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Abstract
In this paper, we obtain exact solutions of two nonlinear evolution equations, namely
the modified Kortweg de Vries equation and the higher-order modified Boussinesq
equation with damping term. The method employed to obtain the exact solutions is
the (G′/G)-expansion method. Traveling wave solutions of three types are obtained
and these are the solitary waves, periodic and rational.
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1 Introduction
In this paper, we consider two nonlinear evolution equations, namely the modified Ko-
rtweg de Vries equation []

uuxxt – uxuxt – uut + uuxxx – uxuxx – uux =  ()

and the higher-order modified Boussinesq equation with damping term []

utt + αutxx + βuxxxx + γ
[
u(ux) + uuxx

]
= . ()

It is well known that nonlinear evolution equations, such as () and (), are widely used
as models to describe physical phenomena in different fields of applied sciences such as
plasma waves, solid state physics, plasma physics and fluid mechanics. One of the ba-
sic physical problems for these models is to obtain their exact solutions for the better
understanding of nonlinear models [–]. In the last few decades, a variety of effective
methods for finding exact solutions, such as the homogeneous balance method [], the
ansatzmethod [, ], the variable separation approach [], the inverse scattering transform
method [], the Bäcklund transformation [], the Darboux transformation [], Hirota’s bi-
linear method [], the reduction mKdV equation method [], the tri-function method
[, ], the projective Riccati equation method [], the sine-cosine method [], the Ja-
cobi elliptic function expansion method [, ], the F-expansion method [] and the
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exp-function expansion method [] and many others, were successfully applied to non-
linear differential equations.
Although a great deal of research work has been devoted to finding different methods

to solve nonlinear evolution equations, there is no unique method. In  Wang et al.
[] proposed a newmethod referred to as the (G′/G)-expansionmethod for finding trav-
eling wave solutions of nonlinear evolution equations. This paper showed that the (G′/G)-
expansionmethod is an effectivemethod for finding exact solutions of nonlinear evolution
equations. It has been extensively used by various researchers (see, for example, papers
[–]) in a variety of scientific fields. The key ideas of the method are that the travel-
ing wave solutions of a complicated nonlinear evolution equation can be constructed by
means of various solutions of a second-order linear ordinary differential equation [].
In this work, our main focus is on equations () and (). We derive the traveling wave

solutions of the two equations by using the (G′/G)-expansion method. The paper is orga-
nized as follows. In Section , we describe the (G′/G)-expansion method. Exact solutions
of the modified Kortweg de Vries equation () and the higher-order modified Boussinesq
equation with damping term () are constructed in Section  using the (G′/G)-expansion
method. In Section , conclusion is given.

2 Analysis of the (G′/G)-expansionmethod
The (G′/G)-expansion method for finding exact solutions of nonlinear differential equa-
tions was introduced in []. Several researchers have recently applied this method to
various nonlinear differential equations. They have shown that this method provides a
very effective and powerful mathematical tool for solving nonlinear equations in various
fields of applied sciences (see, for example, papers [–]).
Consider a nonlinear partial differential equation (NPDE), say, in two independent vari-

ables x and t, given by

P(u,ux,ut ,utt ,uxt ,uxx, . . .) = , ()

where u(x, t) is an unknown function, P is a polynomial in u and its various partial deriva-
tives, inwhich the highest-order derivatives and nonlinear terms are involved. The essence
of the (G′/G)-expansion method is given in the following steps.
• Step . The transformation u(x, t) =U(z), z = x – νt reduces equation () to the
ordinary differential equation (ODE)

P
(
U , –νU ′,U ′,νU ′′, –νU ′′,U ′′, . . .

)
= . ()

• Step . According to the (G′/G)-expansion method, it is assumed that the traveling
wave solution of equation () can be expressed by a polynomial in (G′/G) as follows:

U(z) =
m∑
i=

αi

(
G′

G

)i

, ()

where G =G(z) satisfies the second-order linear ODE in the form

G′′ + λG′ +μG = , ()
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with αi, i = , , , . . . ,m, λ and μ being constants to be determined. The positive
integer m is determined by considering the homogenous balance between the
highest-order derivatives and nonlinear terms appearing in ODE ().

• Step . By substituting () into () and using the second-order ODE (), collecting all
terms with same order of (G′/G) together, the left-hand side of () is converted into
another polynomial in (G′/G). Equating each coefficient of this polynomial to zero,
yields a set of algebraic equations for α, . . . ,αm, ν , λ, μ.

• Step . Assuming that the constants can be obtained by solving the algebraic
equations in Step , since the general solution of () is known, then substituting the
constants and the general solutions of () into () we obtain traveling wave solutions
of the NPDE ().

3 Exact solutions of (1) and (2)
In this section we construct traveling wave solutions of mKdV and modified Boussinesq
equations by employing the (G′/G)-expansion method.

3.1 The modified Kortweg de Vries equation
The modified KdV equation is given by []

uuxxt – uxuxt – uut + uuxxx – uxuxx – uux = , ()

where u is a real-valued scalar function, t is time and x is a spatial variable.
As the first step, we transform the modified KdV type equation () to a nonlinear ordi-

nary differential equation (ODE) using the traveling wave variable

u(t,x) = F(z), z = x – νt. ()

Applying the above transformation, equation () transforms to the nonlinear ODE

–νFF ′′′ + νF ′F ′′′ + νFF ′ + FF ′′′ – F ′F ′′ – FF ′ = , ()

which reduces to

( – ν)
[
FF ′′′ – F ′F ′′ – FF ′] = . ()

Hence if ν �= , we obtain

FF ′′′ – F ′F ′′ – FF ′ = , ()

where the prime denotes the derivative with respect to z.
The (G′/G)-expansion method assumes the solution of equation () to be of the form

F(z) =
M∑
i=

Ai
(
G′/G

)i, ()

where G(z) satisfies the second-order linear ODE with constant coefficients, viz.,

G′′ + λG′ +μG = , ()

where λ and μ are constants.
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The balancing procedure yields M = , so the solution of the ODE () is of the form

F(z) =A +A
(
G′/G

)
. ()

Substituting () into (), making use of theODE (), collecting all termswith same pow-
ers of (G′/G) and equating each coefficient to zero yield the following system of algebraic
equations:

(
G′/G

): –AAλ
μ – AAμ

 +A
λμ + αA

αμ = , ()(
G′/G

)
: A

Aλ + A
A

μ +A
λ

μ –AAλ
 – AAλμ = , ()(

G′/G
): –A

λ
 – A

μ – AAλ
 – AAμ – A

λμ

+ AA
μ + A

A
λ + A

A = , ()(
G′/G

): A
μ + AA

λ + A
A

 + A
λ

 + A
μ

– AAλ = , ()(
G′/G

): A
λ + AA

 – A
λ – AA = , ()(

G′/G
): A

 – A
 = . ()

Solving this system of algebraic equations, with the aid of Mathematica, we obtain

A =
λ


, A = . ()

Substituting these values ofA,A and the corresponding solution of ODE () into (),
we obtain three types of traveling wave solutions of equation (). These are as follows.
Case : When λ – μ > , we obtain the hyperbolic function solutions

u(t,x) = A +A

(
–

λ


+ δ

C sinh(δz) +C cosh(δz)
C cosh(δz) +C sinh(δz)

)
, ()

where z = x – νt, δ = 


√
λ – μ, C and C are arbitrary constants.

Case : When λ – μ < , we obtain the trigonometric function solutions

u(t,x) = A +A

(
–

λ


+ δ

–C sin(δz) +C cos(δz)
C cos(δz) +C sin(δz)

)
, ()

where z = x – νt, δ = 


√
μ – λ, C and C are arbitrary constants.

Case : When λ – μ = , we obtain the rational function solutions

u(t,x) = A +A

(
–

λ


+

C

C +Cz

)
, ()

where z = x – νt, C and C are arbitrary constants.
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3.2 Higher-order modified Boussinesq equation with damping term
We now consider the modified Boussinesq equation with damping term [] given by

utt + αutxx + βuxxxx + γ
[
u(ux) + uuxx

]
= , ()

where u is a real-valued scalar function, t is time, x is a spatial variable and α, β , γ are
nonzero real constants.
Following the same procedure of the previous subsection equation () is transformed

to the following ODE:

νU ′′ – ανU ′′′ + βU ′′′′ + γ
[
U

(
U ′) + UU ′′] = , ()

where the prime denotes the derivative with respect to z. Balancing the order of U ′′′′ and
UU ′′ in () yieldsM = . The solution to equation () is also assumed to be of the form

U(z) = a + a
(
G′/G

)
. ()

Substituting () into () andmaking use of (), we obtain the following algebraic system
of equations in terms of a, a, by equating all coefficients of the functions (G′/G)i to zero.

(
G′/G

): aμλν + aμαν + aμλαν + aμλβ + aμλβ

+ aaμ
γ + aaμλγ = , ()(

G′/G
)
: aλν + aμν + aμλαν + aλαν + aμβ

+ aμλβ + aλβ + aaμλγ + aaλ
γ + aaμγ

+ aμ
γ = , ()(

G′/G
): aλν + aμαν + aλαν + aμλβ + aλβ

+ aμλγ + aaμγ + aaλ
γ + aaλγ = , ()(

G′/G
): aν + aλαν + aμβ + aλβ + aλ

γ

+ aμγ + aaλγ + aaγ = , ()(
G′/G

): aαν + aλβ + aλγ + aaγ = , ()(
G′/G

): aβ + aγ = . ()

Solving this system of algebraic equations, with the aid of Mathematica, one possible set
of solution is

α =
λ

√
β√

(λ –μ)
, ν = –

βλ

α
, a = , a =

√
–β
γ

. ()

Substituting these values from () and the corresponding solution of ODE () into ()
yields three types of traveling wave solutions of equation () as follows.
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Case : When λ – μ > , we obtain the hyperbolic function solution

U(x, t) =

√
–β
γ

[
–

λ


+ δ

(
C sinh(δz) +C cosh(δz)
C cosh(δz) +C sinh(δz)

)]
, ()

where z = x – νt, δ = 


√
λ – μ and C and C are arbitrary constants.

Case : When λ – μ < , we obtain the trigonometric function solution

U(x, t) =

√
–β
γ

[
–

λ


+ δ

(
–C sin(δz) +C cos(δz)
C cos(δz) +C sin(δz)

)]
, ()

where z = x – νt, δ = 


√
μ – λ and C and C are arbitrary constants.

Case : When λ – μ = , we obtain the rational function solution

U(x, t) =

√
–β
γ

(
–

λ


+

C

C +Cz

)
, ()

where z = x – νt, and C and C are arbitrary constants.

4 Conclusion
In this paper, we studied two nonlinear partial differential equations that appear in a vari-
ety of scientific fields. These are the modified Kortweg de Vries equation and the higher-
order modified Boussinesq equation with damping term. We used the (G′/G)-expansion
method to obtain exact solutions of these two evolution equations. By using this method,
we have successfully obtained traveling wave solutions expressed in the form of a hyper-
bolic function, a trigonometric function and a rational function. This work also high-
lighted the power of the (G′/G)-expansionmethod for the determination of exact solutions
of nonlinear evolution equations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DMM and CMK worked together in the derivation of the mathematical results. Both authors read and approved the final
manuscript.

Acknowledgements
DMM and CMK would like to thank the organizing Committee of the International Conference on the Theory, Methods
and Application of Nonlinear Equations for their kind hospitality during the conference. DMM would also like to thank the
Faculty Research Committee of FAST, North-West University for their financial support.

Received: 5 March 2013 Accepted: 24 May 2013 Published: 12 June 2013

References
1. Wazwaz, A-M: A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons,

peakons and cuspons. Phys. Scr. 86, Article ID 045501 (2012)
2. Yan, Z-Y, Xie, F-D, Zhang, H-Q: Symmetry reductions, integrability and solitary wave solutions to higher-order

modified Boussinesq equations with damping term. Commun. Theor. Phys. 36, 1-6 (2001)
3. Wang, M, Zhou, Y, Li, Z: Application of a homogeneous balance method to exact solutions of nonlinear equations in

mathematical physics. Phys. Lett. A 216, 67-75 (1996)
4. Hu, JL: Explicit solutions to three nonlinear physical models. Phys. Lett. A 287, 81-89 (2001)
5. Hu, JL: A new method for finding exact traveling wave solutions to nonlinear partial differential equations. Phys. Lett.

A 286, 175-179 (2001)
6. Lou, SY, Lu, JZ: Special solutions from variable separation approach: Davey-Stewartson equation. J. Phys. A, Math. Gen.

29, 4209-4215 (1996)

http://www.advancesindifferenceequations.com/content/2013/1/166


Mothibi and Khalique Advances in Difference Equations 2013, 2013:166 Page 7 of 7
http://www.advancesindifferenceequations.com/content/2013/1/166

7. Ablowitz, MJ, Clarkson, PA: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press,
Cambridge (1991)

8. Gu, CH: Soliton Theory and Its Application. Zhejiang Science and Technology Press, Zhejiang (1990)
9. Matveev, VB, Salle, MA: Darboux Transformation and Soliton. Springer, Berlin (1991)
10. Hirota, R: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
11. Yan, ZY: A reduction mKdV method with symbolic computation to construct new doubly-periodic solutions for

nonlinear wave equations. Int. J. Mod. Phys. C 14, 661-672 (2003)
12. Yan, ZY: The new tri-function method to multiple exact solutions of nonlinear wave equations. Phys. Scr. 78, Article ID

035001 (2008)
13. Yan, ZY: Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharov-Kuznetsov equation in

dense quantum plasmas. Phys. Lett. A 373, 2432-2437 (2009)
14. Lu, DC, Hong, BJ: New exact solutions for the (2 + 1)-dimensional generalized Broer-Kaup system. Appl. Math.

Comput. 199, 572-580 (2008)
15. Wazwaz, M: The tanh and sine-cosine method for compact and noncompact solutions of nonlinear Klein-Gordon

equation. Appl. Math. Comput. 167, 1179-1195 (2005)
16. Lu, DC: Jacobi elliptic functions solutions for two variant Boussinesq equations. Chaos Solitons Fractals 24, 1373-1385

(2005)
17. Yan, ZY: Abundant families of Jacobi elliptic functions of the (2 + 1)-dimensional integrable Davey-Stewartson-type

equation via a new method. Chaos Solitons Fractals 18, 299-309 (2003)
18. Wang, M, Li, X: Extended F-expansion and periodic wave solutions for the generalized Zakharov equations. Phys. Lett.

A 343, 48-54 (2005)
19. He, JH, Wu, XH: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700-708 (2006)
20. Wang, M, Li, X, Zhang, J: The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution

equations in mathematical physics. Phys. Lett. A 372, 417-423 (2008)
21. Bekir, A, Aksoy, E: The exact solutions of shallow water wave equation by using the (G′/G)-expansion method. Waves

Random Complex Media 22(3), 317-331 (2012)
22. Li, L-X, Wang, M-L: The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear

Schrodinger equation. Appl. Math. Comput. 208, 440-445 (2009)

doi:10.1186/1687-1847-2013-166
Cite this article as:Mothibi and Khalique: On the exact solutions of a modified Kortweg de Vries type equation and
higher-order modified Boussinesq equation with damping term. Advances in Difference Equations 2013 2013:166.

http://www.advancesindifferenceequations.com/content/2013/1/166

	On the exact solutions of a modiﬁed Kortweg de Vries type equation and higher-order modiﬁed Boussinesq equation with damping term
	Abstract
	Keywords

	Introduction
	Analysis of the (G'/G)-expansion method
	Exact solutions of (1) and (2)
	The modiﬁed Kortweg de Vries equation
	Higher-order modiﬁed Boussinesq equation with damping term

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References


