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Abstract
We are describing the stable nonautonomous planar dynamic systems with complex
coefficients by using the asymptotic solutions (phase functions) of the characteristic
(Riccati) equation. In the case of nonautonomous dynamic systems, this approach is
more accurate than the eigenvalue method. We are giving a new construction of the
energy (Lyapunov) function via phase functions. Using this energy, we are proving
new stability and instability theorems in terms of the characteristic function that
depends on unknown phase functions. By different choices of the phase functions,
we deduce stability theorems in terms of the auxiliary function of coefficients RA(t),
which is invariant with respect to the lower triangular transformations. We discuss
some examples and compare our theorems with the previous results.
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1 Introduction
We are interested in the behavior of a given solution u(t) of the nonlinear planar dynamic
system

u′(t) = A(t,u)u(t), A(t,u) =

(
a(t,u(t)) a(t,u(t))
a(t,u(t)) a(t,u(t))

)
, t ≥ T , (.)

where akj(t,u(t)) are complex-valued functions fromC(T ,∞), and u(t) =
( u(t)
u(t)

)
. Since we

are assuming that the solution u(t) of (.) is given (fixed), system (.) may be considered
as a linear nonautonomous system with coefficients A(t) = A(t,u) depending only on a
time variable.
Here and further, Ck(T ,∞) is the set of k times differentiable functions on (T ,∞),

L(T ,∞) is the set of Lebesgue absolutely integrable functions on (T ,∞), and BV(T ,∞)
is the set of functions of bounded variation on (T ,∞).
Dynamic system (.) is said to be stable if for any ε >  and for any solution u(t)

of (.) there exists δ(T , ε) >  such that ‖u(t)‖ < ε for all t ≥ T , whenever ‖u(T)‖ =√|u(T)| + |u(T)| < δ(T , ε). Dynamic system (.) is said to be attractive (to the origin)
if for every solution u(t) of (.)

lim
t→∞u(t) = . (.)
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Dynamic system (.) is asymptotically stable if it is stable and attractive.
A solution u(t) of (.) is stable if for any ε >  there exists δ(T , ε) >  such that ‖u(t)‖ < ε

for all t ≥ T , whenever ‖u(T)‖ = √|u(T)| + |u(T)| < δ(T , ε).
A solution of (.) u(t) is asymptotically stable (attractive to the origin) if (.) is true.
It is well-known that for a nonautonomous system with the complex eigenvalues λj(t),

j = , . . . ,n, the classical Routh-Hurvitz condition of stability Re[λj] ≤ , j = , . . . ,n, fails.
Indeed, nonautonomous system (.) with

A(t) =

(
λ etμ

 λ

)
, Re[λ] ≤ ,Re[λ] ≤  (.)

is unstable if Re[μ] > –Re[λ], although the Routh-Hurvitz condition is satisfied. Neces-
sary and sufficient conditions of asymptotic stability of this system,

Re[λ] < , Re[λ] < , Re[λ] < –Re[μ], (.)

could be found from the explicit solutions

u(t) =
Cet(μ+λ)

μ + λ – λ
+Cetλ , u(t) = Cetλ . (.)

This example shows that the description of stability of nonautonomous dynamic systems
in terms of the eigenvalues is not accurate.
The usual method of investigation of asymptotic stability of differential equations is the

Lyapunov direct method that uses energy functions and Lyapunov stability theorems [–
].
The asymptotic representation of solutions and error estimates in terms of the charac-

teristic function was used in [–] to prove asymptotic stability. In this paper we describe
the stable dynamic systems by using energy approach with the use of the characteristic
function (see (.) below), which is a more accurate tool than the eigenvalues.
The main idea of this paper is to construct the energy function in such a way that the

time derivative of this energy is the linear combination of the characteristic functions (see
(.) below). Using this energy, we prove main stability theorems for two-dimensional
systems in terms of unknown phase functions (see Theorems .-.).
Theorems .-. are similar to Lyapunov stability theorems with additional construc-

tion of an energy function in terms of the phase functions. Theorems .-. are applicable
to a wide range of nonlinear systems with complex-valued coefficients (see Example .
below or the linear Dirac equation with complex coefficients in []) since they have the
flexibility in the choice of an energy function.
To show that our theorems are useful, we deduce different versions of stability theorems

(old well-known and some new ones) by using different phase functions as asymptotic so-
lutions of the characteristic equation (see (.) below). Moreover, we formulate some of
the conditions of stability in terms of the auxiliary function RA(t) (see (.) below), which
is invariant with respect to the lower triangular transformations (see Theorem A.). Note
that there is no universal stability theorem in terms of coefficients for nonautonomous
system (.) since there is no universal formula for an asymptotic solution of the charac-
teristic equation.
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As an application (see Example .), we prove the asymptotic stability of the nonlinear
Matukuma equation from astrophysics [, ].
Consider the second-order linear equation

L[v] = v′′(t) + P(t)v′(t) +Q(t)v(t) = . (.)

Define the characteristic (Riccati) equation of (.)

CLj(t) = e–
∫ t
T χj(s)dsL

(
e
∫ t
T χj(s)ds

)
= χ ′

j (t) + χ
j (t) + P(t)χj(t) +Q(t) = , (.)

where CLj(t) is said to be the characteristic function, and χ,(t) are the phase functions.
In Section  (see Lemma .) the following lemma is proved.

Lemma . Assume that every solution v(t) ∈ C(T ,∞) of (.) approaches zero as t → ∞,
then

lim
t→∞

∫ t

T
	

[
P(s) +

χ ′
(s) – χ ′

(s)
χ(s) – χ(s)

]
ds = ∞, (.)

where χ,(t) ∈ C(T ,∞) are solutions of characteristic equation (.).

In the proof of Lemma ., it is shown that (.) is also a sufficient condition of attractivity
of solutions of (.) to the origin under additional condition

– lnC ≤
∫ ∞

T

(	[
χ(s) – χ(s)

])
ds≤ lnC, C = const > . (.)

If the asymptotic behavior of χ(t) – χ(t) as t → ∞ is known, then the condition of
attractivity (.) could be clarified. Unfortunately, there is no a simple formula for asymp-
totic behavior of χ(t) – χ(t) depending on the behavior of P(t), Q(t) as t → ∞. Anyway,
under some restrictions, one can obtain stability theorems for (.) by considering differ-
ent asymptotic expansions of χ(t) – χ(t).
Assume that for some positive constants P, Q, Qm,

∣∣Q′(t)
∣∣ + ∣∣P(t)∣∣ ≤ P, Q ≤ Q(t)≤ Qm. (.)

Theorem . (Ignatyev []) Suppose that the functions P(t) ∈ C(T ,∞), Q(t) ∈ C(T ,∞)
are real, and they satisfy conditions (.) and

P(t) +
Q′(t)
Q(t)

≥ m >  for some m = const. (.)

Then linear equation (.) is asymptotically stable.

Condition that |Q′(t)| is bounded above in (.) was removed in [].
Note that if

χ ′
(t) – χ ′

(t)
χ(t) – χ(t)

–
Q′(t)
Q(t)

∈ L(T ,∞), (.)

http://www.advancesindifferenceequations.com/content/2013/1/144
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then condition (.) turns to

∫ ∞

T
	

[
P(s) +

Q′(t)
Q(t)

]
ds = ∞, (.)

and is an integral version of (.).
In [] Ballieu and Peiffer introduced amore general condition than Ignatyev’s one (.)

for the attractivity (see (.), (.) below) of a nonlinear second-order equation.

Theorem . (Pucci-Serrin [], Theorem B) Suppose that functions P(t) ∈ C(T ,∞),
Q(t) ∈ C(T ,∞) are real, and there exists a non-negative continuous function k(t) of
bounded variation on (T ,∞) such that

vf (v) >  for v 
= , (.)

P(t) +
Q′(t)
Q(t)

≥ k(t)
√
Q(t), t ≥ T , (.)

∫ ∞

T
k(t)

√
Q(t)dt = ∞, (.)

lim
t→∞ inf

(∫ t
T k

(s)[P(s) + Q′(s)
Q(s) ]ds∫ t

T k(s)
√
Q(s)ds

)
<∞, (.)

then every bounded solution of the nonlinear equation

v′′(t) + P(t)v′(t) +Q(t)f (v) = , t ≥ T , (.)

tends to zero as t → ∞.

In this paper we prove general stability Theorems .-. in terms of unknown phase
functions. Using these theoremswe derive the versions of stability theoremof Pucci-Serrin
[], Smith [], and some new ones.

2 Energy and some other auxiliary functions
Assuming a(t) 
= , consider the following second-order nonlinear equation associated
with system (.):

L[u] = u′′
 (t) + P(t,u)u′

(t) +Q(t,u)u(t) = , (.)

where

P(t,u) = –Tr
(
A(t)

)
–
a′
(t,u(t))

a(t,u(t))
, Q(t,u) = det

(
A(t)

)
+
W [a,a]
a(t,u(t))

, (.)

Tr
(
A(t)

) ≡ a
(
t,u(t)

)
+ a

(
t,u(t)

)
,

det
(
A(t)

) ≡ a
(
t,u(t)

)
a

(
t,u(t)

)
– a

(
t,u(t)

)
a

(
t,u(t)

)
, (.)

W [a,a] ≡ a
(
t,u(t)

)
a′


(
t,u(t)

)
– a′


(
t,u(t)

)
a

(
t,u(t)

)
. (.)
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Remark . Note that using equation (.), one can eliminate dependence a′
(t,u(t)) on

u′(t). Indeed a′
(t,u(t)) =

∂a
∂t +

∑
j=

∂a
∂uj

∂uj(t)
∂t = ∂a

∂t +
∑

j=
∂a
∂uj

(aju +aju). Similar cal-
culations show that a′′

(t,u(t)) depends only on t, u(t), coefficients akj(t,u(t)), and their
derivatives.

Here and further, often we suppress the dependence on t and u(t) for simplicity.
Introduce the characteristic function of (.) that depends on an unknown phase func-

tion θj(t):

CLj(t) = CL(θj) =
L[eθj (t)]
eθj (t)

= θ ′
j (t) + θ

j (t) + P(t,u)θj(t) +Q(t,u), (.)

and the auxiliary function:

HL(t) =
CL(t) –CL(t)

θ(t) – θ(t)
= θ(t) + θ(t) +

θ ′(t)
θ (t)

+ P(t,u), (.)

where

eθj (t) = e
∫ t
T θj(s)ds, j = , , θ (t) ≡ θ(t) – θ(t)


. (.)

Define the characteristic (Riccati) function of system (.)

CAj(t) = CA(θj)

= θ ′
j (t) + θ

j (t) – θj(t)
[
Tr

(
A(t)

)
+
a′
(t)

a(t)

]
+ det

(
A(t)

)
+
W [a,a]

a(t)
. (.)

EquationCAj(t) =  is the characteristic equation of system (.). For diagonal system (.),
formulas (.) fail (for this case, see (A.)).
Introduce the auxiliary functions

HA(t) =
CA(t) –CA(t)
(θ(t) – θ(t))

=
θ ′
(t) – θ ′

(t)
θ(t) – θ(t)

+ θ(t) + θ(t) – Tr
(
A(t)

)
–
a′
(t)

a(t)
, (.)

RA(t) = det
(
A(t)

)
–
(TrA(t))


+
W [t,a – a,a]

a(t)
+

a′′
(t)

a(t)
–
a′

(t)
a(t)

. (.)

To explain themotivation for the choice of an energy function for system (.) (assuming
a(t,u) 
= ), consider a representation of solutions of (.) in Euler form (see []):

u = Ceχ (t) +Ceχ (t), u = CU(t)eχ (t) +CU(t)eχ (t), (.)

where χj(t), j = , , are exact solutions of the characteristic equation CAj(χj) = , eχj (t) are
defined as in (.), and

Uj(t) =
χj(t) – a(t,u(t))

a(t,u(t))
, j = , . (.)

For the case of linear system (.), representation (.) gives the general solution of (.),
where C, C are constants. For a nonlinear system, C, C depend on a solution u(t).

http://www.advancesindifferenceequations.com/content/2013/1/144
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Solving equations (.) for C,, we get

C =
au – (χ – a)u

(χ – χ)eχ (t)
, C = –

au – (χ – a)u
(χ – χ)eχ (t)

. (.)

Replacing χj(t) by arbitrary differentiable functions θj(t), we define auxiliary energy
functions

Ej(t) = Ej
(
θj(t)

)
= |Cj| = |au – (θj – a)u|

|(θ – θ)eθ–j |
, j = , . (.)

Remark . Although (.) are not constants for a nonlinear or nonautonomous system,
they are useful for the study of stability. One can expect that for an appropriate choice of
θj(t) these energy functions are approximately conservative expressions for some nonlin-
ear systems that are close to linear.
The derivative of the energy functions (.)may bewritten (see (.) below) as a linear

combination of the characteristic functions:

E′
j(t) =

	[(θj – a)|u|CAj – uauCAj –HA|(θj – a)u – au|]
|θeθ–j |

. (.)

From (.) it follows that if for any given solution u(t) of (.) the phase functions θj(t)
satisfy characteristic equation, that is, θj(t) = χj(t), j = , , then energy conservation laws
Ej(t) = const, j = ,  are satisfied.
Otherwise, (.) means that the error of asymptotic solutions is measured by the char-

acteristic function.

Define (total) energy function as a non-negative quadratic form

E(t) = E(t) + E(t). (.)

Remark . If the phase functions are chosen as

θ,(t) = ±θ (t) –
θ ′(t)
θ (t)

+
Tr(A(t))


+

a′
(t)

a(t)
, (.)

where θ (t) is an arbitrary differentiable function, then

HA(t)≡ . (.)

3 Stability theorems in terms of unknown phase functions
In this section we formulate the main Theorems .-. of the paper.

Theorem. Suppose that for a solution u(t) of (.),we have A(t,u) ∈ C(T ,∞), and there
exist the complex-valued functions p(t),p(t); θ(t), θ(t) ∈ C(T ,∞) and the real numbers
c > , α such that for all t ≥ T we have a(t,u) 
=  and

∣∣∣∣θ(t) – a(t,u)
a(t,u)

∣∣∣∣


+
∣∣∣∣θ(t) – a(t,u)

a(t,u)
e–s(t)

∣∣∣∣


+  +
∣∣e–s(t)∣∣ ≤ c

∣∣θ (t)∣∣α , (.)

http://www.advancesindifferenceequations.com/content/2013/1/144
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(
 +

∣∣es(t)∣∣)	[
J(t) +HA(t)

]
>

(
 –

∣∣es(t)∣∣)	[
p(t) – p(t)

]
, (.)∫ ∞

T
J
(
t,u(t)

)
dt ≤ c < ∞, (.)

where s(t) = θ(t) – θ(t) – p(t) + p(t), J(t,u(t)) = J(t), θ (t) ≡ θ(t) – θ(t)

J(t) =	
[
θ (t) +

(α – )θ ′(t)
θ (t)

+ Tr
(
A(t)

)
+
a′
(t,u)

a(t,u)
+ p(t) – p(t)

]
+ J(t), (.)

J(t) =

√∣∣∣∣CA(t)|es(t)|
θ(t) – θ(t)

–
CA(t)|e–s(t)|
θ(t) – θ(t)

∣∣∣∣


+
[
	

(
p(t) – p(t) +

CA(t) +CA(t)
θ(t) – θ(t)

)]

. (.)

Then the solution u(t) of system (.) is stable.

Remark . Since stability conditions (.)-(.) of Theorem . are given in terms of
estimates with constants that depend on solutions of (.), system (.) is stable if these
estimates are satisfied uniformly for all solutions (with constants that do not depend on
solutions).

Remark . Note that for a linear nonautonomus system (.) with the choice θj(t) = χj(t),
j = , ,	[p(t)–p(t)]≡ , the error function J(t) ≡  and conditions (.), (.) are close
to the necessary and sufficient condition of the stability.

Theorem . Suppose that for a solution u(t) of (.) A(t,u) ∈ C(T ,∞), there exist the
complex-valued functions p(t),p(t); θ(t), θ(t) ∈ C(T ,∞), and the real numbers c > , α
such that for all t ≥ T , a(t,u) 
=  and conditions (.), (.),

∫ ∞

T
J
(
t,u(t)

)
dt = –∞ (.)

are satisfied with J(t,u(t)) = J(t) as in (.), (.).
Then the solution u(t) of system (.) is asymptotically stable.

Theorem . Suppose that for a solution u(t) of (.), we have A(t,u) ∈ C(T ,∞), and
there exist the complex-valued functions p(t),p(t); θ(t), θ(t) ∈ C(T ,∞) such that for all
t ≥ T we have a(t,u) 
= ,

	[
HA(t)

]
< J(t) –

∣∣	[
p(t) – p(t)

]∣∣, (.)

lim
t→∞

exp
∫ t
T J(s,u)ds

|(θ – a)es| + |θ – a| + |a|( + |es|)(t) = ∞, (.)

where J(t) is defined in (.), and

J(t,u) = 	
[
θ(t) – θ(t) + p(t) – p(t) +

θ ′(t)
θ (t)

+ Tr
(
A(t)

)
+
a′
(t)

a(t)

]
– J(t). (.)

Then the solution u(t) of system (.) is unstable.

http://www.advancesindifferenceequations.com/content/2013/1/144
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Example . From Theorem . it follows that the linear canonical equation

v′′(t) + btγ–v′(t) + ctβ–v(t) = , c > ,b < ,β > γ >  (.)

is unstable.

Remark . If

Re
[
θ(t) – θ(t)

] ≥ Re
[
p(t) – p(t)

] ≥ , (.)

then Re[s]≥ , |es(t)| ≥  and condition (.) is satisfied if Re[HA(t) + J(t)] > .
Otherwise (.) is satisfied if J(t) > , Re[HA]≥ |Re[p(t) – p(t)]|.
Under condition (.), condition (.) turns to

|θ – a| +
∣∣(θ – a)e–s

∣∣ + |ae–s| ≤ |a|
(
c|θ – θ|α – 

)
,

which is satisfied if

|θ – a| +
∣∣(θ – a)

∣∣ ≤ |a|
(
c|θ – θ|α – 

)

or


∣∣θ(t) – a(t)

∣∣ + 
∣∣θ(t) – θ(t)

∣∣ ≤ |a|
(
c|θ(t) – θ(t)|α – 

)
. (.)

Sometimes it is convenient to use other than (.) formula for J(t):

J(t) = 	
[
θ(t) +

αθ ′(t)
θ (t)

–HA(t) + p(t) – p(t)
]
+ J(t). (.)

Remark . If p(t)≡ p(t)≡ , and there exists a function θ (t) ∈ C(T ,∞) such that

∫ ∞

T

∣∣∣∣e±θ (t)CAj(t)
θ (t)

∣∣∣∣dt < ∞, j = , , (.)

then HA(t) ∈ L(T ,∞), J(t) ∈ L(T ,∞). In this case formula (.) is simplified

J(t) =

√(	[
HA(t)

]) + ∣∣∣∣CA(t)|es(t)| +CA(t)|e–s(t)|
θ(t,u) – θ(t,u)

∣∣∣∣


, (.)

and we get Re[J + HA] ≥  . From Theorem . it follows that in this case the solution
u(t) of system (.) is asymptotically stable if for some real numbers α, l

	
[
θ(t) +

αθ ′(t)
θ (t)

]
≤ l < , t ≥ T (.)

are satisfied (see (.), (.)).

http://www.advancesindifferenceequations.com/content/2013/1/144
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Note that (.) is a nonautonomous analogue of the classical asymptotic stability crite-
rion of Routh-Hurvitz.
If the phase functions θ, are chosen by formula (.), then HA(t)≡ , and

J(t) = 	
[
θ(t) +

αθ ′(t)
θ (t)

+ p – p
]
+

∣∣∣∣CA(t)|eθ (t)| +CA(t)|e–θ (t)|
θ (t)

∣∣∣∣. (.)

FromTheorems .-. one can deduce stability theorems for second-order equation (.).
The attractivity to the origin for the solution of equation (.) is valid even by removing
condition (.) (compare Theorem . with the following theorem).

Theorem. Suppose that for a given solution u(t) of (.), there exist the complex-valued
functions p,p; θ, ∈ C(T ,∞) such that conditions (.), (.) are satisfied with J(t,u) =
J(t) defined as

J(t) = 	
[
θ(t) – θ(t) –

θ ′(t)
θ (t)

– P(t,u) + p(t) – p(t)
]
+ J(t), (.)

J(t) =

√∣∣∣∣CL|es|θ – θ
–
CL|e–s|
θ – θ

∣∣∣∣


+
[
	

(
p – p +

CL +CL
θ – θ

)]

. (.)

Then the solution u(t) of (.) approaches zero as t → ∞.

Choosing

p(t) ≡ θ (t), p(t) ≡ , α =  (.)

from Theorem . (in view of s = ), we obtain the following theorem.

Theorem . Suppose that for a given solution u(t) of (.), A(t,u) ∈ C(T ,∞), and there
exist complex-valued functions θ(t), θ(t) ∈ C(T ,∞) such that for all t ≥ T we have
a(t,u) 
= ,

∣∣θ(t) – a(t,u)
∣∣ + ∣∣θ(t) – a(t,u)

∣∣ + 
∣∣a(t,u)∣∣ ≤ c

∣∣a(t,u)∣∣∣∣θ (t)∣∣, (.)

J(t) +	[
HA(t)

]
= J(t) +	

[
θ(t) + θ(t) +

θ ′(t)
θ (t)

– Tr(A) –
a′
(t,u)

a(t,u)

]
≥ , (.)

and (.) are satisfied, where J(t,u) = J(t),

J(t) = 	
(

θ ′(t)
θ (t)

+ Tr
(
A(t)

)
+
a′
(t,u)

a(t,u)
+ J(t)

)
, (.)

J(t) =

√∣∣∣∣CA(t)
θ (t)

–
CA(t)
θ (t)

∣∣∣∣


+
[
	

(
CA(t) +CA(t)

θ (t)
– θ (t)

)]

. (.)

Then the solution u(t) of system (.) is asymptotically stable.

By choosing

α = , p(t) = p(t) = , (.)

http://www.advancesindifferenceequations.com/content/2013/1/144


Hovhannisyan Advances in Difference Equations 2013, 2013:144 Page 10 of 38
http://www.advancesindifferenceequations.com/content/2013/1/144

we have s(t) = θ (t), and assuming (.) we get |es(t)| ≥ . From Theorem . we deduce
the following theorem.

Theorem . Suppose that for a given solution u(t) of (.), A(t,u) ∈ C(T ,∞), and there
exist complex-valued functions θ(t), θ(t) ∈ C(T ,∞) such that for all t ≥ T we have
a(t,u) 
= ,

	[
θ(t) – θ(t)

] ≥ ,
∣∣θ(t) – a(t,u)

∣∣ + ∣∣θ(t) – a(t,u)
∣∣ ≤ C

∣∣a(t,u)∣∣, (.)

J(t) +	[
HA(t)

]
= J(t) +	

[
θ ′(t)
θ (t)

+ θ(t) + θ(t) – Tr
(
A(t)

)
–
a′
(t,u)

a(t,u)

]
≥ , (.)

and (.) are satisfied with J(t) is as in (.), and J(t,u) = J(t):

J(t) = J(t) +	[
θ(t) –HA(t)

]
. (.)

Then the solution u(t) of system (.) is asymptotically stable.

Theorem . Suppose that for a given solution u(t) of (.), A(t,u) ∈ C(T ,∞), there exist
complex-valued function θ(t) ∈ L(T , t) and the real numbers c > , α such that for all
t ≥ T we have a(t,u) 
=  and the conditions

	[
θ (t)

] ≥ , θ (t)≡ d
dt

ln

(
 + θ (T)

∫ t

T
e
∫ s
T (TrA(y)+

a′(y)
a

–θ(y))dy ds
)
, (.)

∣∣θ (t)∣∣ + ∣∣θ(t) – a(t,u)
∣∣ ≤ ∣∣a(t,u)∣∣(c|θ |α – 

)
, (.)

equation (.) (or (.)) are satisfied, where J(t,u(t)) = J(t),

J(t) = J(t) +	
[
Tr

(
A(t)

)
+
a′

(t,u)
a(t,u)

– θ(t) +
(α – )θ ′(t)

θ

]
(.)

or

J(t) = J(t) +	
[
α

(
Tr

(
A(t)

)
+
a′
(t,u)

a(t,u)
– θ(t) – θ (t)

)
+ θ (t) + θ(t)

]
,

J(t) =
∣∣CA(t)

∣∣[ + | + θ (T)
∫ t
T e

∫ s
T (TrA(y)+

a′(y)
a

–θ(y))dy ds|

|θ (T)|e
∫ t
T 	[TrA(y)+

a′(y)
a

–θ(y)]dy

]
. (.)

Then the solution u(t) of system (.) is stable (or asymptotically stable).

Theorem . Suppose that for a solution u(t) of (.), P(t,u) ∈ C(T ,∞), Q(t,u) ∈
C(T ,∞), there exist the real numbers c > , α and the complex-valued function θ(t) ∈
L(T , t) such that for all t ≥ T , conditions (.) and

∫ ∞

T
	

[
P(t,u)+

θ ′(t)
θ (t)

–θ (t)–J(t)
]
dt =

∫ ∞

T
	[

–θ(t)–θ (t)–J(t)
]
dt = ∞ (.)

are satisfied, where θ (t), J(t) are given by (.), (.).
Then the solution u(t) of equation (.) approaches zero as t → ∞.
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4 Stability of the planar dynamic systems
From Theorems .-. one can deduce more useful asymptotic stability theorems in
terms of coefficients of (.) by choosing the phase functions as asymptotic solutions of
the characteristic equation.

Theorem . Suppose that for a solution u(t) of (.), we have A(t,u) ∈ C(T ,∞), and for
all t ≥ T the conditions

	[
s(t)

] ≥ , 	[
p(t) – p(t)

] ≥ , s(t) = 
√
–RA(t) – p(t) + p(t), (.)

∣∣RA(t)∣∣ + ∣∣∣∣Tr(A(t)) + a′
(t)

a(t)
– a(t)

∣∣∣∣


≤ ∣∣a(t)∣∣(c∣∣RA(t)∣∣α – 
)
, (.)

and (.) (or (.)) are satisfied, where J(t,u(t)) = J(t),

J(t) = J(t) +	
[

√
–RA(t) +

(α – )RA′(t,u)
RA(t)

+ Tr
(
A(t)

)
+
a′
(t,u)

a(t,u)
+ p(t) – p(t)

]
, (.)

J(t) =

√[
	

(
RA′(t,u)
RA(t)

)]

+
(
Re[p – p]

)(t) + |RA′(t)|(|es(t)| – |e–s(t)|)
|RA(t)| . (.)

Then the solution u(t) of system (.) is stable (or asymptotically stable).

Theorem . Suppose that for a solution u(t) of (.), we have A(t,u) ∈ C(T ,∞), and for
all t ≥ T we have a(t,u) 
=  and


t

+
∣∣∣∣Tr(A(t)) + a′

(t,u)
a(t,u)

– a(t,u)
∣∣∣∣


≤ c
∣∣a(t,u)∣∣, (.)

∫ ∞

T
	

[

t
+ Tr

(
A(t)

)
+
a′
(t,u)

a(t,u)
+
t

T
∣∣RA(t)∣∣]dt = –∞. (.)

Then the solution u(t) of system (.) is asymptotically stable.

Theorem. Suppose that for a solution u(t) of (.),A(t,u) ∈ C(T ,∞), for somenumbers
c > , α, and for all t ≥ T , we have a(t,u) 
= ,

	[
ξ (t)

] ≥ , ξ (t)≡ 

d
dt

ln

(
 + ξ (T)

∫ t

T
e
∫ s
T

∫ y
T RA(z,u)dzdy ds

)
, (.)

∣∣ξ (t)∣∣ + ∣∣∣∣Tr(A(t)) + a′
(t,u)

a(t,u)
–

∫ t

T
RA(s,u)ds – a(t,u)

∣∣∣∣


≤ ∣∣a(t,u)∣∣(c∣∣ξ (t)∣∣α – 
)
, (.)

and (.) (or (.)) are satisfied with J(t,u(t)) = J(t), where

J(t) = J(t) +	
[
Tr

(
A(t)

)
+
a′
(t,u)

a(t,u)
+ (α – )

∫ t

T
RA(s,u)ds + ( – α)ξ (t)

]
, (.)

http://www.advancesindifferenceequations.com/content/2013/1/144
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J(t) =
∣∣∣∣
∫ t

T
RA(s,u)ds

∣∣∣∣
[ + | + ξ (T)

∫ t
T e

∫ s
T

∫ y
T RA(z,u)dzdy|

|ξ (T)|e∫ t
T

∫ s
T 	[RA(y,u)]dyds

]
. (.)

Then the solution u(t) of system (.) is stable (or asymptotically stable).

Example . From Theorem . it follows that system (.) with

a = , a = , a = –tβ – βtβ– – (γ + )(γ + )tγ , a = –tβ ,

–  < β ≤ ,γ ≤ β


– 

(small damping) is asymptotically stable.

By using Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation, we will prove the
following theorem.

Theorem . Suppose that for a solution u(t) of (.) A(t,u) ∈ C(T ,∞), for all t ≥ T , the
conditions a(t,u) 
= , (.),

∣∣RA(t)∣∣ + ∣∣∣∣Tr(A(t)) + a′
(t,u)

a(t,u)
–

RA′(t)
RA(t)

– a(t,u)
∣∣∣∣


≤ ∣∣a(t)∣∣(c∣∣RA(t)∣∣α – 
)

(.)

and (.) (or (.)) are satisfied, where J(t,u(t)) = J(t),

J[t] = J(t) +	
[
i

√
RA(t) +

(α – )RA′(t,u)
RA(t)

+ Tr
(
A(t)

)
+
a′
(t,u)

a(t,u)

]
, (.)

J(t) =


∣∣RA–/(RA–/)′′(t,u)

∣∣(∣∣ei√RA(t)
∣∣ + ∣∣e–i√RA(t)

∣∣). (.)

Then the solution u(t) of system (.) is stable (or asymptotically stable).

The following theorem is proved by using the Hartman-Wintner approximation [].

Theorem . Suppose for a solution u(t) of system (.), A(t,u) ∈ C(T ,∞), there exist the
constants c > , α such that and for t ≥ T , we have a(t,u) 
= ,

	[s]≥ , s = i
√
RA(t)

(
 – r(t)

)
,

r(t) ≡ RA′(t,u)
RA/(t,u)

, w(t) ≡ r′(t)r(t)
r(t) – 

,
(.)

∣∣∣∣Tr(A(t)) + a′
(t,u)

a(t,u)
–

RA′(t)
RA(t)

– a(t,u)
∣∣∣∣


+
∣∣RA(

r – 
)∣∣

≤ |a|
(
c
∣∣RA(

r – 
)∣∣α – 

)
(.)

and (.) (or (.)) are satisfied, where J(t,u(t)) = J(t),

J(t) = J(t) +Re

[

√
RA

(
r – 

)
(t,u)

+
(α – )[RA(r – )]′(t,u)

RA(r – )(t,u)
+ Tr

(
A(t)

)
+
a′
(t,u)

a(t,u)

]
, (.)
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J(t) =
√(

Re
[
w(t)

]) + |w(t)|


∣∣∣∣e–s(t)∣∣ + ∣∣es(t)∣∣ +√
 – r–(t)

(∣∣e–s(t)∣∣ – ∣∣es(t)∣∣)∣∣. (.)

Then the solution u(t) of system (.) is stable (or asymptotically stable).

Remark . Note that if RA(t) ≥  and r(t) < , then |es(t)| = ,

J(t) =
√(

Re
[
w(t)

]) + ∣∣w(t)∣∣ ≤ ∣∣w(t)∣∣√, w(t) =HA(t) =
r′(t)r(t)
r(t) – 

.

In this case, asymptotic stability condition (.) is simplified:

∫ ∞

T

(
d
dt

ln
|RA( – r)|/–α(t,u)

|a(t,u)| – Tr
(
A(t)

)
–

∣∣w(t)∣∣√
)
dt = ∞. (.)

Remark . For the Euler equation u′′(t) + RA(t)u(t) =  with RA(t) = 
t , we have r(t) ≡

–, and theHartman-Wintner approximation fails. To consider this case, onemay consider
the choice θ = – RA′

RA = 
t with the other phase function θ = 

t +


t ln(t) that could be found
by solving the equation HA(t) =  (see (.)).

The following theorem is deduced fromTheorem . by taking p = θ – θ, p = , α = ,
s = .

Theorem . Suppose that for a solution u(t) of system (.), A(t,u) ∈ C(T ,∞) and for
t ≥ T , we have a(t,u) 
=  and

	[√
–RA(t)

] ≥ , (.)∣∣∣∣Tr(A(t)) + a′
(t,u)

a(t,u)
– a(t,u)

∣∣∣∣


+
∣∣RA(t)∣∣ ≤ |a|

(
c
∣∣RA(t)∣∣ – 

)
, (.)

∫ ∞

T
	

[
RA′(t)
RA(t)

+ Tr
(
A(t)

)
+
a′
(t,u)

a(t,u)
+ J(t)

]
dt = –∞, (.)

where

J(t) =

√

(	[√

–RA(t)
]) +(

	
[
RA′(t)
RA(t)

])

. (.)

Then the solution u(t) of system (.) is asymptotically stable.

5 Stability theorems for the equations with real coefficients
Theorem . Assume that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real-valued, for some positive constants cj, j = , , the conditions

R(t,u)≥ ,  +
∣∣P(t,u)∣∣ ≤ c

∣∣R(t,u)∣∣, t ≥ T ,∫ ∞

T

(
P(t,u) –

|R′(t,u)| + R′(t,u)
R(t,u)

)
dt = ∞

(.)

http://www.advancesindifferenceequations.com/content/2013/1/144
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or

R(t,u)≥ , R(t,u) +
∣∣P(t,u)∣∣ ≤ c,∫ ∞

T

(
P(t,u) –

|R′(t,u)| – R′(t,u)
R(t,u)

)
dt = ∞

(.)

are satisfied.
Then the solution u(t) of equation (.) is asymptotically stable.

Example . By Theorem . the canonical linear equation

v′′(t) + btγ–v′(t) + ctβ–v(t) = , b > , c >  (.)

is asymptotically stable if one of the following conditions is satisfied:
(i)  < γ < β ,
(ii) β = γ > , c – b > ,
(iii) γ = , b > β –  > ,
(iiii) γ = , b = ,  < β < .

A region of asymptotic stability of equation (.) described in Example . may be ex-
tended to

 < γ ≤ β (.)

by using another asymptotic solution of (.) (see Example . or [, ]).

Theorem . Assume that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real-valued, and for t ≥ T ,

R(t,u) ≥ ,
∫ ∞

T

(
P(t,u) +

R′(t,u)
R(t,u)

–
∣∣∣∣ R′(t,u)
R(t,u)

∣∣∣∣
)
dt = ∞. (.)

Then the solution u(t) of equation (.) approaches zero as t → ∞.

Theorem . Assume that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real-valued, and for t ≥ T ,

∣∣P(t,u)∣∣ ≤ C, (.)∫ ∞

T

(
P(t,u) –

∣∣∣∣R(t,u(t))k
– k

∣∣∣∣
)
dt = ∞ for some positive number k. (.)

Then the solution u(t) of equation (.) is asymptotically stable.

Theorem . Suppose that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real functions, and condition (.) is satisfied. Then the solution
u(t) approaches zero as t → ∞.
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Example . By Theorem . the equation

v′′(t) + btγ–v′(t) +
(
k + (σ + iμ)t–β

)
v(t) = ,  – β ≤ γ ≤ ,b >


k

(.)

(where β , σ , μ are real numbers and b, k, γ are positive numbers) is asymptotically stable.

Theorem . Assume that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real functions and

∣∣P(t,u)∣∣ ≤ C, t ≥ T > , (.)∫ ∞

T

(
P(t,u) –


t
–
t|R(t,u)|

T

)
dt = ∞, t ≥ T > . (.)

Then the solution u(t) is asymptotically stable.

Theorem . Suppose that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real and condition (.) is satisfied. Then the solution u(t) ap-
proaches zero as t → ∞.

Example . By Theorem . the linear equation

v′′(t) +
av′(t)

t
+

(
a – a
t

+
b

t ln(t)

)
v(t) = , a >  (.)

is asymptotically stable.

Theorem . Assume that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real functions, and for all t ≥ T ,

R(t,u) =Q(t,u) – P(t,u) – P′(t,u(t)) ≤ , (.)

 +
∣∣∣∣P(t,u) + R′(t,u)

R(t,u)

∣∣∣∣


≤ c
∣∣R(t,u)∣∣, (.)

∫ ∞

T

(
P –

R′

R
–

∣∣((–R)–/)′′(–R)–/ – 
√
–R

∣∣)dt = ∞. (.)

Then the solution u(t) of (.) is asymptotically stable.

Example . From Theorem . the asymptotic stability of the equation (see also [, ,
]) follows:

v′′(t) + btγ–v′(t) + ctβ–v(t) = , b > , c > ,  ≤ β < γ < β . (.)

Example . By Theorem ., the nonlinear Matukuma equation

u′′
 +

(n – )u′


t
+
Au|u|β
 + t

= , β > ,n >  (.)

is asymptotically stable.
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Theorem . Suppose that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real functions, and the conditions

R
(
t,u(t)

)(
 – r(t)

) ≥ , (.)∫ ∞

T

(
P(t,u) +

R′(t,u)
R(t,u)

– ξ (t) – J(t,u)
)
dt = ∞ (.)

are satisfied, where

J(t) =
∣∣(√r –  – r

)′∣∣ + | + ξ
∫ t
T

√|R(s,u)|ei
∫ s
T 

√
R(–r)(y)dy ds|

ξ
, (.)

ξ (t) =


d
dt

ln

(
 + ξ

∫ t

T

√∣∣R(s,u)∣∣ei ∫ s
T
√

R(–r)(y)dy ds
)
. (.)

Then the solution u(t) of (.) approaches zero as t → ∞.

Remark . By taking r(t) = R′(t)
R/(t) ∈ BV(T ,∞), r(t) ≤ β < , we get J(t), ξ (t) ∈ L(T ,∞),

and Theorem . becomes a version of Pucci-Serrin Theorem .. In this case, (.) is
simplified to

∫ ∞

T

(
P(t) +

R′(t)
R(t)

)
dt = lim

t→∞

(∫ t

T
P(s)ds +



ln

∣∣∣∣ R(t)R(T)

∣∣∣∣
)
= ∞. (.)

Example . Due to Theorem ., every solution of (.) with

P(t) = , Q(t) = R(t) = μtγ lnσ (t), γ > – or γ = –,σ > ,

approaches zero as t → ∞, since

r(t) =
R′

R/ =
γ

μt+γ ln+σ (t)
+

σ

μt+γ lnσ (t)
→ , t → ∞.

Theorem . Suppose that for a solution u(t) of (.), the coefficients P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real functions, and for some constant ξ > , we have

Re
[
ξ (t)

] ≥ , ξ (t)≡ 

d
dt

ln

(
 + ξ

∫ t

T

√∣∣R(s)/R(T)∣∣ei ∫ t
T
√

R(y)dy ds
)
, (.)

∫ ∞

T
	

(
P(t,u) +

R′(t)
R(t)

+ i
√
R(t) – ξ (t) – J(t)

)
dt = ∞, (.)

where

J(t) =
| + ξ

∫ t
T

√|R(s)/R(T)|ei
∫ s
T 

√
R(y)dy ds| + 

|R/(t)ξR–/(T)|
∣∣(R–/)′′(t)

∣∣. (.)

Then the solution u(t) approaches zero as t → ∞.
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Theorem . Suppose that for a solution u(t) of (.), the functions P(t,u) ∈ C(T ,∞),
Q(t,u) ∈ C(T ,∞) are real and

∫ ∞

T
S(t,u)

(
 – S(t,u)

∫ ∞

T
e
∫ t
s (P(y,u)–S(y,u))dy ds

)
dt = ∞, (.)

S(t,u) ≡
∫ t

T
Q(s,u)e

∫ s
t P(y,u)dy ds. (.)

Then the solution u(t) of (.) approaches zero as t → ∞.

If

S(t,u)
∫ ∞

T
e
∫ t
s (P(y,u)–S(y,u))dy ds ∈ L(T ,∞), (.)

then the attractivity condition (.) is simplified

∫ ∞

T
S(t,u)dt =

∫ ∞

T

∫ t

T
Q(s,u)e–

∫ t
s P(y,u)dy dsdt = ∞. (.)

Note that (.) is Smith’s [] necessary and sufficient condition of asymptotic stability
of (.) in the case of Q(t) = , P(t) ≥ ε >  .
Theorems .-. are new versions of the stability theoremproved in [–, –, –]

by a different technique of construction of the energy function.

6 Proofs
Lemma . Assume that all the solutions of linear system (.) are attractive to the origin,
and functions χ,χ ∈ C(T ,∞) are solutions of CA(χj) = , j = , . Then

lim
t→∞

|a(t)| exp{
∫ t
T 	[Tr(A(s))]ds}

|χ(t) – χ(t)| = . (.)

Proof of Lemma . and Lemma . First, we derive formula (.) for the characteristic
function. Solving for u the first equation of (.), we get

u(t) =
u′
(t) – a(t,u(t))u(t)

a(t,u(t))
. (.)

To eliminate u, we substitute it in the second equation of (.) u′
(t) = a(t,u(t))u(t) +

a(t,u(t))u(t), so we get (.): L[u] = u′′
 (t) + Pu′

(t) + Qu(t) = , where P, Q are as in
(.). From definition (.), we get (.). Formula (A.) (see the Appendix) for CCA(t) is
proved similarly by elimination of u.
The first component of a solution of linear system (.) may be represented in the Euler

form

u(t) = Ceχ (t) +Ceχ (t), (.)

where χj, j = ,  are solutions of CAj = . From HA(t)≡  we get

χ(t) + χ(t) = Tr
(
A(t)

)
+
a′
(t)

a(t)
–

χ ′(t)
χ (t)

, χ (t) ≡ χ(t) – χ(t)


. (.)
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Since we are assuming that the solutions eχj (t), j = ,  of linear system (.) are attractive
to the origin, we have

e
∫ t
T (χ+χ)ds = e

∫ t
T (Tr(A(s,u(s)))+a

′
(s,u(s))/a–χ ′(s)/χ )ds →  (.)

as t → ∞, that is, (.) is satisfied. Note that if additional condition (.) is satisfied, then
(.) is also a sufficient condition of attractivity of solutions of (.), since in view of (.)
as t → ∞, we have

∣∣e∫ t
T χds

∣∣ = e
∫ t
T 	[χ–χ]dse

∫ t
T 	[χ+χ]ds → ,∣∣e∫ t

T χ ds
∣∣ = e

∫ t
T 	[χ–χ]dse

∫ t
T 	[χ+χ]ds → .

To prove Lemma ., rewrite equation (.) in the form of system (.)

d
dt

(
v(t)
v′(t)

)
=

(
 

–Q(t) –P(t)

)(
v(t)
v′(t)

)
, (.)

which means that

a(t)≡ , a(t) = ,

Tr(A) = a(t) = –P(t), det(A) = –a(t) =Q(t).
(.)

Then (.) follows from (.). �

Lemma . If K(t) is a Hermitian × matrix with the entries kij(t) such that

det
(
K(t)

) ≡ k(t)k(t) – |k| ≥ , k(t) > , t ≥ T , (.)

then the matrix K (t) is non-negative (K(t)≥ ), and for any -vector u

u*K(t)u≥ det(K(t))
Tr(K(t))

|u|, Tr
(
K(t)

) ≡ k(t) + k(t). (.)

Remark . If

det
(
K(t)

) ≡ k(t)k(t) – |k| ≥ , k(t) ≡ ,k(t) ≥ , t ≥ T , (.)

then k(t)≡ , and

u*K(t)u = k|u| ≥ . (.)

Proof of Lemma . From the quadratic equation for the real eigenvalues of K(t)

λ – λTr
(
K(t)

)
+ det

(
K(t)

)
= , (.)

we have

λ =
Tr(K(t)) +

√
[Tr(K(t))] – det(K(t))


, λ =

det(K(t))
λ

. (.)
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From det(K(t)) = k(t)k(t) – |k(t)| ≥ , we have k(t) ≥  and

Tr
(
K(t)

)
= k(t) + k(t) > . (.)

Further from

 ≤ λ ≤ Tr
(
K(t)

)
, λ ≥ λ ≥ det(K(t))

Tr(K(t))
(.)

we get

u*K(t)u≥ λ|u| ≥ det(K(t))
Tr(K(t))

|u| ≥ . (.)
�

Lemma . If there exist the complex-valued functions p(t),p(t), θ, ∈ L(T , t), and a
real-valued function β(t) ∈ L(T , t) such that

β(t) + 	[
HA(t)

]
+
	[p(t)|es(t)| + p(t)]

|es(t)| + 
> ,

s(t) = θ(t) – θ(t) – p(t) + p(t),
(.)

β(t)≥ J(t) –	[HA + p + p], (.)

where J(t) is defined in (.), then the energy inequality

V(t) +V(t) ≤ Ceβ (t) (.)

is satisfied, where the energy functions are defined in a more general form than in (.):

Vj(t) =
|(θj(t) – a(t))u(t) – a(t)u(t)|

|θ (t)epj+θ–j (t)|
, j = , . (.)

Proof of Lemma . Denoting

Zj =

(
|dj| –dja(t,u(t))

–dja(t,u(t)) |a(t,u(t))|
)
, dj = θj(t) – a

(
t,u(t)

)
, j = , , (.)

we can rewrite energy formula (.) in the form

Vj(t) =
u*Zju

|θepj+θ–j |
, j = , , V(t) =

u*Zu
|θep+θ |

=
u*Zu

|θep+θ |
|es|. (.)

By differentiation, we get

V ′
j (t) =

u*Yju
|θepj+θ–j |

,

Yj = Z′
j +A*Zj + ZjA – Zj	

[
pj + θ–j + θ ′/θ

]
, j = , ,

(.)
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V(t) +V(t) =
u*[Z|es(t)| + Z]u

|θep+θ (t)|
,

β(V +V) –V ′
 –V ′

 =
u*[(βZ – Y)|es| + βZ – Y]u

|θep+θ (t)|
=

u*Nu
|θep+θ (t)|

, (.)

where

N = (βZ – Y)
∣∣es(t)∣∣ + βZ – Y. (.)

By direct calculations

N =

(
A +A + βA a(A – βA)
a(A – βA) |a|(A + βA)

)
, (.)

where

A = |des| + |d|, A =
(
p –

CA

d

)
|des| +

(
p –

CA

d

)
|d|, (.)

A =
(
CA

d
– p – p

)
d|es| +CA – d(p + p), A = d|es| + d, (.)

A = (p + p)|es| + p + p, A =  + |es|, AA – |A| = |esθ|, (.)

β = β + Re[HA], HA =HA – p – p. (.)

Further

det[N] = nn – nn = |aesθ|
[
β
 – β	(HA) – F

]
, (.)

where

F =
|A| – (A +A)A

|esθ|

or

F =
∣∣∣∣CA|es| +CA|e–s|

θ – θ

∣∣∣∣


– (p + p)
(

CA

θ – θ
+

CA

θ – θ
+ p + p

)

+ (p + p)
(

CA

θ – θ
+

CA

θ – θ

)
, (.)

or

F(t) =
∣∣∣∣CA(t)|es(t)|
θ(t) – θ(t)

–
CA(t)|e–s(t)|
θ(t) – θ(t)

∣∣∣∣


+
[
	

(
p(t) – p(t) +

CA(t) +CA(t)
θ(t) – θ(t)

)]

–
(
Re

[
HA(t) – p(t) – p(t)

]),
or using notation (.), we get

F(t) = J (t) –
[	(

HA(t)
)], J =

√
F +

(	[HA]
). (.)
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By Lemma . to have the non-negativity of the matrix N (with the entries nkj), it is
sufficient to show that

n = |a|
[
β

(
 + |es|

)
+ Re

(
p|es| + p

)]
> , det[N]≥ .

The first condition is condition (.), and the second condition follows from (.) and
(.):

β = β + 	[HA]≥ 	[HA – p – p] + J = 	[HA] +
√(	[HA]

) + F .

So, from conditions (.), (.) it follows N = (βZ – Y)|es(t)| + βZ – Y ≥ ,

V ′
(t) +V ′

(t) =
u*(Y|es| + Y)u

|θeθ+p |
≤ β

u*(Z|es| + Z)u
|θeθ+p |

= β(t)(V +V) (.)

or (.) by integration. �

Lemma . If the phase functions θj are such that (.) is satisfied, then

V(t) +V(t) ≥ c|u(t)|
|θ – θ|α|eθ+p |

. (.)

Proof of Lemma . Introducing the Hermitian matrix K(t) with the entries kij(t)

K(t) = Z
∣∣es(t)∣∣ + Z

=

(
|des(t)| + |d| –a(d|es(t)| + d)

–a(d|es(t)| + d) |a|( + |es(t)|),

)
, (.)

we have

det
(
K(t)

)
=

∣∣a(d – d)es(t)
∣∣ = ∣∣a(θ – θ)es(t)

∣∣, (.)

Tr
(
K(t)

)
= |a|

(
 +

∣∣es(t)∣∣) + ∣∣des(t)∣∣ + |d|. (.)

From condition (.) we get

Tr
(
K(t)

) ≤ c
∣∣aes(θ – θ)α

∣∣, Tr(K(t))
det(K(t))

≤ c|θ – θ|α–. (.)

Further, by using Lemma ., we obtain (.)

V +V =
u*Ku

|θeθ+p |
≥ det(K)|u|

Tr(K)|θeθ+p |
≥ c|u(t)|

|θ – θ|α|eθ+p |
. (.)

�

Proof of Theorem . First let us check that under the conditions of Theorem ., Lem-
ma . is applicable. Condition (.) is satisfied by choosing

β(t) = J(t) –	[HA + p + p], J(t) =
√
F +

[	(HA – p – p)
]. (.)
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Condition (.) is satisfied as well in view of condition (.)

(
 + |es|

)
J(t) +	[|es|(HA + p) +HA + p

]
> .

From Lemma . and Lemma ., we get

c|u|
|(θ – θ)αeθ+p |

≤ V +V ≤ Ceβ (t), eβ (t)≡ e
∫ t
T β(s)ds, (.)

c
∣∣u(t)∣∣ ≤ Ceβ+	(θ+p+αθ ′/θ ) = CeJ (t), (.)

where J(t) is defined as in (.):

J = 	(
θ + αθ ′/θ –HA + p – p

)
+ J(t), J(t) =

√
F +

[	(HA)
]. (.)

Substituting here formula (.) for HA(t), we get (.). Further from (.) and (.) the
boundedness of |u(t)| and the stability follow. �

Proof of Remark . Note that if for linear system (.) θj(t) = χj(t), j = , , 	[χ(t) –
χ(t)] ≥ , 	[p(t) – p(t)] ≡ , then CA,(t) ≡ , J(t) ≡ , and solutions of (.) could
be represented in the form (see (.))

u(t) = Ce
∫ t
T χ(s)ds +Ce

∫ t
T χ(s)ds

u(t) =
C(χ(t) – a(t))e

∫ t
T χ(s)ds +C(χ(t) – a(t))e

∫ t
T χ(s)ds

a(t)
.

Solution u(t) = (u,u) of (.) is bounded and stable if and only if for all t ≥ T and j = , 

exp
∫ t

T
	[

χj(s)
]
ds≤ const,

∣∣∣∣χ(t) – a(t)
a(t)

∣∣∣∣ exp
∫ t

T
	[

χj(s)
]
ds≤ const.

These exact conditions are close to conditions (.), (.) of Theorem . which, under
assumption θj(t) = χj(t), 	[χ(t) – χ(t)]≥ , turn to (see also (.))

∣∣∣∣χ(t) – a(t)
a(t)

∣∣∣∣


+
∣∣∣∣χ(t) – a(t)

a(t)
e–s(t)

∣∣∣∣


+  ≤ c
∣∣χ(t) – χ(t)

∣∣α ,
∫ t

T

(
	[

χ(s)
]
+

α(χ ′
(t) – χ ′

(t))
χ(t) – χ(t)

)
ds ≤ const. �

Proof of Theorem . From (.), (.) we get estimate (.) as in the proof of Theo-
rem .. Further from (.) and (.) the boundedness of |u(t)| and |u(t)| →  as t → ∞,
that is, the asymptotic stability, follow. �

Proof of Theorem . Choosing

β(t) = –J(t) –	[HA + p + p], (.)
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we have again det(N)≥ . In view of

β = β + 	[
HA(t)

]
= 	[

HA(t) – p – p
]
– J(t)

from assumption (.), we have Re[HA] < J – Re[p – p] and Re[HA] < J + Re[p – p],
and

β + p + p < , β + p + p < ,
n

|a| = A + βA = |es|(β + p + p) + β + p + p < ,

which implies n < , det(N)≥ ,N(t)≤ , and from (.) Y|es| +Y ≥ β((Z|es| +Z)).
So,

V ′
(t) +V ′

(t) =
u*(Y|es| + Y)u

|θeθ |
≥ β

u*(Z|es| + Z)u
|θeθ+p |

= β(t)(V +V) (.)

or by integration

μ|u|
|θeθ+p |

≥ u*Ku
|θeθ+p |

= V(t) +V(t) ≥ Ceβ , (.)

where μ is the largest eigenvalue of the non-negative matrix K = Z|es| + Z.
Since both eigenvalues of the matrix K are non-negative, we have

μ ≤ Tr(K) = |des| + |d| + |a|
(
 + |es|

)
, (.)

∣∣u(t)∣∣ ≥ CeRe[β+θ+p+θ ′/θ ](t)
μ

≥ CeJ (t)
|des| + |d| + |a|( + |es|) . (.)

From this estimate and (.), it follows |u(t)| → ∞ as t → ∞. �

Proof of Example . We have

P(t) = btγ–, R =Q – P – P′ = ctβ– – btγ– + b( – γ )tγ– ≥  (.)

for t ≥ T , and T sufficiently big positive. Choosing

θ = i
√
R –

R′

R
– P(t), θ = –i

√
R –

R′

R
– P(t), p = p = ,

we have

θ = i
√
R,

∣∣es(t)∣∣ = |eθ | = ,
θ ′

θ
=

R′

R
,

CL = CL =
R′

R –
R′′

R
, HL ≡ ,

J(t) =
∣∣∣∣CL +CL

θ

∣∣∣∣ =
∣∣∣∣ R′

R/ –
R′′

R/

∣∣∣∣ =O
(
t––β

) ∈ L(T ,∞),
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J(t) = 	
[
θ – θ +

θ ′

θ
– P

]
– J(t) =

R′(t)
R(t)

– P(t) – J(t)

= –btγ– –O(/t).

So, conditions (.), (.) are satisfied, and fromTheorem. it follows that equation (.)
is unstable. �

Proof of Theorem . Consider equation (.) written in the form

d
dt

(
u(t)
u′
(t)

)
=

(
 

–Q(t,u) –P(t,u)

)(
u(t)
u′
(t)

)
. (.)

Let us choose

β(t) = J(t) –	[
HA(t) + p(t) + p(t)

]
, HA(t)≡HL(t), (.)

where J(t) is defined in (.) with CAj(t)≡ CLj(t). Then the conditions of Lemma . are
satisfied, and we get from Lemma .

u*Ku
|θeθ+p |

= V +V ≤ Ceβ (t) = CeJ–	[HL+p+p](t), (.)

where the matrix K is defined in (.). Since from (.) it follows |es(t)| ≥ , by applying
Lemma ., we have

u*Ku –
|(θ – θ)es|
 + |es| |u| ≥ 

or (
|des| + |d| – |(θ–θ)es|

+|es| –d|es| – d
–d|es| – d  + |es|

)
≥ .

It means that for equation (.) we get

u*Ku≥ |(θ – θ)es||u|
 + |es| =

|(θ – θ)||v|
 + |e–s| , u = v, u = v′(t).

From (.) it follows |e–s(t)| ≤ , and we have also

u*Ku≥ 

∣∣(θ – θ)v(t)

∣∣. (.)

Further, using notation (.), (.) from (.), (.), we get



∣∣v(t)∣∣ ≤ CeRe[J–HL+θ+p–p] = CeRe[J+θ–θ–θ ′/θ–P+p–p] = CeJ (t),

and from (.) it follows v(t)→ , t → ∞. �

Proof of Theorem . By substitution

ξj(t) = θj(t) –
TrA(t)


–

a′
(t)

a(t)
, ξ (t)≡ ξ(t) – ξ(t)≡ θ(t) – θ(t), (.)
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functions (.), (.) may be simplified

CAj(t) = ξ ′
j (t) + ξ 

j (t) + RA(t), HA(t) = ξ(t) + ξ(t) +
ξ ′(t)
ξ (t)

. (.)

Theorem . follows from Theorem ., Theorem . by taking a given function ξ(t)
and choosing p ≡ p ≡ , and phase function ξ(t) as follows (see (.)):

ξ(t) = ξ(t) + ξ (t), ξ (t) =
ξ (T)e–

∫ t
T ξ dy

 + ξ (T)
∫ t
T e

–
∫ s
T ξ dy ds

, (.)

ξ ′(t)
ξ (t)

= –ξ(t) – ξ (t), HA(t) = ξ + ξ(t) +
ξ ′(t)
ξ (t)

= , (.)

es(t) = eξ (t) = e
∫ t
T ξ (s)ds =

ξ (T)
ξ (t)

e–
∫ t
T ξ(y)ds =  + ξ (T)

∫ t

T
e–

∫ s
T ξ dz ds. (.)

Further from (.), (.)

CA(t) = CA(t) = ξ ′
(t) + ξ 

 (t) + RA(t), (.)

J(t) =
( + |eξ |)|CA|

|ξ (t)eξ | =
 + | + ξ (T)

∫ t
T e

–
∫ s
T ξ dy ds|

|ξ (T)e–
∫ t
T 	[ξ]ds|

|CA|. (.)

So, conditions (.), (.) turn to (.), (.). From (.) we have

J(t) = J = J(t) +	
[
θ +

αξ ′

ξ

]

= J(t) +	
[
ξ + Tr(A) +

a′


a
+ ξ (t) +

αξ ′

ξ

]
,

J(t) = J(t) +	
[
Tr(A) +

a′


a
– ξ +

(α – )ξ ′

ξ

]
(.)

or (.). �

Proof of Theorem . Theorem . follows fromTheorem . applied to the system (.).
By choosing p = p =  and θ as in (.), in view of HA = ξ + ξ +

ξ ′
–ξ ′


ξ–ξ

= , we get (.)
from (.) and (.). �

Proof of Theorem . Theorem . follows from Theorems . and . by choosing, as the
approximate solutions of CAj(t) =  (see (.)), the eigenvalue approximation

ξ,(t) = ±√
–RA(t), (.)

z =
CA

ξ – ξ
=

ξ ′
 + ξ 

 + RA
ξ – ξ

=
RA′

RA
, CA = –CA, HA =

RA′

RA
, (.)

s = ξ – ξ + p – p = 
√
–RA(t) + p – p. (.)

Condition (.) turns to (.) (see Remark .), or to (.).
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In view of (.) and

∣∣z|es| + z|e–s|
∣∣ = [

Re(z)
] + |z|(|es| – |e–s|

), (.)

we get from (.), (.) formulas (.), (.):

J =
√∣∣z|es| + z|e–s|

∣∣ + (
Re[p – p]

)
=

√[
Re(z)

] + |z|(|es| – |e–s|
) + (

Re[p – p]
). (.)

From (.) we have |es(t)| ≥ , and condition (.) is satisfied since from (.) we have
Re[J +HA] > . �

Proof of Theorem . Theorem . follows fromTheorems . and . by choosing p(t) =
p(t) = , and the special Riccati equation approximation

ξ =

t
, ξ = , θ – θ = ξ – ξ =


t
, T > . (.)

By direct calculations,

CA(t) = ξ ′
 + ξ 

 + RA = RA(t) = CA(t), s = ξ = ξ – ξ =

t
, (.)

HA(t) = , eξ (t) =
t
T

≥ . (.)

Condition (.) is true, since (.) is satisfied (see Remark .). Condition (.) with
α =  turns to (.): |ξ – ξ| + |θ – a| + |a| ≤ c|a| or


t

+ 
∣∣∣∣t + Tr(A)


+
a′
(t)
a

– a
∣∣∣∣


≤ c|a|,

which follows from (.). From (.), since  < T ≤ t, we get

J(t) =
∣∣∣∣CA|eξ | +CA|e–ξ |

ξ – ξ

∣∣∣∣ = t
(
t
T

+
T
t

)∣∣RA(t)∣∣ ≤ t

T
∣∣RA(t)∣∣. (.)

Further from (.) we get

J = J +	[ξ –HA]≤ t

T
∣∣RA(t)∣∣ +	

[

t
+ Tr(A) +

a′


a

]
, (.)

and condition (.) turns to (.). �

Proof of Theorem . Theorem. follows fromTheorem . by choosing the linear equa-
tion approximation

ξ = –
∫ t

T
RA(s)ds, ξ ′

 + ξ 
 + RA =

(∫ t

T
RA(s)ds

)

. (.)
�
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Proof of Example . Example . follows from Theorem .. Since γ ≤ –, we have

RA(t) =
a′



–
a


– a = (γ + )(γ + )tγ , Tr(A) = –tβ ,

e
∫ t
T

∫ y
T RA(y)dyds = C exp

(
tγ+

) → Ce = C, t → ∞,∫ t

T
e
∫ s
T

∫ y
T RA(z)dzdy ds =O(t), t → ∞.

Choosing ξ (T) = , by using l’Hospital’s rule, if β ≤ , γ ≤ – < –, we get

 + | + |ξ (T)| ∫ t
T e

∫ s
T

∫ y
T 	[RA(z)]dzdy|

|ξ (T)|e∫ t
T

∫ s
T 	[RA(y)]dyds

=O
(
t

)
, ξ (t) =O

(
t–

)
, t → ∞,

|ξ | + ∣∣tβ + (γ + )tγ+
∣∣ +  ≤ C,

and conditions (.), (.) with α =  are satisfied.

J(t) =O
(
tγ+

)
, t → ∞,

J(t) = J(t) +	
[
TrA +

a′


a

]
–

∫ t

T
RA(s)ds + ξ

=O
(
tγ+

)
– tβ – (γ + )tγ+ +O

(

t

)
. (.)

Asymptotic stability condition (.) is satisfied as well:

∫ t

T
J(s)ds =O

(
ln(t)

)
–
tβ+

β + 
– tγ+ +O

(
tγ+

γ + 

)
+C → –∞, t → ∞. �

Proof of Theorem . Theorem . follows from Theorem ., Theorem . by choosing
p = p = , and JWKB approximation:

ξ, = ±i
√
RA(t) –

RA′(t)
RA(t)

, θ – θ = ξ – ξ. (.)

We have from (.), (.)

s = ξ – ξ = i
√
RA(t),

ξ ′
 – ξ ′


ξ – ξ

=
RA′(t)
RA(t)

, HA = ξ + ξ +
ξ ′
 – ξ ′


ξ – ξ

= , (.)

CA = CA = ξ ′
 + ξ 

 + RA =
(RA′)

RA(t)
–
RA′′(t)
RA(t)

=
(
R–/)′′R/, (.)

J(t) =
|CA|es| + |e–s|CA|

|ξ (t)| =


∣∣(RA–/)′′RA–/∣∣(∣∣es(t)∣∣ + ∣∣e–s(t)∣∣). (.)

Conditions (.) and (.) are satisfied. Condition (.) turns to (.) or (.), and
from (.) we get (.)

J[t] = J(t) = J(t) +	
[
i

√
RA(t) +

(α – )RA′(t)
RA′(t)

+ Tr(A) +
a′


a

]
. �
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Proof of Theorem . We deduce Theorem . from Theorems . and . assuming p =
p = , and by choosing the Hartman-Wintner approximation []

ξj(t) = qj(t)
√
RA(t), j = , , (.)

where q,(t) are solutions of the quadratic equation qj + rqj +  = ,

q,(t) = ±
√
r(t) –  – r(t), r(t) =

RA′(t)
RA/ = –



(
RA–/)′(t). (.)

By calculations,

s = ξ – ξ = (q – q)
√
RA = 

√
RA

(
r – 

)
,

ξ ′
 – ξ ′


ξ – ξ

=
[RA(r – )]′

RA(r – )
, (.)

CAj = q′
j

√
RA + RA

[
qj + rqj + 

]
= q′

j

√
RA, zj =

CAj

ξ – ξ
=

q′
j√

r – 
. (.)

Denoting

z =
(
√
r –  – r)′


√
r – 

, z =
(–

√
r –  – r)′


√
r – 

,

w(t) =HA(t) = z – z =
(r – )′

(r – )
=

r′(t)r(t)
r(t) – 

, (.)

we have

z = –
w


(√
 – r– – 

)
, z = –

w


(√
 – r– + 

)
, (.)

and

∣∣z|es| + z|e–s|
∣∣ = |w|


∣∣(√ – r– – 

)|es| – |e–s|
(√

 – r– + 
)∣∣. (.)

From (.)

J(t) =
√(

Re[w]
) + |w|


∣∣(√ – r– – 

)|es| – |e–s|
(√

 – r– + 
)∣∣

or (.)

J(t) =
√(

Re[w]
) + |w|


∣∣|e–s| + |es| +

√
 – r–

(|e–s| – |es|
)∣∣,

since  – r– ≤ , |e–s| ≤ , we have

J(t) ≤
√(

Re[w]
) + |w| ≤ |w|√.

From (.)

J(t) = Re

[
ξ – ξ +

(α – )(ξ ′
 – ξ ′

)
ξ – ξ

+ Tr(A) +
a′


a

]
+ J(t),
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J(t) = Re

[

√
RA

(
r – 

)
+
(α – )[RA(r – )]′

RA(r – )
+ Tr(A) +

a′


a

]
+ J(t).

From (.) we get |es| ≥ , and in view of (.), condition (.) turns to




∣∣∣∣
√(

r – 
)
RA –

RA′

RA
+ Tr(A) +

a′


a
– a

∣∣∣∣


+ 
∣∣RA(

r – 
)∣∣ + |a|

≤ c|a|
∣∣RA(

r – 
)∣∣α ,

and it follows from (.).
From (.) we have w =HA, Re[HA + J] > , and condition (.) is satisfied.
To prove Remark ., note that if RA = 

t , we have r = –, and from the quadratic
equation qj – rqj +  = (q – ) = , we get q = , or ξ = – RA′

RA = 
t . Further, from the

equationHA = ξ ′
ξ
+ξ +ξ = ,we get ξ = 

t ln(t) and the other phase function ξ = ξ+ξ =

t +


t ln(t) . �

Proof of Theorems ., . Theorem . follows fromTheorem. applied to system (.).
Indeed, by substitution RA(t) → R(t), a ≡ , a ≡ , Tr(A) = –P, p = p = , condition
(.) of Theorem . turns to |R|+ |P| +  ≤ c|R|α . Further, from condition R≥ , we get
Re[s] =  and (.) is satisfied. From (.) we get J = | R′

R |.
By choosing α = , the conditions of Theorem . turn to (.) (big damping case).
By choosing α = , the conditions of Theorem . turn to (.) (small damping case).
Theorem . follows from Theorem . by choosing

ξ, = ±i
√
R(t), p = p ≡ . (.)

�

Proof of Example . Since

P(t) = btγ–, Q = ctβ–,

R =Q – P – P′ = ctβ– – btγ– + b( – γ )tγ–,
(.)

from β > γ >  we get R(t) =Q(t)( + o())≥ , and

R′(t)
R(t)

–
(β – )

t
= tγ–β–O() ∈ L(T ,∞), t → ∞. (.)

If β ≥ , β > γ > γ / > , then cR(t) ≥  + |P(t)|, and condition (.) of Theorem . is
satisfied:

∫ t

T

(
P(t) –

|R′(t)| + R′(t)
R(t)

)
dt =

∫ t

T

(
btγ– –

(|β – | + β – )
t

)
dt +C → ∞.

If  < γ < β ≤  (small damping), then |R| ≤ C, |P| ≤ C, and condition (.) of Theo-
rem . is satisfied:

∫ t

T

(
P(t) –

|R′(t)| – R′(t)
R(t)

)
dt =

∫ t

T

(
btγ– –

(|β – | – β + )
t

)
dt +C → ∞.
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If β = γ ≥ , c – b > , then condition (.) is satisfied again:

R =
(
c – b

)
tγ– + b( – γ )tγ– > ,  + |P| ≤ C|R|,

R′(t)
R(t)

–
(γ – )

t
=
O()
t+γ

∈ L(T ,∞).

If  < β = γ ≤ , c – b > , then condition (.) is satisfied:

R =
(
c – b

)
tγ– + b( – γ )tγ– ≥ , |R| ≤ C, |P| ≤ C.

Further, if γ = , β ≥ , b > β – , then in view of (.) condition (.) is satisfied:

R(t) = ctβ– +
(
b – b

)
t– > ,  + |P| ≤ CR(t),∫ t

T

(
P(t) –

|R′(t)| + R′(t)
R(t)

)
dt =

∫ t

T

(
b – (β – )

t

)
dt → ∞.

If γ = ,  < β < , b >  – β , then in view of (.) condition (.) is satisfied:

|R| = ∣∣ctβ– + (
b – b

)
t–

∣∣ ≤ C, |P| = Ct– ≤ C, R′(t) ≤ ,∫ t

T

(
P(t) +

R′(t) – |R′(t)|
R(t)

)
dt =

∫ t

T

(
P(t) +

R′(t)
R(t)

)
dt =

∫ t

T

(
b + β – 

t

)
dt → ∞.

Finally, when γ = , b = , we have P = 
t , P

′ + P = ,

R =Q – P – P′ =Q = ctβ–,
R′

R
=

β – 
t

.

If  ≤ β < , then R′ ≥ ,  + |P| ≤ C|R|, and condition (.) is satisfied:

∫ ∞

T

(
P(t) –

|R′(t)| + R′(t)
R(t)

)
dt =

∫ ∞

T

(
P(t) –

R′(t)
R(t)

)
dt =

∫ ∞

T

 +  – β
t

dt = ∞.

If  < β ≤ , then |P| ≤ C, |R| ≤ C, R′ ≤ , condition (.) is satisfied:

∫ ∞

T

(
P(t) –

|R′(t)| – R′(t)
R(t)

)
dt =

∫ ∞

T

(
P(t) +

R′(t)
R(t)

)
dt =

∫ ∞

T

β
t
dt = ∞. �

Proof of Theorem . We deduce Theorem . fromTheorem . applied to system (.),
and by substitution ξ, = ±ik = const, α = , Tr(A) = –P, a = , a = , p = p ≡ ,
Re[s] = ,

CA

ξ – ξ
=

CA

ξ – ξ
=
R(t) – k

ik
, HA≡ .

From (.), (.)

J =
∣∣∣∣R(t) – k

k

∣∣∣∣, J = 	[θ] + J = Re[–P] +
∣∣∣∣R(t) – k

k

∣∣∣∣.
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Conditions (.), (.) turn to (.), (.). If R(t) – k 
= , then (.) is satisfied. The case
R(t) ≡ k is trivial, since in this case CAj ≡  and the functions e±ikt–

∫ t
T P ds are exact solu-

tions of (.). �

Proof of Theorem . We deduce Theorem . from Theorem . by choosing

ξ = ik, ξ = –ik, k = const > , p = p = .

From

ξ = ik, Re[s] = , CL = ξ ′
 + ξ 

 + R = R – k, CL = R – k, HL ≡ ,

we get from (.)

J =
∣∣∣∣CLik

∣∣∣∣ = |R(t) – k|
k

and from (.)

J = 	
[
ξ – ξ –

ξ ′

ξ
– P

]
= –	[

P(t)
]
,

so (.) is satisfied if |R(t) – k| >  and condition (.) turns to (.). Case R(t) = k is
trivial. �

Proof of Example . This example follows from Theorem ..
From γ ≤  we get |P(t)| = |btγ–| ≤ C.

R(t) =Q – P – P′ = k + t–β – btγ– – b(γ – )tγ–.

If  – β < γ ≤ , kb > 
 , then

P –
|R – k|

k
=
bk – |t–γ–β – btγ– – b(γ – )t–|

k
tγ– ≥ ctγ–.

If  – β = γ ≤ , kb > 
 , then

P –
|R – k|

k
=
bk – | – btγ– – b(γ – )t–|

k
tγ– ≥ ctγ–.

If γ = , β ≥ , bk > 
 , then

P –
|R – k|

k
=
bk – |t–β + (b – b)t–|

kt
≥ c

kt
.

In all these cases, (.) is satisfied since γ > . �

Proof of Theorem . Theorem . follows from Theorem . applied to (.). �
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Proof of Theorem . We deduce Theorem . from Theorem . by choosing

ξ =

t
, ξ = , p = p = .

From t ≥ T >  we have

CA = CA = R(t), HA = , es(t) = eξ (t) =
t
T
, e–s(t) =

T
t

≤ t
T
,

and from (.) we get

J(t) =
∣∣tR(t)∣∣√(|es| – |e–s|

) +  =
∣∣tR(t)(|es| + |e–s|

)∣∣ ≤ t|R(t)|
T

.

From (.) and (.) we get (.)

J(t) = 	
[

t
– P(t) + J(t)

]
≤ 	

[

t
– P(t) +

t|R(t)|
T

]
.

Condition (.) is satisfied if R(t) 
= . The case R(t)≡  is obvious since in that case the
exact solutions of (.) are u = te–

∫ t
T P(s,u)ds, u = e–

∫ t
T P(s,u)ds. �

Proof of Example . This example follows from Theorem .:

P =
a
t
, Q =

a – a
t

+
b

t ln(t)
,

R =Q – P′ – P =
b

t ln(t)
, tR(t) ∈ L(T ,∞). �

Proof of Theorem . Theorem . follows from Theorem . applied to (.), and by
choosing

θ, = ±√
–R –

R′

R
– P, p = ξ – ξ = ξ , p = ,

α = , s = , ξ =
√
–R,

ξ ′

ξ
=

R′

R
,

CL
ξ – ξ

=
CL

ξ – ξ
=
R′ – R′′R
R

√
–R

=


(
(–R)–/

)′′(–R)–/, (.)

HL = , J =
∣∣∣∣CL +CL

ξ – ξ
– ξ

∣∣∣∣ = ∣∣((–R)–/)′′(–R)–/ – 
√
–R

∣∣,
– J = P –

ξ ′

ξ
– J = P –

R′

R
–

∣∣((–R)–/)′′(–R)–/ – 
√
–R

∣∣.
For this case (.) is true, (.) turns to (.), and (.) turns to (.). �

Proof of Example . Example . follows from Theorem ..
In view of (.), we have conditions (.), (.) of Theorem . are satisfied if  ≤ β <

γ ,

R(t) =Q(t) – P(t) – P′(t) = –btγ–
(
 + o()

) ≤ , t → ∞.
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Further, in view of


(
(–R)–/

)′′(–R)–/ =
C + o()
t+γ

∈ L(T ,∞),

condition (.) or
∫ ∞

T

(
P –

R′

R
–

√
–R

)
dt = ∞ (.)

is satisfied if γ < β since

P –
√
–R –

R′

R
=

P + R
P +

√
–R

–
R′

R
=

Q – P′

P +
√
–R

–
R′

R

=
Q( + o())

P
–

γ –  + o()
t

=
c( + o())

b
tβ–γ–, t → ∞. �

Proof of Example . Example . follows from Theorem .. Indeed

P =
n – 
t

, P′ + P =
(n – )(n – )

t
, R =

A|u|β
 + t

–
(n – )(n – )

t
.

Choosing

θ =
aj
t
– P(t), ξ =

aj
t
, a, =

± √
 + (n – )(n – )


, u = e

∫ t
T θ ds,

we get

R =
Ae

∫ t
T 	[βθ]ds

 + t
–
(n – )(n – )

t
=
Ctβ(a+–n)

 + t
–
(n – )(n – )

t
.

If n > , β > , then

β(n –  – a) < 

or

(n – ) –  – (n – )(n – ) = –(n – )(n – ) < ,

and conditions (.), (.) are satisfied:

R(t) =
o() – (n – )(n – )

t
< ,

R′(t)
R(t)

=
o() – 

t
.

From

R′

R
√
–R

–
R′′

R
√
–R

=
C + o()

t
∈ L(T ,∞)

condition (.) is satisfied since

P –
R′

R
–

√
–R =

o() + n –
√
(n – )(n – )
t

=
o() + n – 

t(n +
√
(n – )(n – ))

≥ C
t
. �
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Proof of Theorem . We deduce Theorem . from Theorem . by choosing p(t) =
p(t) = , the phase ξ(t) from the Hartman-Wintner approximation

ξ(t) = –i
√
R
(
 – r

)
–

R′

R
, (.)

and ξ(t) from (.)

ξ(t) – ξ(t) =
d
dt

ln

(
 + ξ (T)

∫ t

T
e–

∫ s
T ξ dy ds

)

or (.)

ξ (t) = ξ(t) – ξ(t) =
d
dt

ln

(
 + ξ

∫ t

T

∣∣R(s)/R(T)∣∣/ei ∫ s
T
√

R(–r)dy ds
)
. (.)

Since ξ + ξ + ξ ′
ξ
= , we get, from (.), J = J +	(ξ – ξ ′

ξ
– P)

J = J +	(ξ + ξ – P) = J +	
[
–i

√
R
(
 – r

)
–

R′

R
+ ξ – P

]
. (.)

Condition (.) with J = J turns to (.). From (.) in view of (.), we get (.):

J(t) =
∣∣(√r –  – r

)′∣∣∣∣∣∣ + | + ξ (T)
∫ t
T

√|R(s)|ei
∫ s
T 

√
R(–r)dy ds|

|ξ (T)|
∣∣∣∣.

Condition (.) is satisfied in view of Remark . and J(t) > . �

Proof of Theorem . We deduce Theorem . from Theorem . by choosing

ξ = –i
√
R(t) –

R′

R
.

By calculations

ξ ′
(t) + ξ 

 (t) + R(t) =
(
R–/)′′R/,

we get (.) from (.). Further, from (.) we get (.) since

P – ξ – ξ – J = P +
R′

R
+ i

√
R(t) – ξ – J. �

Proof of Theorem . We deduce Theorem . from Theorem . by taking

ξ(t) = P(t) – S(t), S(t) =
∫ t

T
Q(s)e–

∫ t
s P(y)dy ds

and assuming HL ≡  or ξ + ξ + ξ ′
ξ
= .

Since S′(t) + P(t)S(t) –Q(t) = , CLj = ξ ′
j (t) + ξ 

j (t) + R(t), we get

CL = CL = ξ ′
(t) + ξ 

 (t) + R(t) = P′ – S′ + P – PS + S +Q – P – P′ = S(t).
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From (.) and P – ξ – J = S – J, we get

∫ t

T
	[

S(t) – J(t)
]
dt = ∞,

where in view of ξ + ξ + ξ ′
ξ
=  we have

ξ (t) = –


d
dt

ln

∣∣∣∣
∫ ∞

t
e
∫ s
T (S–P)dy ds

∣∣∣∣ = e
∫ t
T (S–P)dy


∫ ∞
t e

∫ s
T (S–P)dy ds

> ,

e–ξ (t) =
∫ ∞
t e

∫ s
T (S–P)dy ds∫ ∞

T e
∫ s
T (S–P)dy ds

≤ .

Further from (.)

J(t) =
∣∣∣∣CL(eξ + e–ξ )

ξ

∣∣∣∣ =
∫ ∞
t e

∫ s
T (S–P)dy ds

e
∫ t
T (S–P)dy

(
eξ (t) + e–ξ

)
S(t)

=
∫ ∞
t e

∫ s
T (S–P)dy ds

e
∫ t
T (S–P)dy

(∫ ∞
T e

∫ s
T (S–P)dy ds∫ ∞

t e
∫ s
T (S–P)dy ds

+
∫ ∞
t e

∫ s
T (S–P)dy ds∫ ∞

T e
∫ s
T (S–P)dy ds

)
S(t)

≤ e
∫ t
T (P–S)dyS(t)

∫ ∞

T
e
∫ s
T (S–P)dy ds = S(t)

∫ ∞

T
e
∫ s
t (S–P)dy ds,

and (.) turns to (.). �

Appendix: Some invariants of the planar dynamic systems
By a linear time-dependent non-singular lower triangular transformation

v(t) = S(t)u(t), S(t) =

(
s(t) 
s(t) s(t)

)
(A.)

from linear system (.) (A(t) does not depend on u(t)), we get another linear system

v′(t) = B(t)v(t), B(t) = S(t)A(t)S–(t) + S′(t)S–(t). (A.)

Define auxiliary functions associated with system (A.) that depend on phase functions
ηj(t) as follows:

CBj(t) = η′
j(t) + η

j (t) – ηj(t)
[
Tr

(
B(t)

)
+
b′
(t)

b(t)

]
+ det

(
B(t)

)
+
W [b,b]

b(t)
, (A.)

HB(t) =
CB(η) –CB(η)

η(t) – η(t)
= η(t) + η(t) – Tr

(
B(t)

)
+

(
ln

∣∣∣∣η(t) – η(t)
b(t)

∣∣∣∣
)′
, (A.)

RB(t) = det
(
B(t)

)
–
(TrB(t))


+
W [b – b,b(t)]

b(t)
–

(
b–/

)′′(t)b/ (t), (A.)

where ηj(t) are the phase functions of system (A.).
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Theorem A. Assume that A(t) ∈ C(T ,∞), B(t) ∈ C(T ,∞), and S(t) ∈ C(T ,∞) is a
non-singular lower triangular transformation, and θj(t), ηj(t) are solutions of the charac-
teristic equations of linear systems (.), (A.)

CA(θj) = , CB(ηj) = , j = ,  (A.)

with the initial values

ηj(T) = θj(T) +
s′(T)
s(T)

, j = , . (A.)

Then we have the invariance

RB(t) = RA(t), RB′(t) = RA′(t), (A.)

θ – θ = η – η,
RA′(t)
RA(t)

– Tr(A) =
RB′(t)
RB(t)

– Tr(B) +
(det(S))′

det(S)
. (A.)

Remark A. From Theorem A. it follows the well-known result that the function

R(t) =Q(t) – P(t) – P′(t) (A.)

is invariant of (.) with respect to the transformation V (t) = v(t)w(t).

Proof of Theorem A. By substitution

ξj(t) = θj(t) –
Tr(A(t))


–

a′
(t)

a(t)
, ζj(t) = ηj(t) –

Tr(B(t))


–
b′
(t)

b(t)
, (A.)

we get from (.)

CAj(t) = ξ ′
j (t) + ξ 

j (t) + RA(t) = , CBj(t) = ζ ′
j (t) + ζ 

j (t) + RB(t) = , (A.)

where RA(t), RB(t) are defined in (.), (A.).
By direct calculations, from (A.) we get

b(t) =
a(t)s(t)

s(t)
, b = a +

s′
s

–
sa
s

, b = a +
sa
s

+
s′
s

,

b =
s
s

(
a – a –

sa
s

–
s′
s

)
+
sa
s

+
s′
s

(A.)

and (A.). Further, we get CAj(t) –CBj(t) = , or

(ξj – ζj)′(t) + (ξj – ζj)(ξj + ζj) = , (ξj – ζj) = Cje–
∫ t
T (ξj+ζj)ds. (A.)

In view of b = as
s

, and

Tr(B) = Tr(A) +
(det(S))′

det(S)
, (A.)
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assuming initial conditions (A.), we get

(ξj – ζj)(T) = (θj – ηj)(T) +
s′(T)
s(T)

= , Cj ≡ , ξj(t) = ζj(t), j = , . (A.)

So, the solutions θj, ηj of characteristic equations CAj = CBj =  are connected:

θj(t) –
TrA(t)


–

a′
(t)

a(t)
= ηj(t) –

TrB(t)


–
b′
(t)

b(t)
, j = , . (A.)

From these expressions, we get (A.). �

Proof of Remark A. Rewrite equation (.) in form (.). Choosing

S =

(
w(t) 
w′(t) w(t)

)
, (A.)

we have

B = SAS– + S′S– =

(
 

–Q̂(t) –P̂(t)

)
, (A.)

where

P̂(t) = P(t) –
w′(t)
w(t)

, Q̂(t) =Q(t) –
w′(t)P(t)

w(t)
–
w′′(t)
w(t)

+
w′(t)
w(t)

, (A.)

R̂(t)≡ Q̂(t) – P̂(t) – P̂′(t), (A.)

and (A.) becomes R̂(t) = R(t). �

RemarkA. There are several characteristic functions of (.) depending on the structure
of the matrix A(t). Indeed, if a(t) 
= , then the characteristic function CAj(t) of (.) is
given by (.). If a ≡ , but a 
= , the characteristic function may be defined by the
similar formula

CCAj(t) = θ ′
j (t) + θ

j (t) – θj(t)
[
Tr(A) +

a′
(t)

a(t)

]
+ det

(
A(t)

)
+
W [a,a]

a(t)
. (A.)

If system (.) is diagonal, that is, a(t)≡ a(t)≡ , then

CA(t) = a(t) – θ(t) = , CA(t) = a(t) – θ(t) = . (A.)
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