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Abstract
The paper deals with the singular systems of ordinary differential equations with
impulsive action under the assumption that the considered systems can be reduced
into the central canonical form. An approach which combines the theory of impulsive
differential equations and known results from the theory of singular Fredholm
boundary value problems is used. Necessary and sufficient conditions for the
existence of solutions of the singular boundary value problems with impulsive action
are derived. Moreover, an algorithm for the construction of the family of linearly
independent solutions is shown.
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1 Introduction
It is known that some of the problems of the control theory, radio physics, mathemat-
ical economics, linear programming and others can be modeled by systems of differ-
ential equations with a singular matrix. Such systems, which are the so-called singular
or differential-algebraic systems of ordinary differential equations, are studied in many
works; in addition to other contributions, for example, in [–]. Campbell and Petzold
have introduced in [] the so-called central canonical form of singular linear systemswhich
plays a very important role in the study of such problems. The reduction to the central
canonical form is already the classical condition for this type of singular or differential-
algebraic problems [].
The existence of solutions of problems with singular matrix, mainly initial-value and

periodic problems, was studied in []. This paper deals with the most complicated and
the least studied resonance problems [] for singular differential systems with impulsive
action. The origin of the theory of differential systems with impulsive action can be found
in the work by Myshkis and Samoilenko [], later also in the work by Samoilenko and
Perestyuk []. The theory was also developed by Halanay and Wexler [], Schwabik et
al. [] and others. The ideas proposed in these works have been further developed and
generalized in numerous other publications; for example, in [–].
The main aim of this contribution is to establish necessary and sufficient conditions for

the existence of solutions of the singular systems of ordinary differential equations with
impulsive action in a relevant space. In order to do so, we will use the theory of impulsive
differential equations and known results from the theory of singular Fredholm boundary
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value problems []. Moreover, an algorithm for finding solutions of such problems in the
general case under the assumption that the unperturbed singular differential systems can
be reduced into the central canonical form is suggested in the paper.
Let us consider the problemof existence and construction of solutions of the singular lin-

ear systems of ordinary differential equations with impulsive action at fixed points of time

B(t)ẋ = A(t)x + f (t), t ∈ [a,b], ()

�Eix|t=τi = Six(τi – ) + γi, τi ∈ (a,b), i = , . . . ,p, ()

whereA(t),B(t) are n×nmatrices, detB(t) = , ∀t ∈ [a,b]; f (t) is an n-dimensional column
vector function; Ei, Si aremi ×n real constant matrices; γi, i = , . . . ,p, aremi-dimensional
real constant column vectors, i.e., γi ∈R

mi , and �Eix|t=τi := Ei(x(τi+) – x(τi–)).
We suppose that the components of the matrices A(t),B(t) and the vector f (t) are real

sufficiently many times continuously differentiable functions on the interval [a,b]. The
property ‘sufficiently many times’ depends on the rank of the matrix B(t), as will be seen
below.
The solution x(t) is being sought in the space of n-dimensional piecewise continuously

differentiable vector functions, x(t) ∈ C([a,b] \ {τ, . . . , τp}).
The norms in the spaces C([a,b] \ {τ, . . . , τp}), C([a,b] \ {τ, . . . , τp}) are introduced in

the standard manner, by analogy with [, ].
Note that if
. ∀i = , . . . ,p are Ei := E n× n identity matrices, Si n× nmatrices and hence γi

n-dimensional column vectors, then the conditions () take the form of the
standard impulsive conditions (see in []):

�x|t=τi := x(τi+) – x(τi–) = Six(τi–) + γi, i = , . . . ,p.

. E := (, , . . . , ), . . . ,Ei := (, . . . , , , , . . . , ), . . . , i = , . . . ,p, p≤ n and Si are × n
vectors, then the conditions () take the form of impulsive conditions only on the
corresponding components of the vectors x(t) = col(x(t), . . . ,xi(t), . . . ,xn(t)):

�Eix|t=τi := xi(τi+) – xi(τi–), i = , . . . ,p.

2 Auxiliary results
We have already mentioned that the reducibility of singular linear systems to the cen-
tral canonical form is the key issue in the study of singular problems. Some useful results
related to these problems are proved in []. Here these results are formulated into an aux-
iliary statement in the form of Lemma , and they will be further used to solve the problem
(), ().
Let us introduce the homogeneous system

B(t)
dx
dt

= A(t)x, t ∈ [a,b] ()

associated to system () and the corresponding adjoint system

d
dt

B∗(t)y = –A∗(t)y, t ∈ [a,b] ()

to system ().
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Let Xn–s(t) be an n × (n – s) matrix formed by n – s linearly independent solutions of
system () and let Yn–s(t) be an n × (n – s) matrix formed by n – s linearly independent
solutions of adjoint system ().
The matrices Xn–s(t) and Yn–s(t) are called fundamental matrices of systems () or ()

respectively. In addition to this, we suppose that the fundamental matrices Xn–s(t), Yn–s(t)
are constructed (see in [, p.]) so as to ensure that

Y *
n–s(t)B(t)Xn–s(t) = En–s.

Lemma  Let us assume that the following conditions are satisfied:
(i) rankB(t) = n – r for all t ∈ [a,b];
(ii) there exists a complete Jordan set of vectors ϕ

j
i(t), j = , . . . , si, i = , . . . , r, of the

matrix B(t) on the given interval [a,b] with respect to the operator
L(t) = A(t) – B(t) d

dt , which is determined by the relations

B(t)ϕ
i (t) = o,

B(t)ϕj
i(t) = L(t)ϕj–

i (t), j = , . . . , si, i = , . . . , r;

(iii) A(t),B(t) ∈ Cq–[a,b]; f (t) ∈ Cq–[a,b], q =maxi si.
Then

() there exist matrices P(t),Q(t) ∈ Cq–[a,b] which are nonsingular for all t ∈ [a,b]
and such that the multiplication by P(t) and the substitution x =Q(t)y reduce
system () to the central canonical form(

En–s 
 I

)
dy
dt

=

(
M(t) 
 Es

)
y + P(t)f (t), ()

where Es, En–s, s = s + s + · · · + sr , are the s× s or (n – s)× (n – s) respectively
identity matrices, I = diag(I, . . . , Ir ) is the quasi-diagonal matrix consisting of
nilpotent Jordan blocks Ii, i = , . . . , r, of orders si.

() there exists the general solution of system () in the form

x(t, c) = Xn–s(t)c + x̃(t) ()

on the interval [a,b].

It is necessary to clarify that c in () is an arbitrary (n – s)-dimensional constant vector
and x̃(t) is a partial solution of the nonhomogeneous system () of the form

x̃(t) =
∫ t

a
Xn–s(t)Y ∗

n–s(τ )f (τ )dτ –�(t)
q–∑
k=

Ik
dk

dtk
([

�∗(t)L(t)�(t)
]–

�∗(t)f (t)
)
,

where �(t), �(t) are the n × s matrices consisting of vectors that form the above-
mentioned Jordan sets,

�(t) :=
[
ϕ
()
 (t), . . . ,ϕ(s)

 (t);ϕ()
 (t), . . . ,ϕ(s)

 (t); . . . ;ϕ()
r (t), . . . ,ϕ

(sr )
r (t)

]
,

�(t) :=
[
ψ

(s)
 (t), . . . ,ψ ()

 (t);ψ (s)
 (t), . . . ,ψ ()

 (t); . . . ;ψ (sr )
r (t), . . . ,ψ ()

r (t)
]
.
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Note, it follows from condition (ii) that there exists a similar Jordan set of vectors
ψ

j
i (t), j = , . . . , si, i = , . . . , r, of the adjoint matrix B*(t) with respect to the operator

L*(t) = A*(t) + d
dt B

*(t). The vectors that form these sets are linearly independent for all
t ∈ [a,b], and the completeness condition implies that the determinant consisting of inner
products of the vectors Lϕ

(si)
i (t) by basis elements of the null space of the matrix B*(t) is

nonzero, i.e., det‖(L(t)ϕ(si)
i (t),ψ j

i (t))‖i,j=,...,r �= .

3 Main results
In the first part of this section, the relationship of the considered problem (), () with
an interface (see in []) boundary value problem is shown and the solvability conditions
of these problems are derived. Then, in the second part, the case when the solvability
conditions are not satisfied is discussed.

3.1 Connection with the interface boundary value problem
Using the following notations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
	x := Ex(τ+) – (E + S)x(τ–),
	x := Ex(τ+) – (E + S)x(τ–),
...
	px := Epx(τp+) – (Ep + Sp)x(τp–),

()

the systems of singular differential equations with pulse action (), () can be modified to
the following equivalent interface boundary value problem:

B(t)ẋ = A(t)x + f (t), t ∈ [a,b], ()

	x(·) = γ , ()

where γ := col(γ, . . . ,γmp ) ∈ R
m, m :=m + · · · +mp; 	 is an m-dimensional linear vector

functional 	 := col(	,	, . . . ,	p) : C([a,b]\ {τ, . . . , τp})→R
m; 	i : C([a,b]\ {τi, . . . , τp}) →

R
mi , i = , , . . . ,p.
The solution x(t) of the problem (), () and hence the solution of the initial problem (),

() of singular linear systems of ordinary differential equations with the impulsive action
at fixed points of time are sought in the space C([a,b] \ {τ, . . . , τp}) of n-dimensional
piecewise continuously differentiable vector functionswith discontinuities of the first kind
at t = τi. We use the general solution (),

x(t, c) = Xn–s(t)c + x̃(t),

of the singular differential system () to find the solvability condition and the form of the
general solution of the linear nonhomogeneous interface boundary value problem (), ()
and hence the solution of the problem (), () of singular linear systems of ordinary dif-
ferential equations with the impulsive action at fixed points of time. The solution () is
a solution of the boundary value problem (), () if and only if it satisfies the boundary
conditions (). This means that the following algebraic system:

Qc = γ – 	̃x(·) ()

http://www.advancesindifferenceequations.com/content/2013/1/186
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has to be solvable concerning c ∈R
n–s, where Q is anm× (n – s) constant matrix,

Q := col
(
–SXn–s(τ), . . . , –SpXn–s(τp)

)
. ()

The algebraic system () is solvable if and only if the right-hand side belongs to the or-
thogonal complement N(Q*) = R(Q) of the kernel N(Q*) = kerQ* of the adjoint matrix Q*,
i.e., if the following condition is satisfied:

PQ*
{
γ – 	̃x(·)} = o, ()

where PQ* := Em–QQ+ is anm×mmatrix (an orthogonal projection) projecting the space
R

m onto the kerQ*. Let rankQ := n < n – s. Since rankPQ* = d =m – n, by PQ*
d
we denote

a d ×m matrix consisting of d linearly independent rows of the m×m matrix PQ* ; Q+ is
the unique (n – s)×mMoore-Penrose pseudoinverse matrix of the matrix Q. As a result,
the criterion () consists of d linearly independent conditions,

PQ*
d

{
γ – 	̃x(·)} = o. ()

It is well known (see []), that system () has an r-parametric family of linearly indepen-
dent solutions

c =Q+{γ – 	̃x(·)} + PQr cr , ∀cr ∈ R
r , ()

where PQ := En–s –Q+Q is an (n– s)× (n– s) matrix (an orthogonal projection) projecting
the space R

n–s onto the kerQ. Since rankPQ = r = (n – s) – n, by PQr we denote an (n –
s)× r matrix consisting of r linearly independent columns of the matrix PQ. Substituting
solutions () in expression (), we get that the singular linear nonhomogeneous boundary
value problem (), () has an r-parametric family

x(t, cr) = Xn–s(t)PQrcr +Xn–s(t)Q+{γ – 	̃x(·)}
+

∫ t

a
Xn–s(t)Y ∗

n–s(τ )f (τ )dτ

–�(t)
q–∑
k=

Ik
dk

dtk
([

�∗(t)L(t)�(t)
]–

�∗(t)f (t)
)

()

of linearly independent solutions if and only if the condition () is satisfied. Thus, we have
proved the following statement.

Theorem  The interface singular boundary value problem (), () and hence the problem
(), () are solvable if and only if the nonhomogenities f (t) ∈ Cq–([a,b]) and γi ∈R

mi satisfy
d linearly independent conditions:

PQ*
d

{
γ – 	̃x(·)} = o.

Moreover, then there exist exactly r linearly independent solutions of the corresponding
homogeneous system () in the form x(t, cr) = Xr(t)cr and the nonhomogeneous system (),

http://www.advancesindifferenceequations.com/content/2013/1/186
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() possesses an r-parametric family of linearly independent solutions in the form

x(t, cr) = Xr(t)cr +
(
G[f ,γ ]

)
(t). ()

It is obvious, from the formulas (), (), that Xr(t) = Xn–s(t)PQr is an n× r matrix and

(
G[f ,γ ]

)
(t) :=

∫ t

a
Xn–s(t)Y ∗

n–s(τ )f (τ )dτ

–�(t)
q–∑
k=

Ik
dk

dtk
([

�∗(t)L(t)�(t)
]–

�∗(t)f (t)
)

+Xn–s(t)Q+γ –Xn–s(t)Q+	̃x(·). ()

The operator (G[f ,γ ])(t) is usually called the generalized Green operator of the singular
boundary value problem (), () which acts on a vector function f (t) ∈ Cq–([a,b]) and
γ ∈R

m.
The obtained results in Theorem  can be applied to the study of existence solutions of

the initial Cauchy problem for singular linear systems of ordinary differential equations

B(t)ẋ = A(t)x + f (t), t ∈ [a,b], ()

x(a) = α, ()

where f (t) ∈ Cq–[a,b] and α ∈ R
n. It is well known that such kind of the initial Cauchy

problems with a singular matrix of the system are not solvable for arbitrary f (t) and α.
The necessary and sufficient conditions for the existence of solutions of the singular

initial Cauchy problem (), () and also the form of the unique solution of this problem
directly follow from Theorem  as a corollary.

Corollary  The initial Cauchy problem (), () for singular linear systems of ordinary
differential equations is solvable if and only if the nonhomogenities f (t) ∈ Cq–([a,b]) and
α ∈ R

n satisfy d linearly independent conditions,

PD*
d

{
α – x̃(a)

}
= o, ()

and possesses a unique solution in the form

x(t) = Xn–s(t)D+(α – x̃(a)
)
+ x̃(t), ()

where D := Xn–s(a) is an n× (n– s) constantmatrix, rankPD* = d = n– rankD, PD*
d
is a d×n

matrix consisting of d linearly independent rows of the n × n matrix PD* := En –DD+ (an
orthogonal projection) projecting the space Rn onto the cokerD.

3.2 Bifurcation conditions
Our purpose in this part is to determine sufficient conditions for the bifurcation of solu-
tions of the linear singular Fredholm differential system with the impulsive action with a

http://www.advancesindifferenceequations.com/content/2013/1/186
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small parameter. It will also be assumed that the unperturbed singular differential system
can be reduced to the central canonical form.
The crucial assumption in Theorem  is the so-called solvability criterion (). It means,

if nonhomogeneities f ∈ Cq–[a,b], γi ∈ R
mi , i = , . . . ,p, in the problem (), () are such

that () is not satisfied, then there exists no solution of the problem. In such a case, we
canmodify the system () by a linear perturbation so that the perturbed singular boundary
value problem

B(t)ẋ = A(t)x + f (t) + εA(t)x, t ∈ [a,b], ()

�Eix|t=τi = Six(τi – ) + γi, τi ∈ (a,b), i = , . . . ,p, ()

where A(t),A(t),B(t) ∈ Cq–[a,b], detB(t) = , γi ∈ R
mi , i = , . . . ,p, ε >  is a small pa-

rameter, will be solvable for any nonhomogeneities. Therefore, it is analyzed whether the
problem (), () can be made solvable by introducing linear perturbations and, if this
is possible, then of what kind the perturbations A(t) ∈ Cq–[a,b] should be to make
the boundary value problem (), () solvable for all nonhomogeneities f ∈ Cq–[a,b],
γ := col(γ, . . . ,γp) ∈R

m.
Using the Vishik-Lyusternik method and the technique of Moore-Penrose pseudoin-

verse matrices, an algorithm for finding a family of linearly independent solutions of such
problems for the general case can be suggested.
For a simple formulation of the results, it is convenient to use the notation of d×rmatrix

B in the form

B := –PQ*
d
	

{∫ ·

a
Xr(·)Y ∗

n–s(τ )A(τ )Xr(τ )dτ

–�(·)
q–∑
k=

Ik
dk

dtk
([

�∗(t)L(t)�(t)
]–

�∗(t)A(t)Xr(t)
)
(·)

}
, ()

where 	 : C([a,b] \ {τ, . . . , τp})→ Rm.
We can formulate the following statement.

Theorem Let us suppose that there exists no solution of the singular generating boundary
value problem (), () for some nonhomogeneities f (t) ∈ Cq–[a,b], γ ∈ Rm. If

rankB = d, ()

then there exists a ρ-parametric (ρ := r – d = n – s – m) family of linearly independent
solutions of the perturbed singular boundary value problem (), () in the form of a part
of the Laurent series in powers of a parameter ε:

x(t, ε) =
∞∑
i=–

εixi(t, cρ), ∀cρ ∈R
ρ , ()

convergent for fixed ε ∈ (, ε∗], where ε∗ is an appropriate constant characterizing the do-
main of the convergence of the series (), and the coefficients xi(t, cρ) are determined from
the corresponding problems.

http://www.advancesindifferenceequations.com/content/2013/1/186
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The proof of these results can be done in a similar way as in the works [, –] and we
omit it.
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