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Abstract
In this paper, we discuss numerical methods for fractional order problems. Some
nonstandard finite difference schemes are presented and investigated. The
application in the simulation of a fractional-order Brusselator system is hence
presented. By means of some numerical experiments, we show the effectiveness of
the proposed approach.

1 Introduction
Recently, fractional calculus has gained an increasing popularity due to the wide range of
applications in fields including engineering, chemistry, finance, physics, seismology and
so on.
Although the discussion on derivatives of noninteger order dates back to almost as far

as the development of the classical theory of integer-order differential calculus, only at the
end of the nineteenth century it has been realized the great enhancements that could be
achieved by exploiting the power of fractional calculus; by means of fractional differential
equations (FDEs) it is indeed possible to describe, in a natural way, real-life phenomena
with memory effect and systems exhibiting anomalous diffusion [].
The publication of some cornerstone books completely devoted to fractional calculus

(we just cite here the works of Oldham and Spainer [], Samko, Kilbas and Marichev [],
Miller and Ross [], Podlubny [], Diethelm [] and Mainardi []) has successively played
a considerable role in disseminating the subject. A variety of recent books [–] have also
been published to illustrate applications of FDEs and methods for their solution.
In most cases, the solution of a FDE does not exist in terms of a finite number of ele-

mentary functions; it is therefore fundamental to device numerical methods in order to
practically evaluate approximated solutions by means of difference schemes or other al-
ternative approaches (e.g., see [–]).
A major difficulty in the numerical treatment of FDEs is the presence of the long and

persistent memory, which is related to the nonlocal nature of fractional derivative opera-
tors. From a practical point of view, storing and taking into account all the past history of
the solution is usually a very demanding task.
In the presence of nonlinearities, these difficulties are amplified by the need of solving,

at each step, some nonlinear algebraic systems whenever implicit schemes are adopted to
cope with stability issues.
Nonstandard finite difference (NSFD) schemes have been introduced [, ] with the

aim of avoiding full implicit schemes, which are computationally expensive, but at the
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same time preserving some of the main essential physical properties of the solution such
as, for instance, positivity, monotonicity or convergence towards a stable steady-state.
The central aim of this work is to apply NSFD schemes within the context of fractional-

order problems and study their potentials in replicating some of themain properties of the
true solution [–]. In particular, the paper is concernedwith the numerical simulation,
bymeans of some adhoc devisedNSFD schemes, of a fractional-order Brussellator system;
the stability properties of the system are analyzed and we show that the proposed NSFD
methods allow to preserve stability in the numerical solution.
The paper is organized as follows. In Section , we briefly review the main definitions

concerning fractional derivatives and FDEs and we introduce NSFD methods. Section 
is devoted to discuss the main problems in applying NSFD schemes to fractional-order
problems. In Section , we analyze stability of the fractional-order Brusselator system,
and we present some suitably devised NSFD for this system. By means of some numeri-
cal simulations, in Section , we show the stability preserving properties of the proposed
schemes and we compare the results with those provided by a classical method. Finally,
some concluding remarks are given in Section .

2 Preliminaries and notations
In this section, some basic definitions and properties in the theory of the fractional cal-
culus are presented; moreover, we introduce the main aspects concerning nonstandard
discretization methods.

2.1 Fractional derivatives and FDEs
Derivatives of fractional order have been introduced in several ways. The Riemann-
Liouville (RL) differential operator of order α >  is defined as

RLDα
t f (t) ≡DmJm–α

t f (t) =


�(m – α)
dm

dtm

∫ t

t
(t – s)m–α–f (s)ds,

where �(·) is the Euler gamma function, m = �α� is the smallest integer such that m > α

and Dm and dm/dtm denote the standard derivatives of integer order.
Despite its importance from an historical point of view (the RL approach has been the

first definition introduced for fractional derivatives), very often it is of little use in practi-
cal applications; indeed, when used in FDEs it allows to couple the equation with initial
conditions expressed as the limit of a fractional integral as in

⎧⎪⎨⎪⎩
RLDα

ty(t) = f (t, y(t)),
RLDα–k

t y(t) = bk , k = , . . . ,m – ,
limt→t+ J

m–α
t y(t) = bm,

which does not have a clear physical meaning.
To overcome these difficulties, the alternative approach of the Caputo (C) differential

operator of order α >  has been proposed according to

CDα
t f (t)≡ Jm–α

t Dmf (t) =


�(m – α)

∫ t

t
(t – s)m–α– dm

dtm
f (s)ds.
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The major advantage of the above definition is that when used in FDEs it is possible
to couple the equation with classical initial conditions of Cauchy type, thus to obtain an
initial value problem in the standard form{

CDα
t f (t) = f (t, y(t)),

Dky(t) = y,k , k = , . . . ,m – .
()

It is important to remark that the two definitions are strongly correlated bymeans of the
relationship

CDα
t f (t) = RLDα

t

(
f (t) – Tm–[f ; t]

)
,

where, for a function f assumed sufficiently smooth at t, Tm–[f ; t] is the (m–)th degree
Taylor polynomial for f centered at t

Tm–[f ; t](t) =
m–∑
k=

tk

k!
f (k)(t).

When  < α < , and hencem =  and T[f ; t](t) = f (t), we simply have

CDα
t f (t) = RLDα

t

(
f (t) – f (t)

)
.

A further approach is the Grünwald-Letnikov (GL) operator defined as

GLDα
t f (t) = lim

N→∞h–α
N

N∑
j=

w(α)
j f (t – jhN ), hN =

t – t
N

, ()

where the weights w(α)
j are the coefficients in the power series expansion of ( – ξ )α , i.e.,

( – ξ )α =
∞∑
j=

w(α)
j ξ j, w(α)

j = (–)j
(

α

j

)
=

�(j – α)
�(–α)�(j + )

and, from a practical point of view, they can be evaluated recursively by means of the
following recurrence:

w(α)
 = , w(α)

j =
(
 –

 + α

j

)
wj–, j = , , . . . . ()

Under suitable assumptions of regularity, the RL and GL operators coincides, i.e.,

RLDα
t f (t) = GLDα

t f (t).

As a consequence, it is possible to establish a relationship also between the C and GL
operators by means of the formula

CDα
t f (t) = GLDα

t f (t)
(
f (t) – Tm–[f ; t]

)
, ()
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which, for  < α < , becomes

CDα
t f (t) = GLDα

t

(
f (t) – f (t)

)
. ()

The GL operator, used in connection with () or () provides a practical and convenient
method for numerically solving FDEs with the Caputo operator. By truncating the sum-
mation in (), it is possible to approximate the solution of the problem () as

N∑
j=

w(α)
j

(
y(t – jhN ) – y

)
= hα

Nf
(
t, y(t)

)
. ()

This method has been extensively studied in literature (e.g., see [, ]) and the numer-
ical solution obtained by () converges to true solution with order  as hN → . Method
() will form the basis on which NSFDmethods will be devised in the subsequent section.
We introduce the following result concerning the weights of the GL discretization

scheme (), which will be used later on.

Lemma  Let  < α <  and w(α)
n the coefficients in the GL operator.Then for any n = , , . . .

. – < w(α)
n < ,

.  < w(α–)
n < .

Proof The proof is an immediate consequence of the recursive relationship stated in ().
�

2.2 Nonstandard discretization
NSFD schemes were firstly proposed by Mickens [, ] for either ODEs or PDEs and,
successively, their use has been investigated in several fields (see, for instance, [–]).
To describe the main aspects of NSFD schemes, we consider an ODE in the form

dy
dt

= f (t, y,λ), ()

where λ is a, possibly vector, parameter. Given a mesh-grid tn = t + hn, that just for sim-
plicity we assume to be equispaced with step-size h > , NSFD schemes are constructed
by following two main steps: () the derivative at the left-hand side of () is replaced by a
discrete representation in the form

dy
dt

≈ yn – yn–
φ(h,λ)

, ()

where yn is an approximation of y(tn); () the nonlinear term in () is replaced by a nonlocal
discrete representation F(t, yn, yn–, . . . ,λ) depending on some of the previous approxima-
tions. The resulting scheme therefore reads as

yn – yn–
φ(h,λ)

= F(t, yn, yn–, . . . ,λ). ()

The discrete derivate on the left-hand side is a generalization of the classical discrete rep-
resentation for the first derivative that is obtained by using φ(h,λ) = h. The denominator
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function φ(h,λ) is a function of the step-size h and must fulfill the consistency condition

φ(h,λ) = h +O
(
h

)
, h→ , ()

to ensure that the discrete representation in () converges to the corresponding contin-
uous derivative as h → . Examples of denominator functions fulfilling () are h, sin(h),
 – e–h, ( – e–λh)/λ and so forth.
Other than by fulfilling the consistency condition (), there are however some other

criteria for choosing a suitable denominator function. The main aim is to achieve what is
called the dynamic consistency: the solution of the discrete model () must satisfy some
properties of particular importance for the original continuous model () (e.g., positivity,
monotonicity, fixed points and so on).
To better describe this issue, we consider the linear problem f (t, y,λ) = –λywhich, as it is

well known, monotonically converges to the steady-state y =  whenever λ > . The classi-
cal explicit Euler scheme, obtained with φ(h,λ) = h and F(yn, yn–, . . . ,λ) = –λyn– does not
preserve the monotonic convergence to  unless h is sufficiently small. It is instead easy
to verify that the use of the nonstandard denominator function

φ(h,λ) =
 – e–hλ

λ

ensures this desirable property for any value of h.
It is quite common to select the denominator function on the basis of the knowledge of

the fixed points of f . For more general problems having the fixed points ỹ�, � = , , . . . ,L,
such that f (t, ỹ�,λ) = , after denoting

R� =
df
dy

∣∣∣∣
y=̃y�

the denominator function φ can be chosen as

φ(h,R) =
 – e–Rh

R
, R = max

�=,...,L
|R�|

to ensure that the steady-state of the discretemodel preserves the same stability properties
of the original continuous model.
For the nonlinear terms on the right-hand side, several kinds of nonlocal discrete rep-

resentations F(t, yn, yn–, . . . ,λ) can be proposed, according to the nature of the problem
under investigation. For instance, some examples of possible replacements are

y → yn–yn, yn–
yn– + yn


, yn–yn+,

y →
(
yn– + yn



)
yn–, yn–yn, yn–yn–yn,

yn–yn
yn–

.

3 NSFD for fractional differential equations
The use of NSFD schemes for fractional-order problems is a quite new subject and very
few contributions are available in literature [–]. To apply NSFD schemes to FDEs,
we have to take into account some peculiarities of fractional-order systems. Although the

http://www.advancesindifferenceequations.com/content/2013/1/102
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nonlocal discrete representation of the vector field f (t, y(t)) can be assumed in an identical
way as in (), we must observe that, due to the nonlocal nature of derivative operators of
fractional order, the discrete representation of the derivative must take into account all
the past history of the solution as in (). Thus, the counterpart of () for FDEs with order
 < α <  must be written in the form


φ(h,λ)

n∑
j=

w(α)
j (yn–j – y) = F(t, yn, yn–, . . . ,λ) ()

when the GL discretization () is exploited as the underlying method for the construction
of NSFD schemes.
The consistency condition () does not longer ensure the convergence of the discrete

representation of the fractional derivative in () to its continuous definition. On the basis
of (), the modified consistency condition

φ(h,λ) = hα +O
(
hp

)
, p > α, h→ , ()

must therefore be assumed. Some examples of denominator functions of this kind are

hα ,
sin(hαλ)

λ
,

(
sin(hλ)

λ

)α

,
 – e–hαλ

λ
,(

 – e–hλ

λ

)α

, �(α + )
Eα(–hαλ) – 

λ
,

where�(·) and Eα(·) are the gamma Euler function and theMittag-Leffler function respec-
tively defined as

�(z) =
∫ ∞


e–ttz– dt, Eα(z) =

∞∑
k=

zk

�(αk + )
.

Although all the above functions satisfy the consistency condition (), not all of them
preserve the first order convergence of (). Indeed, it is immediate to observe that to
achieve this further goal it is necessary that p in () satisfies p ≥  + α. Since most of
the listed functions do not fulfill this requirement, it is obvious to expect a drop in the
convergence order which could reduce to α, when  < α < , instead of being .
Despite the drop in the order of convergence, some of these denominator functions can

be, however, useful to overcome stability issues. To this purpose, let us consider, also in
this case, the linear test f (t, y,λ) = –λy together with the explicit GL scheme obtained form
() with F(t, yn, yn–, . . . ,λ) = –λyn–. By following an analysis similar to that carried out in
[], we can easily see that in order to obtain a stable behavior we must require that the
denominator function satisfies

 < φ(h,λ) <
α

λ
. ()

Among the various denominator functions listed above, we will take into account the
following two

φ(h,λ) =
 – e–hαλ

λ
, φ(h,λ) =

(
 – e–hλ

λ

)α

.
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Both of them fulfill the consistency condition () but just φ(h,λ) preserves order of
convergence  since φ(h,λ) = hα – αλ

 h
+α + · · · . Moreover, while φ(h,λ) satisfies for any

values of h the stability requirement () only when λ is of small or moderate size, the
function φ(h,λ) fulfills () in any circumstance. Thus, φ(h,λ) is expected to better work
for preserving stabilitywhereasφ(h,λ) seemsmore suitable for achieving higher accuracy.

4 Fractional-order Brusselator model: stability analysis and NSFD schemes
The fractional-order Brusselator [] is a model of an autocatalytic chemical reaction,
which is mathematically described as follows:{

CDα
,tx(t) = a – (μ + )x(t) + x(t)y(t),

CDα
,ty(t) = μx(t) – x(t)y(t),

()

where x(t), y(t) are activator and inhibitor variables and a, μ are external parameters (the
relationship between them determines the system dynamics) [].
To study the dynamics of this model, we consider its equilibrium point. Let g(x, y) =

a – (μ + )x(t) + x(t)y(t) and h(x, y) = μx(t) – x(t)y(t); the equilibrium point E of () is
the solution of

g(xeq, yeq) =  and h(xeq, yeq) = , ()

which can be easily determined as E = (a, μ

a ). The following result allows to summarize
the dynamics of this equilibrium point [].

Theorem There exists a marginal value α such that the equilibrium E is locally asymp-
totically stable if α < α and it is unstable if α > α.

Proof The steady state is locally asymptotically stable if all the eigenvalues λ of the Jaco-
bian matrix

J =

[
∂g/∂x ∂g/∂y
∂h/∂x ∂h/∂y

]

evaluated at the equilibrium point satisfy the following condition [, ]

∣∣arg(λ)∣∣ > απ


.

The eigenvalues λ can be determined by solving the characteristic equation det(J(E) –
λI) = . Since the Jacobian matrix of the system () at the equilibrium point is

J(E) =

[
μ –  a

–μ –a

]

the eigenvalues of J(E) are

λ, =


[
tr J ±

√
tr J – det J

]
,

where tr J = μ –  – a and det J = a.

http://www.advancesindifferenceequations.com/content/2013/1/102
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For  < α <  consider the parabola tr J – det J =  and introduce the marginal value
α = 

π
| arg(λi)|, i = , . When α < α the system has oscillatory, but stable modes; when

α > α unstable and more complicated dynamics arise []. �

The value of α is thus an additional bifurcation parameter, which switches the stable
and unstable states of the system and changes the form of the limit cycle. When α = ,
the system has a unique limit cycle when μ > a +  and it has a stable limit cycle for
(a – ) < μ < a +  [].
Since system () does not have a general solution in closed form, numerical methods

must be used to approximate its solutions; a major requirement is that the numerical
schemes preserve the dynamics of the system.
To discretize the fractional-order nonlinear system (), we propose and discuss some

NSFD schemes applied in combination with the truncation of the GL operator as stated
in ().
In the following, we will denote with xn and yn the approximations for x(tn) and y(tn).

Furthermore, for brevity, we will put

x̃n– =

{
w(α–)
n x, n = ,

w(α–)
n x –

∑n
j=w

(α)
j xn–j, n≥ 

and similarly

ỹn– =

{
w(α–)
n y, n = ,

w(α–)
n y –

∑n
j=w

(α)
j yn–j, n≥ 

and

Xn =
n∑
j=

w(α)
j xn–j, Yn =

n∑
j=

w(α)
j yn–j.

NSFD scheme : As a first nonstandard scheme, we make the replacement of the nonlin-
ear term in the right-hand side of () by means of

x(t)→ x(tn–), x(t)y(t) → x(tn)x(tn–)y(tn–).

The application of the truncated GL discretization () leads to

{
xn +

∑n
j=w

(α)
j xn–j –w(α–)

n x = φ(h)[a – (μ + )xn– + xnxn–yn–],
yn +

∑n
j=w

(α)
j yn–j –w(α–)

n y = φ(h)[μxn– – xnxn–yn–]

from which we can explicitly evaluate xn and yn as

⎧⎨⎩xn =
w(α–)
n x–

∑n
j= w

(α)
j xn–j+φ(h)[a–(μ+)xn–]

–φ(h)xn–yn–
,

yn = w(α–)
n y –

∑n
j=w

(α)
j yn–j + φ(h)[μxn– – xnxn–yn–].

http://www.advancesindifferenceequations.com/content/2013/1/102
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Since w(α)
 = –α we obtain w(α–)

n x – Xn = x̃n– + αxn– and w(α–)
n y – Yn = ỹn– + αyn–

and hence the resulting NSFD scheme is

{
xn = x̃n–+xn–(α–φ(h)(μ+))+aφ(h)

–φ(h)xn–yn–
,

yn = ỹn– + yn–(α – φ(h)xnxn–) + φ(h)μxn–.

In our tests as the denominator function, we will use the function φ(h,μ+) = –e–h
α (μ+)

μ+
introduced in Section .
NSFD scheme : In our second nonstandard scheme, we use the replacement

x(t)→ x(tn), x(t)y(t)→ x(tn)x(tn–)y(tn–).

By operating in a similar way as in the previous case, we can see that the resulting NSFD
scheme can be expressed as

{
xn = x̃n–+αxn–+φ(h)a

+φ(h)(μ+)–φ(h)xn–yn–
,

yn = ỹn– + yn–[α – φ(h)xnxn–] + φ(h)μxn

and the denominator function φ(h,μ + ) = ( –e–h(μ+)
μ+ )α will be used.

NSFD scheme : In our last nonstandard scheme, we choose

x(t)→ x(tn–), x(t)y(t) → x(tn–)x(tn–)y(tn–)

and the resulting scheme is

{
xn = x̃n– + αxn– + φ(h)xn–[xn–yn– – (μ + )] + φ(h)a,
yn = ỹn– + yn–[α – φ(h)xn–] + φ(h)μxn–.

When φ(h) = hα , this is a fully explicit scheme and it is the counterpart for FDEs of
the classical forward Euler method. Anyway in our experiments, we will use both the de-
nominator functions φ(h,μ + ) = –e–h

α (μ+)

μ+ and φ(h,μ + ) = ( –e–h(μ+)
μ+ )α to compare the

behavior and the corresponding schemes will be denoted respectively as NSFD a and
NSFD b.
To study positivity of the numerical approximations let us assume x ≥ , y ≥  and

a,μ > . A straightforward analysis allows us to identify the conditions under which pos-
itive iterations xn and yn are obtained. We summarize these conditions as follows:
Scheme : φ(h) < α

μ+ and φ(h) < 
xnxn–

.
Scheme : xn–yn– < μ +  and φ(h) < α

xnxn–
.

Scheme : xn–yn– > μ +  and φ(h) < α
xn–yn–

.

5 Numerical simulations
We present in this section some numerical simulations. To compare the results obtained
with the NSFD schemes investigated in this paper, we use the reference solution provided
by the Adams-Bashforth-Moulton (ABM) method implemented in [], whose stability
properties have been investigated in [].
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Figure 1 Dynamics of the Brusselator model for (a,μ) = (1, 3), α = 0.7 > α0 = 2/3 and
(x0,y0) = (1.1, 2.9).

Figure 2 Trajectories by NSFD schemes with h = 0.05 for (a,μ) = (1, 3), α = 0.7 and (x0,y0) = (1.1, 2.9).

In the first simulation, we consider the case a = , μ = , α = . with the initial
value (x, y) = (., .). Since λ, = ( ± i

√
)/, the marginal value of Theorem  is

α = | arg(λi)|/π = /, and hence unstable modes are expected, as we show in Figure ,
where the reference solution evaluated by the ABMmethod is plotted in the time domain
and in the phase plane.
In Figure , we present the results obtained by the NSFD schemes with a step-size

h = . on the integration interval [, ]. As we can clearly see, all the NSFD schemes
provide the expected unstable modes and the trajectories converge quite well towards the
same limit cycle. Although all the methods seem to work in a satisfactory way, the results
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Figure 3 Dynamics of the Brusselator model for (a,μ) = (1, 2), α = 0.8 < α0 = 1 and (x0,y0) = (0.9, 2.1).

Figure 4 Trajectories by NSFD schemes with h = 0.05 for (a,μ) = (1, 2), α = 0.8 and (x0,y0) = (0.9, 2.1).

obtained but the NSFD scheme  better replicate the behavior of the reference solution of
Figure .
In the second experiment, we consider a problem with a = , μ =  and α = .. Since

λ, = ±i and the threshold value of Theorem  is α = , a stable mode is expected as we
can see from the plots in Figure  obtained again by the ABMmethod.
Also in this case we observe, see Figure , that all the NSFD schemes show a stablemode

in agreement with the theoretical findings and with the reference solution of Figure . In
this case, the integration has been performed on the interval [, ].
In Table , we compare the results for the approximations of (x(t), y(t)) obtained by the

proposed schemes for a = , μ = , α = ., (x, y) = (., .) on the interval [, ] with
an increasing number N of steps. The errors E(N) with respect to the reference solution

http://www.advancesindifferenceequations.com/content/2013/1/102
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Table 1 Errors and EOC with some values of N at T = 40 for (a,μ) = (1, 2), α = 0.8 and
(x0,y0) = (0.9, 2.1)

N NSFD 1 NSFD 2 NSFD 3a NSFD 3b
Error EOC Error EOC Error EOC Error EOC

320 3.05(–4) 1.45(–4) 2.95(–4) 1.54(–4)
640 1.70(–4) 0.842 7.33(–5) 0.985 1.67(–4) 0.823 7.32(–5) 1.072

1,280 9.55(–5) 0.831 3.61(–5) 1.022 9.39(–5) 0.827 3.64(–5) 1.007
2,560 5.42(–5) 0.818 1.80(–5) 1.005 5.32(–5) 0.818 1.82(–5) 1.003
5,120 3.09(–5) 0.811 8.98(–6) 1.002 3.04(–5) 0.807 9.07(–6) 1.002
10,240 1.77(–5) 0.807 4.49(–6) 1.001 1.74(–5) 0.803 4.53(–6) 1.001

are reported together with the estimation of the order of convergence (EOC) obtained as
EOC = log(E(N)/E(N)).
As expected from the discussion in Section , a drop in the order of convergence is

achieved by using the denominator function φ whilst the function φ allows to preserve
order . Moreover, all the schemes allow to obtain quite accurate results.

6 Concluding remarks
In this paper, some NSFD schemes have been investigated for the numerical solution of
the fractional-order Brusselator differential system. Some different denominator func-
tions and nonlocal terms have been proposed and the results have been compared with a
classical Adams-Bashforth-Moulton method for FDEs. From the numerical experiments,
we observed that NSFD schemes allow to replicate quite well the behavior of the true so-
lution, and hence they are a useful tool for detecting the main stability properties for the
problem under investigation and for similar problems.
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