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Abstract
The purpose of this paper is to propose a method for studying integro-differential
equations with infinite limits of integration. The main idea of this method is to reduce
integro-differential equations to auxiliary systems of ordinary differential equations.

Results: a scheme of the reduction of integro-differential equations with infinite
limits of integration to these auxiliary systems is described and a formula for
representation of bounded solutions, based on fundamental matrices of these
systems, is obtained.

Conclusion:methods proposed in this paper could be a basis for the Floquet theory
and studies of stability, bifurcations, parametric resonance and various boundary
value problems. As examples, models of tumor-immune system interaction,
hematopoiesis and plankton-nutrient interaction are considered.
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1 Introduction
Integro-differential equations appeared very naturally in various applications (see, for ex-
ample, [–]), which explains the interest in the theory of these equations (see, for exam-
ple, [, ]). Various examples, in which the simple enough integro-differential equation

x′(t) = X
(
t,x(t),

∫ t


F
(
t, s,x(s)

)
ds

)
, (.)

by elementary operations can be reduced to a systemof ordinary differential equations, are
known. In this connection, let us refer, for example, to the monograph []. Note the idea
of the chain trick used in various applications (see, for example, [, ]) and its developed
form in the paper []. Independently, the idea of a reduction to systems of ordinary differ-
ential equations in the study of stability, which was, actually, the chain trick, was presented
in []. Starting with this reduction, approaches to the study of stability and bifurcation of
integro-differential equations were proposed in the papers [–]. The approach devel-
oped in these papers allowed researchers to define a notion of periodic integro-differential
systems and to build the Floquet theory for integro-differential equations on this basis in
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[]. The first known results on estimates of distance between two adjacent zeros of os-
cillating solutions to a linearization of equation (.) and results connecting oscillation
behavior and the exponential stability were obtained on this basis []. A parametric res-
onance in linear almost periodic systems was studied in [], and the bifurcation of steady
resonance modes for integro-differential systems was investigated in []. Stabilization by
control in a form of integrals of solutions was studied in []. The stability of partial func-
tional differential equations on the basis of this reductionwas studied in []. Constructive
approach to a phase transitionmodel was presented in []. A reduction to infinite dimen-
sional systems was considered in [, , ]. In all these papers the limits of integration
in integral terms were  and t, and this was very essential.
The main goal of this paper is to present a method reducing integro differential equa-

tions with infinite limits of integration

x′(t) = f
(
t,x(t),

∫ +∞

–∞
K(t, s)g

(
s,x(s)

)
ds

)
, t ∈ (–∞, +∞), (.)

to systems of ordinary differential equations. In a future we are planning to develop the
ideas of noted above papers for equation (.). As well as we know, there are no results
of this type. Important motivation in the study of integro-differential equation (.) can
be found also in various applications of such equations in, for example, models of tumor-
immune system interaction [], hematopoiesis [], stability and persistence in plankton
models [] which will be considered below.
Denote

u(t) =
∫ +∞

–∞
K(t, s)g

(
s,x(s)

)
ds, (.)

v(t) =
∫ t

–∞
K(t, s)g

(
s,x(s)

)
ds, (.)

w(t) =
∫ +∞

t
K(t, s)g

(
s,x(s)

)
ds. (.)

Using these notations, we can write

x′(t) = f
(
t,x(t),u(t)

)
, t ∈ (–∞, +∞), (.)

or

x′(t) = f
(
t,x(t), v(t) +w(t)

)
, t ∈ (–∞, +∞).

It is possible to represent the vector x ∈ Rn in the form x = col{y, z}, where y ∈ Rk , z ∈ Rn–k .
In many applications, system (.) can be represented in the form

y′(t) = Y
(
t,x(t), v(t)

)
, z′(t) = Z

(
t,x(t),w(t)

)
, t ∈ (–∞, +∞). (.)

The first equation in (.) depends on its integral part v on delay only (see (.)) and the
second one is dependent on advance only. Note that the cases k = n and k =  can be also
considered. If k = n, we get a system with distributed delay, and if k = , the one with
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distributed advance. Note that a combination of distributed and concentrated deviations
is also possible. Considering such systems, we do not discuss questions of existence of
solutions and assume that solutions to these systems exist. Note that even for the Volterra
equation, one-point problem (.) with the condition x(t) = x, t > , can havemore than
one solution or not have solutions at all (see, for example, [], Chapter , Section , pp.
-).
For system (.) our method essentially uses the properties of linear nonhomogeneous

systems ofODEs, possessing exponential dichotomy [] or hyperbolicity []. It is known
that such systems have (under corresponding conditions) unique bounded on the axis so-
lution. Corresponding bibliography can be found in []. The case of autonomous systems
was considered in [, ]. Below, in the next paragraph, we formulate, in convenient
for us form, a result about the existence and structure of the solution for general non-
autonomous linear systems of ODEs. This result is based on the theorem about reduction
of hyperbolic systems to a block diagonal form [].

2 Methods: about bounded solutions of linear nonhomogeneous systems
Consider

x′(t) = P(t)x(t) + g(t), t ∈ (–∞, +∞) (.)

and the corresponding homogeneous system

w′(t) = P(t)w(t), t ∈ (–∞, +∞), (.)

where x,w ∈ Rn, P is an n × n matrix and g is an n-vector function with continuous
bounded elements.
We use the following definition introduced in [].

Definition . We say that system (.) is hyperbolic if there exist constants a >  and
λ >  and hyperplanes M+ and M–: dimM+ = k, dimM– = n – k such that if for t = t,
w(t) = w ∈M+, then the solution w(t, t,w) satisfies the inequality

∣∣w(t, t,w)
∣∣ ≤ a|w|e–λ(t–t), t ≥ t, (.)

and if w ∈M–, the inequality

∣∣w(t, t,w)
∣∣ ≤ a|w|eλ(t–t), t ≤ t. (.)

Theorem . [] Let system (.) be hyperbolic. Then there exists an n× n matrix U(t)
with bounded elements such that its inverse matrix U–(t) also possesses bounded elements
and the transform w =U(t)η reduces system (.) to the form

ξ ′(t) =Q+(t)ξ (t), ζ ′(t) =Q–(t)ζ (t), (.)

where η = col{ξ , ζ }, ξ ∈ Rk , ζ ∈ Rn–k .
If we denote�+(t, s) = φ+(t)φ–

+ (s),where φ+(t) is a fundamental matrix of the first system
in (.), �–(t, s) = φ–(t)φ–

– (s), where φ–(t) is a fundamental matrix of the second system in
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(.), such that �+(s, s) = E+, �–(s, s) = –E–, dimE+ = k, dimE– = n – k, then

∥∥�+(t, s)
∥∥ ≤ ae–λ(t–s), t ≥ s, (.)∥∥�–(t, s)
∥∥ ≤ aeλ(t–s), t ≤ s. (.)

We present corresponding constructions, developed in [] for the proof of this theo-
rem, which will be used below in our paper.
Let

�(t) =
(
w(t), . . . ,wn(t)

)
(.)

be a fundamental matrix of system (.), where wi(t) (i = , . . . ,n) are linearly indepen-
dent solutions of system (.),M+ = span(w, . . . ,wk(t)),M– = span(wk+, . . . ,wn(t)). Setting
v(t) = w(t), u(t) = w(t)

‖w(t)‖ , we define, form = , , . . . ,k, the vectors

vm = wm –
m–∑
i=

(wm,ui)ui, um =
vm

‖vm‖ . (.)

For m = k + , we set vk+(t) = wk+(t), uk+(t) = wk+(t)
‖wk+(t)‖ , and for m = k + , . . . ,n, we define

corresponding vectors according to scheme (.). The matrix

U(t) =
(
u(t), . . . ,un(t)

)
(.)

is boundedwith its inversematrixU–(t) and dU
dt . The vectors uj(t) are pairwise orthogonal

and ‖uj(t)‖ = , j = , . . . ,n. Let us set

U(t) = �(t)S(t). (.)

It is clear from the construction of the matrix U(t) that S(t) is a block diagonal

S(t) = diag
(
S+(t),S–(t)

)
, dimS+ = k, dimS– = n – k. (.)

Setting in (.) w =U(t)η, we get

dη

dt
=Q(t)η, (.)

where Q(t) = U–(PU – du
dt ] = –S– dSdt . It follows from (.) and (.) that Q(t) =

diag(Q+(t),Q–(t)), where Q+(t) = S+ dS+
dt , Q–(t) = S– dS–

dt . Thus system (.) has the form

dξ

dt
=Q+(t)ξ ,

dζ

dt
=Q–(t)ζ , (.)

where η = col(ξ , ζ ).
Define the Cauchy matrices �+(t, s) and �–(t, s) such that �+(t, t) = Ek , �–(t, t) = –En–k ,

where Ej is a unit (j× j)-matrix.
Let us prove the following assertion about the representation of bounded solutions to

system (.).
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Theorem . Let all elements of P(t) and g(t) in system (.) be continuous and bounded
for t ∈ (–∞, +∞), and let system (.) be hyperbolic. Then system (.) has a unique
bounded solution and this solution can be represented in the form

x(t) =U(t)z(t), z(t) =
∫ +∞

–∞
G(t, s)h(s)ds, (.)

where

G(t, s) =

{
diag{�+(t, s), n–k}, t > s,
diag{k,�–(t, s)}, t < s,

(.)

G(s + , s) –G(s – , s) = En, (.)

h(t) =U–(t)g(t) =
{
h+(t),h–(t)

}
.

Proof Let us substitute

y(t) =U(t)z(t) (.)

into system (.), then we get the system

dz
dt

=Q(t)z + h(t), (.)

for which the homogeneous system is of the form (.), (.).
Consider the matrix (.). It follows from the properties of the matrices �+(t), �–(t)

that equality (.) is fulfilled. It follows from hyperbolicity of system (.) that

∥∥�+(t, s)
∥∥ ≤ ae–λ(t–s), t > s,∥∥�–(t, s)
∥∥ ≤ aeλ(t–s), t < s.

(.)

It follows from (.) and (.) that the integral in (.) converges for bounded func-
tions h(t) every t. Computing the derivative of Green’s matrix, we get

dG(t, s)
dt

=Q(t)G(t, s). (.)

Let us verify now that formula (.) defines the solution of equation (.). Representing
z(t) in the form

z(t) =
∫ t

–∞
G(t, s)h(s)ds +

∫ +∞

t
G(t, s)h(s)ds,

differentiating it and taking into account (.) and (.), we get

dz
dt

=
∫ t

–∞
Q(t)G(t, s)h(s)ds +

∫ +∞

t
Q(t)G(t, s)h(s)ds

+
[
G(s + , s) –G(s – , s)

]
h(t) =Q(t)z(t) + h(t).
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The obtained solution is unique. If we assume the existence of two bounded solutions z
and z, then z – z is a bounded on the axis solution of (.). From hyperbolicity, it follows
that it is a zero solution. �

Corollary . If homogeneous system (.) is hyperbolic and k = n (k = ), then nonhomo-
geneous system (.) has a unique bounded for t ∈ (–∞, +∞) solution, and this solution
can be represented in the following form:

x(t) =U(t)z(t), z(t) =
∫ t

–∞
G(t, s)h(s)ds

(
z(t) = –

∫ +∞

t
G(t, s)h(s)ds

)
, (.)

where G(t, s) = �(t)�–(s), �(t) is a fundamental matrix of system (.).

Remark . If the matrix P(t) in (.) is a constant one, analogous results are obtained
in [, ]. The existence of a unique bounded solution under the assumption of the ex-
ponential dichotomy on (–∞, +∞) for system (.) with bounded variable coefficients is
known (see, [], p., Proposition ). Similar topics were also studied in [].

3 Results: about reduction of integro-differential equations to systems of
ordinary differential equations

3.1 Reduction to the system of first-order ordinary differential equations
Consider the system

x′(t) = X
(
t,x,

∫ t

–∞
K(t, s)g

(
s,x(s)

)
ds

)
, (.)

where the kernel K(t, s) is of the form

K(t, s) =
∞∑
i,j=

Cj�j(t)Rj(s) =
∞∑
i,j=

CjKj(t, s). (.)

Series in (.) can be, for example, corresponding orthogonal expansions, series of expo-
nents. One of the interesting cases is a finite sum in (.). We assume that all the matrices
�j(t) are differentiable and invertible. We can write

Kj(t, s) = �j(t)�–
j (s)Kj(s, s). (.)

Define the so-called multiplicative derivative []

Pj(t) =
d�j(t)
dt

�–
j (t), (.)

the matrix

Gj(t, s) = �j(t)�–
j (s), (.)

is the Cauchy matrix of the system

w′
j(t) = Pj(t)w(t). (.)

http://www.advancesindifferenceequations.com/content/2013/1/187
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Let us set

zj(t, t) =
∫ t

–∞
Gj(t, s)Kj(s, s)g

(
s,x(s)

)
ds =

∫ t

–∞
Gj(t, s)hj

(
s,x(s)

)
ds, (.)

where hj(s,x(s)) = Kj(s, s)g(s,x(s)).
If the matrix Gj(t, s), defined by (.), satisfies the inequality

∣∣Gj(t, s)
∣∣ ≤ ae–λ(t–s), t ≥ s

(this is the analog of (.)) for k = n, then zj(t, t) in formula (.), according to Corol-
lary ., can be considered as a solution of the one-point problem

z′
j(t) = Pj(t)z(t) + hj

(
t,x(t)

)
, (.)

zj(t) = zj ,

where

zj =
∫ t

–∞
Gj(t, s)hj

(
s,x(s)

)
ds,

if we consider x(t) as a known function bounded on (–∞, t]. Adding to equation (.) the
so-called initial function (continuous and bounded on (–∞, t])

x(t) = ϕ(t), (.)

we can consider representation (.) as a substitution, which leads us to the one-point
problem

z′
j(t) = Pj(t)z(t) + hj

(
t,x(t)

)
, zj(t) = zj , (.)

where zj was defined above.
We have proven the following assertion.

Theorem . Let
(a) matrices �j(t) in the kernels (.) be continuously differentiable and invertible for

t ∈ (–∞, +∞), j = , , . . . ,
(b) systems (.) be of dimension nj, where

Pj(t) =
d�j(t)
dt

�–
j (t),

be hyperbolic for every j in the sense of Definition . (for k = n).
Then the bounded solution x(t) ∈ Rn of system (.) with the kernel of the form (.) and

the initial function (.) and the first component x(t) ∈ Rn of the solution to the countable

http://www.advancesindifferenceequations.com/content/2013/1/187
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system

x′(t) = X(t,x, z, z, . . .),

z′
j(t) = Pj(t)z(t) + hj(t,x), t ∈ [t, +∞),

zj(t) = zj , x(t) = ϕ(t),

(.)

where x ∈ Rn, zj ∈ Rn, hj(t,x) = Kj(t, t)g(t,x),

zj =
∫ t

–∞
Gj(t, s)hj

(
s,x(s)

)
ds, j = , , , . . .

coincide.

Remark . If (.) is a finite sum, then system (.) is finite dimensional.

Remark . The system of the form

x′(t) = X
(
t,x,

∫ ∞


K(ξ )g

(
ξ ,x(t – ξ )

)
dξ

)
(.)

can be found in various applications. It can be reduced by the change of variable t – ξ = s
to system (.) with the kernel K(t, s) = K(t – s).

Remark . System (.) can be used for studying qualitative properties and for an ap-
proximate solution of system (.) of integro-differential system (.). An important basis
is the theory of countable systems [–]; see also the papers [, –].

Remark . Analogous result could be obtained for the system

x′(t) = X
(
t,x,

∫ +∞

t
K(t, s)g

(
s,x(s)

)
ds

)
,

in Section .

3.2 Reduction to the system of ordinary differential equations of high orders
Consider the nonhomogeneous linear equation of nth order

L[y] ≡ y(n) + p(t)y(n–) + · · · + pn(t)y = f (t) (.)

and the corresponding homogeneous equation

L[z] ≡ z(n) + p(t)z(n–) + · · · + pn(t)z = , (.)

where all coefficients pj (j = , . . . ,n) and f are essentially bounded on (–∞, +∞).
Let

z(t), . . . , zn(t) (.)

http://www.advancesindifferenceequations.com/content/2013/1/187
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be a fundamental system of solutions of equation (.). Using (.), we can construct the
solution z = ψ(t, t) such that

z(t) = ψ(t, t) = , . . . , z(n–)(t) = , z(n–)(t) = . (.)

The functionψ(t, s) is called the Cauchy function of equation (.) [, ]. Consider the
function

y(t) =
∫ t

–∞
ψ(t, s)f (s)ds, (.)

assuming that the integral converges. Let us verify that (.) is a solution of (.). Actu-
ally,

y(k)(t) =
∫ t

–∞
ψ (k)(t, s)f (s)ds +ψ (k–)(t, t)f (t) =

∫ t

–∞
ψ (k)(t, s)f (s)ds (.)

for k = , . . . ,n – , and

y(n)(t) =
∫ t

–∞
ψ (k)(t, s)f (s)ds + f (t). (.)

It follows from (.), (.) and the equality L[ψ(t, t)] =  that

L[y] = f (t). (.)

The obtained particular solution satisfies the initial conditions

y(t) =
∫ t

–∞
ψ(t, s)f (s)ds,

y(k)(t) =
∫ t

–∞
ψ (k)(t, s)f (s)ds, k = , . . . ,n – .

(.)

Example . For the equation

y(n)(t) = f (t), (.)

we get

ψ(t, s) =


(n – )!
(t – s)n–,

y(t) =


(n – )!

∫ t

–∞
(t – s)n–f (s)ds. (.)

Example . For the equation

n∑
j=

cjnλ
jy(n–j)(t) = f (t), (.)
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we get

ψ(t, s) =


(n – )!
(t – s)n–e–λ(t–s),

y(t) =


(n – )!

∫ t

–∞
(t – s)n–e–λ(t–s)f (s)ds. (.)

Consider the system

x′(t) = X
(
t,x(t),

∫ t

–∞
F
(
t, s, y(s)

)
ds

)
, t ∈ [t, +∞), (.)

where x = col(u, y), u ∈ Rn–, y ∈ R, and assume that

F
(
t, s, y(s)

)
=

∞∑
j=

ψj(t, s)gj
(
s, y(s)

)
, (.)

where ψj(t, s) (j = , , . . .) are the Cauchy functions of corresponding linear equations

Lj[zj]≡ z(n)j + pj(t)z(n–)j + · · · + pnj(t)zj = , j = , , . . . . (.)

Define

vj(t) =
∫ t

–∞
ψj(t, s)gj

(
s, y(s)

)
ds, (.)

and set

y(t) = ϕ(t), t ∈ (–∞, t], (.)

where ϕ is considered as a known function. Assuming that the Cauchy functions imply
convergence of integrals (.) for all j and that the function ϕ is bounded, we obtained
that system (.) is reduced to the countable system

x′(t) = X(t,x, v, v, . . .),

Lj[vj] = gj(t, y),

x(t) = x, (.)

v(k)j (t) =
∫ t

–∞
ψ

(k)
j (t, s)gj

(
s,ϕ(s)

)
ds,

t ∈ [t, +∞),k = , . . . ,nj, j = , , . . .

in the sense that the solution of (.) coincides with the component x of the solution
vector of (.).
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4 Results: examples of reduction of integro-differential equations to systems
of ordinary differential equations

Example . Model of tumor-immune system []

x′(t) = x
(
f (x) –�(x, y)

)
,

y′ = β(z)y –μ(x)y + σq(x) + θ (t),

z =
∫ t

–∞
K(t – s)x(s)ds.

(.)

This system is an example of two-dimensional system (.) with distributed delay of x.
In [] the following kernel

K(t) = Erlλ,nt =
λn

(n – )!
tn–e–λt , (.)

is used and the case n =  is studied in detail. It is clear from Example . (see (.) and
(.)) that the substitution

z(t) =


(n – )!

∫ t

–∞
(t – s)n–e–λ(t–s)x(s)ds (.)

reduces system (.) with the kernel (.) to the system of ordinary differential equations

x′(t) = x
(
f (x) –�(x, y)

)
,

y′ = β(z)y –μ(x)y + σq(x) + θ (t),
n∑
j=

cjnλ
jz(n–j)(t) = λnx(t),

(.)

which can be written as a system of the order n + . Note that for n = , the last equation
in system (.) is of the form z′ + z = λx.

Example . Model of hematopoiesis []. This model can be written in the form

P′(t) = –δ(t)P(t) –
β(t)P(t)
 + Pn(t)

+ α(t)
∫ ∞


K(τ )

P(t – τ )
 + Pn(t – τ )

dτ . (.)

The coefficients α, β and δ in (.) are positive ω-periodic functions, the kernel K satisfies
the condition

∫ ∞
 K(τ )dτ = . The change of variable t – τ = s and then the substitution of

the type (.) in the case of the kernel (.) reduces integro-differential equation (.) to
the system of ordinary differential equations

P′(t) = –δ(t)P(t) –
β(t)P(t)
 + Pn(t)

+ α(t)z(t),

n∑
j=

cjnλ
jz(n–j)(t) = λn P(t)

 + Pn(t)
.

(.)
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Consider now the case of both distributed and concentrated delays in the system

y′(t) = Y
(
t,x(t),

∫ t

–∞
K(t, s)q

(
s, y(s)

)
ds

)
,

z′(t) = Z
(
t,x(t), z(t – τ )

)
.

(.)

Let us describe the process of reduction, which is similar to the process described in the
Section .. The vector x is of the form x = col(y, z). Denoting

v(t) =
∫ t

–∞
K(t, s)q

(
s, y(s)

)
ds, (.)

we make the substitution (compare with (.))

v(t) =
∫ t

–∞
Gj(t, s)hj

(
s, y(s)

)
ds. (.)

Introduce the initial functions

y(t) = ϕ(t), t ∈ (–∞, t], z(t) = ψ(t), t ∈ (–τ , ]. (.)

Under the assumption of convergence of the integrals, substitution (.) reduces (.) to
the system

y′(t) = Y
(
t,x(t), v(t), v(t), . . .

)
,

z′(t) = Z
(
t,x(t), z(t – τ )

)
,

v′
j(t) = Pj(t)vj(t) + hj

(
t, y(t)

)
, j = , , . . .

(.)

with the initial conditions defined by (.).

Example . The model of the plankton-nutrient interaction []

N ′(t) =D
(
N –N(t)

)
– aP(t)U

(
N(t)

)
+ γ

∫ t

–∞
F(t – s)P(s)ds,

P′(t) = P
{
aU

(
N(t – τ )

)
– (y +D)

}
.

(.)

The initial functions

P(t) = ψ(t), t ∈ (–∞, t],

N(t) = ϕ(t), t ∈ (–τ , ].
(.)

The description of all parameters can be found in the paper [].U(N) is a known function.
Concerning the function U(N), it is assumed that

U() = ,
dU
dN

> , lim
N→∞U(N) = . (.)
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A particular case of U(N) is

U(N) =
N

k +N
, where k > . (.)

Concerning the kernel, it is assumed that F(t) is a bounded nonnegative function such
that

∫ +∞
–∞ F(t)dt = .

In [] the properties of system (.) are considered in various particular cases of the
kernel F(t). The most general of them is the following:

F(t) = αe–αt , where α > . (.)

It is clear from (.) for n =  that

F(t) = Erlα,(t). (.)

The substitution (.) for n =  is of the form

z(t) =
∫ t

–∞
e–α(t–s)P(s)ds (.)

and it reduces system (.) to the system

N ′(t) =D
(
N –N(t)

)
– aP(t)U

(
N(t)

)
+ γ z(t),

P′(t) = P
{
aU

(
N(t – τ )

)
– (y +D)

}
,

z′(t) + z(t) = αP(t).

(.)

5 Results: systems with advanced argument
Using results of Section  and approach of Section  (Section .), we describe reduction
of the integro-differential system

x′(t) = X
(
t,x,

∫ +∞

t
K(t, s)g

(
s,x(s)

)
ds

)
, (.)

and the kernel

K(t, s) =
∞∑
i,j=

Cj�j(t)Rj(s) =
∞∑
i,j=

CjKj(t, s) (.)

to a system of ordinary differential equations. Introducing thematrixGj(t, s) and the equa-
tion

w′
j(t) = Pj(t)w(t),

by the formulas (.), (.) and (.), let us require that Gj(t, s) (j = , , . . .) satisfy inequal-
ities (.) under the assumption that k =  in the condition of hyperbolicity.
Introduce the substitution

zj(t, t) = –
∫ +∞

t
Gj(t, s)hj

(
s,x(s)

)
ds. (.)
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According to Corollary ., we can consider (.) for k =  as the solution of the one-point
problem for system (.), supposing x(t) is a known function

x(t) = ψ(t), t ∈ [t, +∞). (.)

As a result, we obtain an analog of Theorem . for equation (.) with the kernel (.).

Theorem . Let
(a) matrices �j(t) in the kernels (.) be continuously differentiable and invertible for

t ∈ (–∞, +∞), j = , , . . . ,
(b) systems (.) be of dimension nj, where

Pj(t) =
d�j(t)
dt

�–
j (t),

be hyperbolic for every j in the sense of Definition . (for k = n).
Then the bounded solution x(t) ∈ Rn of system (.) with the kernel of the form (.) and

the end function (.) and the first component x(t) ∈ Rn of the solution to the system

x′(t) = X(t,x, z, z, . . .),

z′
j(t) = Pj(t)z(t) + hj(t,x), t ∈ [t, +∞),

zj(t) = zj , x(t) = ψ(t),

(.)

where x ∈ Rn, zj ∈ Rn, hj(t,x) = Kj(t, t)g(t,x),

zj = –
∫ t

–∞
Gj(t, s)hj

(
s,x(s)

)
ds, j = , , , . . .

coincide.

6 Results: about systems with both delayed and advanced argument
Let us consider system (.) with distributed delay and advance. Denote x = col(y, z) in
such a form that system (.) can be written in the form

y′(t) = Y
(
t,x(t),

∫ t

–∞
K(t, s)g

(
s, y(s)

)
ds

)
,

z′(t) = Z
(
t,x(t),

∫ +∞

t
K(t, s)g

(
s, z(s)

)
ds

)
.

(.)

Using the technique of Sections  and , we introduce

uj(t) =
∫ t

–∞
G

j (t, s)h

j
(
s,x(s)

)
ds, (.)

vj(t) = –
∫ +∞

t
G

j (t, s)h

j
(
s,x(s)

)
ds, (.)

where hij(t,x) = Ki(t, t)gj(t,x), i = , , j = , , . . . and denote P
j (t) =

d�j
dt �–

j (t), j = , , . . . ,
P
r (t) =

d�r
dt �–

r (t), r = , , . . . .
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RequiringGi
j(t, s) satisfies inequality (.), the first for k = n and the second for k = , we

obtain that solution x = col(y, z) of system (.) satisfies also the following problem:

y′(t) = Y
(
t,x(t),u(t),u(t), . . .

)
,

z′(t) = Z
(
t,x(t), v(t), v(t), . . .

)
,

u′
j(t) = P

j (t)uj(t) + hj
(
t, y(t)

)
, j = , , . . . ,

v′
r(t) = P

r (t)ur(t) + hr
(
t, z(t)

)
, r = , , . . .

(.)

with conditions

y(t) = ϕ(t), uj(t) =
∫ t

–∞
G

j (t, s)h

j
(
s,x(s)

)
ds, j = , , . . . ,

z′(t) = ψ(t), vr(t) =
∫ +∞

t
G

r (t, s)h

r
(
s,x(s)

)
ds, r = , , . . . ,

y(t) = ϕ(t), t ∈ (–∞, t),

z(t) = ψ(t), t ∈ (t < +∞).

(.)

7 Conclusions
The method described above allows us to reduce systems of integro-differential systems
with distributed delay and/or advance to systems of ordinary differential equations. For
Volterra systems of the type (.), it was a basis for studying stability, bifurcation, Flo-
quet theory, parametric resonance, stabilization and oscillation properties for integro-
differential equations with ordinary [–, ] and partial [, ] derivatives. We could
extend the main results of these works to integro-differential equation (.).
Generally speaking, after the reduction, we get infinity dimensional systems of ordinary

differential equations. For their analysis, the theory of countable differentiable systems
could be used [–].
In the study of various biological systems, the linear chain trick method was used (see,

for example, [, ]). It is clear (see Section ) that our approach includes the linear
trick method. Note also the use ofW -transform, which also allows researchers to reduce
integro-differential equations to systems of ordinary differential equations [].
The proposed method allows us also to study generalized and impulsive systems. For

example, in the case of discontinuous solutions described by Heaviside functions Ha(t),
we can use its connection with δ-function: Ha(t) =

∫ t
–∞ δa(ξ )dξ and to get to a system of

integro-differential equations. Introducing the sequence, for example,

Erlλ,nt =
λn

(n – )!
tn–e–λt ,

where λ → ∞, we can consider the obtained system of integro-differential equations as an
approximation of generalized equations. This allows us in corresponding cases to reduce
the study of a generalized and impulsive system to the analysis of the sequence of integro-
differential equations, and consequently to the analysis of the corresponding sequence of
systems of ordinary differential equations.
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