ, ᾱ)e–i(ξ–θ ) dη(θ )(,ρ,ρ)Teiξω dξ

}

=D
{
 + ᾱρ + ᾱρ –

∫ 

–
(, ᾱ, ᾱ)θeiωθ dη(θ )(,ρ,ρ)T

}

=D
{
 + ᾱρ + ᾱρ + τne–iωτn

[
cx*(σ + ᾱρ) + aᾱρ

]}
.

Thus, we can choose

D =
{
 + αρ̄ + αρ̄ + τneiωτn

[
cx*(σ + αρ̄) + aαρ̄

]}–.
Let ut be the solution of Eq. (.) when μ =  and define

z(t) =
〈
q*,ut

〉
, W (t, θ ) = ut(θ ) – z(t)q(θ ) – z̄(t)q*(θ ) = ut(θ ) – Re

{
z(t)q(θ )

}
. (.)

On the center manifold C, we have

W (t, θ ) =W
(
z(t), z̄(t), θ

)
,

where

W
(
z(t), z̄(t), θ

)
=W(θ )

z


+Wzz̄ +W

z̄


+ · · · ,

z and z̄ are local coordinates of the center manifold C in the direction of q and q*, respec-
tively. For the solution ut ∈ C, since μ = , we have

ż = iωz +
〈
q̄*(θ ),H

(
,W (z, z̄, θ ) + Re

{
zq(θ )

})〉
= iωz + q̄*(θ )H

(
,W (z, z̄, θ ) + Re

{
zq(θ )

})
= iωz + q̄*()H

(
,W (z, z̄, ) + Re

{
zq()

})
def= iωz + q̄*()H(z, z̄). (.)
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We rewrite (.) as ż = iωz + g(z, z̄) with

g(z, z̄) = q*()H(z, z̄) = g
z


+ gzz̄ + g

z̄


+ g

zz̄


+ · · · . (.)

Noting that ut(θ ) = (ut(θ ),ut(θ ),ut(θ )) =W (t, θ ) + zq(θ ) + z̄q̄(θ ), it follows

g(z, z̄) = q̄*()H(z, z̄)

=Dτn(, ᾱ, ᾱ)

⎛
⎜⎝

–σ cφ()φ()
–cφ()φ()

–σ cφ(–)φ(–) + cφ(–)φ(–)

⎞
⎟⎠

=Dτn

{[
–cρ(σ + ᾱρ) + cαᾱe–iωτn (σ + α)

]
z

+
[
–σ (ρ + ρ̄) – ᾱc(ρ̄ρ + ρρ̄) + ᾱc

(
σ (α + ᾱ) + αᾱ + ᾱα

)]
zz̄

+
[
–cρ̄(σ + ᾱρ̄) + cᾱ

e
iωτn (σ + ᾱ)

]
z̄

+
{
–σ c

[
W ()

 () +


W ()

 () +


W ()

 ()ρ̄ +W ()
 ()ρ

]

– ᾱc
[
W ()

 ()ρ̄ +


W ()

 ()ρ̄ +


W ()

 ()ρ̄ +W ()
 ()ρ

]

+ ᾱc
[
W ()

 (–)e
–iωτn (σ + α) +



W ()

 (–)e
iωτn (σ + ᾱ)

+


ᾱeiωτn

(
σW ()

 (–) +W ()
 (–)

)
+ αe–iωτn

(
σW ()

 (–) +W ()
 (–)

)]}
zz̄

}
.

Comparing the coefficients with (.), we have

g = Dτn
[
–cρ(σ + ᾱρ) + cαᾱe–iωτn (σ + α)

]
,

g =Dτn
[
–σ (ρ + ρ̄) – ᾱc(ρ̄ρ + ρρ̄) + ᾱc

(
σ (α + ᾱ) + αᾱ + ᾱα

)]
,

g = Dτn
[
–cρ̄(σ + ᾱρ̄) + cᾱ

e
iωτn (σ + ᾱ)

]
,

g = Dτn

{
–σ c

[
W ()

 () +


W ()

 () +


W ()

 ()ρ̄ +W ()
 ()ρ

]

– ᾱc
[
W ()

 ()ρ̄ +


W ()

 ()ρ̄ +


W ()

 ()ρ̄ +W ()
 ()ρ

]

+ ᾱc
[
W ()

 (–)e
–iωτn (σ + α) +



W ()

 (–)e
iωτn (σ + ᾱ)

+


ᾱeiωτn

(
σW ()

 (–) +W ()
 (–)

)
+ αe–iωτn

(
σW ()

 (–) +W ()
 (–)

)]}
.
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In order to determine g, we focus on the computation of W(θ ) and W(θ ). From
(.) and (.) we find that

Ẇ = u̇t – żq + ˙̄zq̄

=

{
AW – Re[q̄*()Hq(θ )], – ≤ θ < ,
AW – Re[q̄*()Hq(θ )], θ = 

def= AW +G(z, z̄, θ ), (.)

where

G(z, z̄, θ ) =G
z


+Gzz̄ +G

z̄


+ · · · . (.)

On the other hand, on C near the origin

Ẇ =Wzż +Wz̄ ˙̄z. (.)

We derive from (.)-(.) that

(A – iτnω)W(θ ) = –G(θ ), AW(θ ) = –G(θ ). (.)

According to (.) and (.), we have

G(z, z̄, θ ) = –q̄*()Hq(θ ) – q*()Hq(θ )

= –g(z, z̄)q(θ ) – ḡ(z, z̄)q̄(θ ), – ≤ θ < . (.)

Comparing the coefficients with (.), we can obtain that

G(θ ) = –gq(θ ) – ḡq̄(θ ), (.)

G(θ ) = –gq(θ ) – ḡq̄(θ ). (.)

Substituting (.) into (.), it follows that

Ẇ(θ ) = iτnωW(θ ) + gq(θ ) + ḡq̄(θ ). (.)

We can obtain that

W(θ ) =
igq()
τnω

eiτnωθ –
ḡq̄()
iτnω

e–iτnωθ + Eeiτnωθ . (.)

Similarly, we have

W(θ ) =
gq()
iτnω

eiτnωθ –
ḡq̄()
iτnω

e–iτnωθ + Eeiτnωθ , (.)

where

E =
(
E()
 ,E()

 ,E()

)
, E =

(
E()
 ,E()

 ,E()

)
.
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Next we focus on the computation of E, E. From (.), we have

∫ 

–
dη(θ )W(θ ) = iτnωW(θ ) –G(θ ), (.)

∫ 

–
dη(θ )W(θ ) = –G(θ ) (.)

and

G() = –gq() – ḡq̄() + τn

⎛
⎜⎝

–σ cρ

–cρρ

αce–iωτn (σ + α)

⎞
⎟⎠ , (.)

G() = –gq() – ḡq̄() + τn

⎛
⎜⎝

–σ Re{ρ}
–cRe{ρ̄ρ}

c[σ Re{α} +Re{ᾱα}]

⎞
⎟⎠ . (.)

Substituting (.) and (.) into (.), then

(
iτnωI –

∫ 

–
eiτnωθ dη(θ )

)
q() = ,

(
–iτnωI –

∫ 

–
e–iτnωθ dη(θ )

)
q̄() = ,

we obtain

(
iτnωI –

∫ 

–
eiτnωθ dη(θ )

)
E = τn

⎛
⎜⎝

–σ cρ

–cρρ

αce–iωτn (σ + α)

⎞
⎟⎠ ,

namely

⎛
⎜⎝
d + σβ + iω –b σ cm*

 iω cf *

–σ cx*e–iωτn –cx*e–iωτn a + iω – ae–iωτn

⎞
⎟⎠E

= 

⎛
⎜⎝

–σ cρ

–cρρ

αce–iωτn (σ + α)

⎞
⎟⎠ . (.)

Similarly, we have

–

⎛
⎜⎝
–d – σβ b –σ cm*

  –cf *

–σ cx* –cx* 

⎞
⎟⎠E = 

⎛
⎜⎝

–σ Re{ρ}
–cRe{ρ̄ρ}

c[σ Re{α} +Re{ᾱα}]

⎞
⎟⎠ . (.)

Therefore, E and E can be determined from (.) and (.). Then g can be deter-
mined by the parameters and delay. Thus, we can compute the following quantities:

C() =
i

τnω

(
gg – |g| – |g|



)
+
g

,
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μ = –
Re{C()}
Re{λ′(τn)} , β = Re

{
C()

}
,

T = –
Im{C()} +μ Im{λ′(τn)}

ω
.

Theorem . (i) μ determines the direction of the Hopf bifurcation. If μ >  (< ), then
the Hopf bifurcation is supercritical (subcritical), and the bifurcating periodic solution ex-
ists for τ > τ (τ < τ);
(ii) β determines the stability of bifurcating periodic solutions. If β >  (< ), the bifur-

cating periodic solutions are unstable (stable);
(iii) T determines the period of bifurcating periodic solutions. If T >  (< ), the period

increases (decreases).

4 Numerical simulation
Example  Let b = , d = ., c = , c = ., β = , a = ., i.e., we consider the following
ODE system:

⎧⎪⎨
⎪⎩
m′(t) = f (t) – .m(t) – σm(t)x(t),
f ′(t) = f (t)(β – x(t)),
x′(t) = x(t)(–. + .σm(t) + .f (t)).

(.)

From Theorem . we know σ = σ =  is the critical value for the Hopf bifurcation.When
σ = ., the positive equilibrium E* = (., ., ) of system (.) is locally asymptot-
ically stable (see Figure ); when σ = ., there exists a nontrivial orbitally periodic orbit
of system (.). From the Hopf bifurcation analysis in Section . and the numerical result
l = –. < , the Hopf bifurcating periodic solution is stable (see Figure ). A typical
strange attractor appears when σ = . (see Figure ).

Figure 1 The positive equilibrium E* = (0.2951,0.2459,1) of system (4.1) is locally asymptotically
stable when σ = 1.2 > σ0.
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Figure 2 Stable Hopf bifurcating periodic solutions from E* = (0.3913,0.2478,1) of system (4.1) when
σ = 0.9 < σ0.

Figure 3 The strange attractor of system (4.1) when σ = 0.35.
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Figure 4 Bifurcation diagrams of system (4.1) for σ over [0.1, 0.6] show the effect of sex ratio
coefficient σ on the dynamic behavior.

Furthermore, we also investigate the effect of the sex ratio σ on system (.). The bi-
furcation diagrams of σ over [., .] show that system (.) has rich dynamics (see
Figure ), including () periodic oscillating, () period-doubling bifurcations, () period-
halving bifurcations and () chaos. When . ≤ σ < σ ≈ ., system (.) experiences
a T-periodic solution (Figure (a)). When σ > σ, the T-periodic solution leads to a
T-periodic solution, and there is a period-doubling bifurcation leading to chaos when
σ > σ ≈ . (Figure (b), (c)). When σ > σ ≈ ., the chaos suddenly disappears
and a T-periodic solution appears, and there is a cascade of period-halving bifurcations
leading to a T-periodic solution when σ < σ ≤ . (Figure (c)-(e)).

Example  Let b = , d = ., σ = ., c = ., c = ., β = ., a = ., we consider the
following DDE system:

⎧⎪⎨
⎪⎩
m′(t) = f (t) – .m(t) – .m(t)x(t),
f ′(t) = f (t)(. – .x(t)),
x′(t) = –.x(t) + .m(t – τ )x(t – τ ) + .f (t – τ )x(t – τ ).

(.)

System (.) has a unique positive equilibrium point E* = (., ., .).
From the results in Section , we evaluate that p = ., q = ., r = –.,
ω = ., τ = ., and the positive equilibrium point E* is asymptotically stable
when τ ∈ [, τ) = [, .) (see Figure ) and unstable when τ > τ.
By the theory of Hassard [], as it has been discussed in the previous section, we may

also determine the direction of theHopf bifurcation and the other properties of bifurcating
periodic solutions. From the formulae in Section  we compute the values of μ, β, and
T as

μ = –. < , β = . > , T = . > ,
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Figure 5 Dynamic behaviors of system (4.1). (a): T and 2T -periodic solutions, chaos, 2T and T -periodic
solutions when σ = 0.17, 0.27, 0.35, 0.47, 0.6, respectively. From (a) to (c), there are period-doubling
bifurcations leading to chaos and there is a cascade of period-halving bifurcations leading to T -periodic
solution from (c) to (e).

from which we conclude that since μ < , the Hopf bifurcation of system (.) occurring
at τ = . is subcritical and the bifurcating periodic solution exists when τ crosses τ

to the left; also since β > , the bifurcating periodic solution is unstable (see Figure ).

Example  We consider ODE system (.) with time delays:

⎧⎪⎨
⎪⎩
m′(t) = f (t) – .m(t) – σm(t)x(t),
f ′(t) = f (t)(β – x(t)),
x′(t) = –.x(t) + .σm(t – τ )x(t – τ ) + .f (t – τ )x(t – τ ).

(.)

From Example  we know that the positive equilibrium E* = (., ., ) of system
(.) is locally asymptotically stable when τ = , and there exists a critical value τ ≈ .
such that system (.) experiences the Hopf bifurcation. That is to say, time delay would
make the locally asymptotically stable E* of ODE system (.) unstable if we increase the
time delay to some critical value, and a typical periodic oscillation is observed when τ =
. (see Figure , from left closed to τ ≈ .). The stable Hopf bifurcating periodic
solution of system (.) for σ = . would be destroyed, even for a very small time delay,
and a typical unstable periodic oscillation appears when τ = . for system (.). The
amplitude of the oscillation is increased with the increasing of the time t (see Figure ).
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Figure 6 The positive equilibrium E* = (0.3565,0.4658,1.0067) of system (4.2) is locally asymptotically
stable when τ = 0.15 < τ0 = 0.1818.

Figure 7 Hopf bifurcating periodic solutions of system (4.2) when τ = 0.181 < τ0 and τ = 0.187
near τ0.
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Figure 8 Stable periodic oscillations about E* = (0.3913,0.2478,1) of system (4.3) when σ = 0.9 and
τ = 0.042.

Figure 9 Unstable periodic oscillations about E* = (0.3913,0.2478,1) of system (4.3) when σ = 1.2 and
τ = 0.001.

When σ = ., a typical unbounded oscillation solution is observed for a very small time
delay τ = . and time t ≈  (see Figure ). That is to say, a very small delay would
make DDE system (.) extinct (unbounded oscillation) undergoing a series of fast-slow
oscillations and destroying the permanence of it, if the corresponding ODE system (.) is
chaotic oscillating when σ = .. All the analysis shows that the time delay would destroy
the stability of the system, even make the system die out.
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Figure 10 The solutionsm(t), f (t) of prey populations tend to –∞ (unbounded solutions) when
σ = 0.35 and τ = 0.001.

5 Conclusion
In this paper, we have investigated a predator-prey system with sex-structure and sexual
favoritism. Firstly, the impact of the sexual favoritism coefficient σ on the stability of the
ODE model is studied. From Theorem ., we know the sexual favoritism coefficient σ

would determine the stability of ODE system (.). In the ecology, sexual favoritism pre-
dation could impact population dynamics differently and affect reduced male and female
densities in the prey. The numerical simulations show that ODE system (.) has compli-
cated dynamic behaviors when we change the parameter σ , including periodic oscillating,
period-doubling bifurcations, period-halving bifurcations and chaos. That is to say, sexual
favoritism coefficient σ would be an important factor to affect the dynamic behaviors of
the system. Secondly, by analyzing the associated characteristic equation, the impact of
the time delay τ on the stability of DDE system (.) is obtained and the explicit formu-
lae, which determine the stability, direction, and other properties of bifurcating periodic
solutions, are also obtained by the Hassard method.
We have obtained estimated length of gestation delay which does not affect the stable

coexistence of both predator and prey species at their equilibrium values. From the nu-
merical simulations, we know that the Hopf bifurcation is subcritical and the bifurcating
periodic solutions are unstable. It is clear that the larger values of gestation time delay
cause fluctuation in population density, and even a very small time delay would make the
system subject to unstable oscillation and extinct. These are harmful delays. How to con-
trol the bifurcation arising from the DDE system? How can one do this if the time delays
make the system subject to unbounded oscillations? The time-varying control strategies
and the impulsive control strategies would be considered [], which could both improve
the stability of the system and control the amplitude of the bifurcated periodic solution
effectively. We will continue to study these problems in the future.
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