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1. Introduction and preliminaries
As is known, integro-differential equations find many applications in various mathema-

tical problems, see Cordunean’s book [1], Guo et al.’s book [2] and references therein

for details. For the recent developments involving existence of solutions to BVPs for

integro-differential equations and impulsive integro-differential equations we can refer

to [3-17]. So far the main method appeared in the references to guarantee the exis-

tence of solutions is the method of upper and low solutions. Motivated by the ideas in

the recent works [18,19], we come up with a new approach to ensure the existence of

at least one solution for certain family of first-order nonlinear integro-differential equa-

tions with periodic boundary value conditions or antiperiodic boundary value condi-

tions. Our methods involve new differential inequalities and the classical fixed-point

theory.

This paper mainly considers the existence of solutions for the following first-order

nonlinear integro-differential system with periodic boundary value conditions.{
x′ = f (t, x, (Kx)(t)), t ∈ [0, 1];
x(0) = x(1);

(1:1)

and first-order integro-differential system with “non-periodic” conditions.{
x′ = f (t, x, (Kx)(t)), t ∈ [0, 1];
Ax(0) + Bx(1) = θ ,

(1:2)

where (Kx)(t) denotes⎛
⎝ t∫

0

k1(t, s)x1(s)ds,

t∫
0

k2(t, s)x2(s)ds, · · · ,
t∫

0

kn(t, s)xn(s)ds

⎞
⎠
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with ki (t, s) : [0, 1] × [0, 1] ® [0, +∞) continuous for i = 1, 2, ..., n; A and B are n ×

n matrices with real valued elements, θ is the zero vector in ℝn. For A = (aij)n × n, we

denote ||A|| by (
∑n

i=1

∑n
j=1 | aij|)

1
2. In what follows, we assume function f : [0, 1] × ℝn

× ℝn ® ℝn is continuous, and det (A + B) ≠ 0.

Noticing that det (A+B) ≠ 0, conditions Ax(0)+Bx(1) = θ do not include the periodic

conditions x(0) = x(1). Furthermore, if A = B = I, where I denotes n × n identity

matrix, then Ax(0)+Bx(1) = θ reduces to the so-called “anti-periodic” conditions x(0) =

-x(1). The authors of [20-24] consider this kind of “anti-periodic” conditions for differ-

ential equations or impulsive differential equations. To the best of our knowledge it is

the first article to deal with integro-differential equations with “anti-periodic” condi-

tions so far.

We are also concerned with the following BPVP of integro-differential equations of

mixed type:{
x′ = f (t, x, (Kx)(t), (Lx)(t)), t ∈ [0, 1];
x(0) = x(1);

(1:3)

where function f : [0, 1] × ℝn × ℝn × ℝn ® ℝn is continuous, (Lx) (t) denotes⎛
⎝ 1∫

0

l1(t, s)x1(s)ds,

1∫
0

l2(t, s)x2(s)ds, · · · ,
1∫

0

ln(t, s)xn(s)ds

⎞
⎠

with li (t, s) : [0, 1] × [0, 1] ® ℝ, i = 1, 2, ..., n being continuous.

This article is organized as follows. In Sect. 1 we give some preliminaries. Section 2

presents some existence theorems for PVPs (1.1), (1.3) and a couple of examples to

illustrate how our newly developed results work. In Sect. 3 we focus on the existence

of solutions for (1.2) and also an example is given.

In what follows, if x, y Î ℝn, then 〈x, y〉 denotes the usual inner product and ||x||

denotes the Euclidean norm of x on ℝn. Let

C([0, 1],Rn) = {x : [0, 1] → Rn, x(t) is continuous}

with the norm

||x||C = sup
t∈[0,1]

||x(t)||.

The following well-known fixed-point theorem will be used in the proof of Theorem

3.3.

Theorem 1.1 (Schaefer)[25]. Let X be a normed space with H : X ® X a compact

mapping. If the set

S := {u ∈ X : u = λHu for some λ ∈ [0, 1)}

is bounded, then H has at least one fixed-point.

2. Existence results for periodic conditions
To begin with, we consider the following periodic boundary value problem

x′ +m(t)x = g(t, x, (Kx)(t)), t ∈ [0, 1];

x(0) = x(1);
(2:1)
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where g : [0, 1] × ℝn × ℝn ® ℝn and m : [0, 1] ® ℝ are both continuous functions,

with m having no zeros in [0, 1].

Lemma 2.1. The BVP (2.1) is equivalent to the integral equation

x(t) =
1

e
∫ t
0 m(q)dq

⎡
⎣∫ 1

0 g(q, x(q), (Kx)(q))e
∫ q
0 m(τ)dτdq

e
∫ 1
0 m(s)ds − 1

+

t∫
0

g(q, x(q), (Kx)(q))e
∫ q
0 m(τ)dτdq

⎤
⎦ , t ∈ [0, 1].

Proof. The result can be obtained by direct computation.

Theorem 2.1. Let g and m be as in Lemma 2.1. Assume that there exist constants R

>0, a ≥ 0 such that

max
t∈[0,1]

[
1

e
∫ t
0 m(q)dq

(
1 +

1

|e
∫ 1
0 m(q)dq − 1|

)]
M(R) < R (2:2)

and

λ||g(t, x, (Kx)(t))||e
∫ t
0 m(q)dq ≤ 2α

[〈x,λg(t, x, (Kx)(t))〉 − m(t)||x||2] +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(2:3)

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

PBVP (2.1) has at least one solution x Î C with ||x||C < R.

Proof. Let C = C([0, 1], Rn) and Ω = {x(t) Î C, ||x(t)||C <R}. Define an operator

T : �̄ → C by

Tx(t) =
1

e
∫ t
0 m(q)dq

⎡
⎣∫ 1

0 g(q, x(q), (Kx)(q))e
∫ q
0 m(τ)dτdq

e
∫ 1
0 m(s)ds − 1

+

t∫
0

g(q, x(q), (Kx)(q))e
∫ q
0 m(τ)dτdq

⎤
⎦ (2:4)

for all t Î [0, 1].

Since g is continuous, see that T is also a continuous map. It is easy to verify the

operator T is compact by the Arzela-Ascoli theorem. Indeed, for the ball Ω,

x 	= λTx, ∀x ∈ C with x ∈ ∂�, ∀ λ ∈ [0, 1], (2:5)

implies

0 	∈ (I − λT)(x),∀x ∈ ∂�, ∀λ ∈ [0, 1].

Define Hl = I - lT, l Î [0, 1], where I is the identity. So if (2.5) is true, then from

the homotopy principle of Schauder degree [[25], Chap.4.], we have

degLS(Hλ,�, 0) = degLS(I − λT,�, 0)

= degLS(H1,�, 0) = degLS(H0,�, 0)

= degLS(I,�, 0) = 1 	= 0.

Therefore, it follows from the non-zero property of Leray-Schauder degree that H1(x)

= x - Tx = 0 has at least one x Î Ω.

Now our problem is reduced to prove that (2.5) is true. Observe that the family of

problems

x = λTx,λ ∈ [0, 1] (2:6)
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is equivalent to the family of PBVPs

x′ +m(t)x = λg(t, x, (Kx)(t)), t ∈ [0, 1];

x(0) = x(1).
(2:7)

Consider the function r(t) = ||x(t)||2, t Î [0, 1], where x(t) is a solution of (2.7). Then

r(t) is differentiable and we have by the product rule

r′(t) = 2〈x(t), x′(t)〉 = 2〈x(t),λg(t, x(t), (Kx)(t)) − m(t)x(t)〉, t ∈ [0, 1].

Denote

H(t) =

[
1

e
∫ t
0 m(q)dq

(
1 +

1

|e
∫ 1
0 m(q)dq − 1|

)]
, t ∈ [0, 1].

Let x be a solution of (2.6) with x ∈ �̄ We now show that x ∉ ∂Ω. From (2.5) and

(2.3) we have, for each t Î [0, 1] and each l Î [0, 1],

||x(t)|| = ||λTx(t)||

=
1

e
∫ t
0 m(q)dq

⎡
⎣∫ 1

0 λg(q, x(q), (Kx)(q))e
∫ q
0 m(τ)dτdq

|e
∫ 1
0 m(s)ds − 1|

+

t∫
0

λg(q, x(q), (Kx)(q))e
∫ q
0 m(τ)dτdq

⎤
⎦

≤ 1

e
∫ t
0 m(q)dq

⎡
⎣∫ 1

0 λ||g(q, x(q), (Kx)(q))||e
∫ q
0 m(τ)dτdq

|e
∫ 1
0 m(s)ds − 1|

+

t∫
0

λ||g(q, x(q), (Kx)(q))||e
∫ q
0 m(τ)dτdq

⎤
⎦

≤
[

1

e
∫ t
0 m(q)dq

(
1 +

1

|e
∫ 1
0 m(q)dq − 1|

)]∫ 1

0
λ||g(q, x(q), (Kx)(q))||e

∫ q
0 m(τ)dτdq

≤ H(t)
∫ 1

0
[2α〈x,λg(q, x(q), (Kx)(q)) − m(q)||x(q)||2〉 +M(R)] dq

= H(t)
∫ 1

0

[
α

d
dq

(||x(q)||2) +M(R)
]
dq

= H(t)[α(||x(1)||2 − ||x(0)||2) +M(R)]

= H(t) M (R).

Then it follows from (2.2) that x ∉ ∂Ω. Thus, (2.5) is true and the proof is

completed.

Corollary 2.1. Let g and m be as in Lemma 2.1 with m(t) <0, t Î [0, 1]. If there exist

constants R >0, a ≥ 0 such that

max
t∈[0,1]

[
1

e
∫ t
0 m(q)dq

(
1 +

1

1 − e
∫ 1
0 m(q)dq

)]
M(R) < R

and

||g(t, x, (Kx)(t))||e
∫ t
0 m(q)dq ≤ 2α〈x, g(t, x, (Kx)(t))〉 +M(R),

∀(t, x) ∈ [0, 1] × BR,
(2:8)

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}, then

PBVP (2.1) has at least one solution x Î C with ||x||C < R.

Proof. Multiply both sides of (2.8) by l Î [0, 1] to obtain

λ||g(t, x, (Kx)(t))||e
∫ t
0 m(q)dq ≤ 2α〈x,λg(t, x, (Kx)(t))〉 + λM(R)

≤ 2α
[〈x,λg(t, x, (Kx)(t))〉] +M(R),

∀(t, x) ∈ [0, 1] × BR.
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It completes the proof.

Now consider the existence of solutions of PBVP (1.1). It is easy to see (1.1) is

equivalent to the PBVP

x′ − x = f (t, x, (Kx)(t)) − x, t ∈ [0, 1];

x(0) = x(1).
(2:9)

Theorem 2.2. If there exist constants R >0, a ≥ 0 such that

e(2e − 1)M(R)
e − 1

< R (2:10)

and

λ||f (t, x, (Kx)(t)) − x||e−t ≤ 2α
[〈x,λf (t, x, (Kx)(t))〉 + (1 − λ)||x||2] +M(R),

∀λ ∈[0, 1];∀(t, x) ∈ [0, 1] × BR,
(2:11)

where M(R) is a positive constant dependent on R, BR = {x Î ℝn, ||x|| ≤ R}, then

PBVP (1.1) has at least one solution x Î C with ||x||C < R.

Proof. Consider the PVPB (2.9), which is of the form (2.1) with m(t) ≡ - 1 and g(t, x,

(Kx)(t)) = f (t, x, (Kx)(t)) - x. Clearly,

max
t∈[0,1]

[
1
e−t

(1 +
1

|1 − e−1| )] =
e(2e − 1)
e − 1

.

So, (2.2) reduces to (2.10). Besides, (2.3) reduces to (2.11). Hence the result follows

from Theorem 2.1.

Corollary 2.2. Assume there are constants R >0, a ≥ 0 such that

e(2e − 1)M(R)
e − 1

< R (2:12)

and

||f (t, x, (Kx)(t)) − x||e−t ≤ 2α〈x, f (t, x, (Kx)(t))〉 +M(R),

∀(t, x) ∈ [0, 1] × BR,
(2:13)

where M (R) is a positive constant dependent on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

PBVP (1.1) has at least one solution x Î C with ||x||C < R.

Proof. Multiply both sides of (2.13) by l Î [0, 1] to obtain

λ||f (t, x, (Kx)(t)) − x|| ≤ 2α[〈x,λf (t, x, (Kx)(t))〉 − λ||x||2] + λM(R)

≤ 2α[〈x,λf (t, x, (Kx)(t))〉 + (1 − λ)||x||2] +M(R).

Considering that

λ||f (t, x, (Kx)(t)) − x||e−t ≤ λ||f (t, x, (Kx)(t)) − x||,∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,

we have (2.11) is true if (2.13) is true. Then the proof is completed.

Now an example is provided to show how our theorems work.
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Example 2.1 1. Consider the following PBVP with n = 2.⎧⎨
⎩
x′ = x + xy2 + t

20 ;
y′ = y + y

100

∫ t
0(t − s)x(s)ds;

x(0) = x(1), y(0) = y(1).
(2:14)

Let us show (2.14) has at least one solution (x(t), y(t))⊤ with
√
x(t)2 + y(t)2 < 1

2
, ∀t Î

[0, 1].

It is clear that (2.14) has no constant solution. Let u = (x, y)⊤, ||u|| =
√
x2 + y2 and

F(t, u, (Ku)(t)) = (x + xy2 + t
20 , y +

y
100

∫ t
0(t − s)x(s)ds)
. First note that for

∀(t, u) ∈ [0, 1] × BR, |
∫ t
0(t − s)x(s)ds| ≤ R.

Then

||F(t, u, (Ku)(t)) − u|| = ||(xy2 + t
20 ,

y
100

∫ t

0
(t − s)x(s)ds)
)||

=

√
x2y4 + xy2t

10 + t2
400 +

(
y

100

∫ t

0
(t − s)x(s)ds

)2

≤
√
x2y4 + |x|y2

10 + 1
400 +

(
yR
100

)2
≤
√
x2y4 + |x|y2

10 + 1
400 +

√(
yR
100

)2
≤ |x|y2 + 1

20 + R2

100 , ∀(t, u) ∈ [0, 1] × BR.

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1 Figure of Example 2.1
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On the other hand,

2α〈u, F(t, u, (Ku)(t))〉 = 2α(x2 + x2y2 + xt
20 + y2 + y2

100

∫ t

0
(t − s)x(s)ds)

≥ 2α(x2 + x2y2 − |x|
20 + y2 − y2R

100 )

= 10x2 + 10x2y2 − |x|
2 + 10y2 − y2R

10 , for α = 5.

Clearly,

min
x∈R

{10x2 − |x|
2

} = − 1
160

;

10x2y2 + y2 ≥ |x|y2,∀(x, y)
 ∈ R2;

9y2 − y2R
10

≥ 0, if R ≤ 90.

So for some R ≤ 90 and a = 5, we have

||F(t, u, (Ku)(t)) − u|| ≤ 2α〈u, F(t, u, (Ku)(t))〉 +M(R),

where M(R) = R2

50 + 9
160

. Now it is sufficient to find a positive constant R satisfying

{ e(2e−1)
e−1 M(R) − R < 0

R ≤ 90.
(2:15)

It is easy to see that any number in [ 12 , 6] satisfies (2.15). Then our conclusion fol-

lows from Corollary 2.2.

In what follows we focus on the first-order integro-differential equations of mixed

type in the form of (1.2). The results presented in the following three statements are

similar to Theorem 2.1, Theorem 2.2 and Corollary 2.2, respectively. So we omit all

the proofs here.

Consider the following periodic boundary value problem

x′ +m(t)x = g(t, x, (Kx)(t), (Lx)(t)), t ∈ [0, 1];

x(0) = x(1);
(2:16)

where g : [0, 1] × ℝn × ℝn × ℝn ® ℝn and m : [0, 1] ® ℝ are both continuous func-

tions, with m having no zeros in [0, 1].

Theorem 2.3. Assume there are constants R >0, a ≥ 0 such that

max
t∈[0,1]

[
1

e
∫ t
0 m(q)dq

(
1 +

1

|e
∫ 1
0 m(q)dq − 1|

)]
M(R) < R

and

λ||g(t, x, (Kx)(t), (Lx)(t))||e
∫ t
0 m(q)dq ≤ 2α

[〈x,λg(t, x, (Kx)(t), (Lx)(t)))〉 − m(t)||x||2] +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

PBVP (2.16) has at least one solution x Î C with ||x||C < R.

Theorem 2.4. Suppose there are constants R >0, a ≥ 0 such that

e(2e − 1)M(R)
e − 1

< R
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and

λ||f (t, x, (Kx)(t), (Lx)(t)) − x||e−t ≤ 2α
[〈x,λf (t, x, (Kx)(t), (Lx)(t))〉 + (1 − λ)||x||2] +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

PBVP (1.2) has at least one solution x Î C with ||x||C < R.

Corollary 2.3. If there exist constants R >0, a ≥ 0 such that

e(2e − 1)M(R)
e − 1

< R (2:17)

and

||f (t, x, (Kx)(t), (Lx)(t)) − x||e−t ≤ 2α〈x, f (t, x, (Kx)(t), (Lx)(t))〉 +M(R),

∀(t, x) ∈ [0, 1] × BR,
(2:18)

where M(R) is a positive constant dependent on R, BR = {x Î ℝn, ||x|| ≤ R}, then

PBVP (1.3) has at least one solution x Î C with ||x||C < R.

Now we give an example to illustrate how to apply our theorems.

Example 2.2 2. Consider the following PBVP with n = 2.⎧⎨
⎩
x′ = 2x + y

320 [
∫ t
0(t − s)x(s)ds]2;

y′ = 3y + x
240

∫ 1
0 e−tsy(s)ds + cos(2π t)

360 ;
x(0) = x(1), y(0) = y(1).

(2:19)

We prove that (2.19) has at least one solution (x(t), y(t))⊤ with
√
x(t)2 + y(t)2 < 0.8,

∀t Î [0, 1].

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 2 Figure of Example 2.2
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First note that (2.19) has no constant solution. Let u = (x, y)⊤, ||u|| = √
x2 + y2 and

F(t, u, (Ku)(t), (Lu)(t)) = (2x +
y

320
[

t∫
0

(t − s)x(s)ds]2, 3y+
x

240

1∫
0

e−tsy(s)ds+
cos(2π t)

360
)
.

Since ∀(t, u) ∈ [0, 1] × BR, | y
320 (

∫ t
0(t − s)x(s)ds)2| ≤ R3

320
and | x

240

∫ 1
0 e−tsy(s)ds| ≤ R2

240
,

we obtain

||F(t, u, (Ku)(t)) − u|| =
∥∥∥∥∥∥(x + y

320 [

t∫
0

(t − s)x(s)ds]2, 2y + x
240

1∫
0

e−tsy(s)ds + cos(2π t)
360 )
)

∥∥∥∥∥∥
≤ |x + y

320 [

t∫
0

(t − s)x(s)ds]2| + |2y + x
240

1∫
0

e−tsy(s)ds + cos(2π t)
360 |

≤ |x| + R3

320 + 2|y| + R2

240 + 1
360 , ∀(t, u) ∈ [0, 1] × BR.

On the other hand,

2α〈u, F(t, u, (Ku)(t), (Lu)(t))〉

= 2α{2x2 + xy
320 [

t∫
0

(t − s)x(s)ds]2 + 3y2 + xy
240

1∫
0

e−tsy(s)ds + y cos(2π t)
360 }

≥ 2α(2x2 + 3y2 − R4

320 − R3

240 − R
360)

= 16x2 + 24y2 − R4

40 − R3

30 − R
45 , for α = 4.

Clearly,

min
x∈R

{16x2 − |x|} = − 1
64

;

min
x∈R

{24y2 − 2|y|} = − 1
24

.

Thus,

||F(t, u, (Ku)(t)) − u|| ≤ 2α〈u, F(t, u, (Ku)(t))〉 +M(R),

where

M(R) =
R4

40
+
R3

30
+

R
45

+
R3

320
+

R2

240
+

1
64

+
1

360
+

1
24

.

Now it is sufficient to find a positive constant R satisfying

e(2e − 1)
e − 1

M(R) − R < 0.

We compute directly e(2e−1)
e−1 M(0.8) − 0.8 < 0. Then our conclusion follows from

Corollary 2.3.

Notice that the conclusion of Theorem 2.1 still holds if (2.3) is replaced by

λ||g(t, x, (Kx)(t))||e
∫ t
0 m(q)dq ≤ −2α

[〈x,λg(t, x, (Kx)(t))〉 − m(t)||x||2] +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR.

Now we modify Theorem 2.1 and Corollary 2.2 to obtain some new results.
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Theorem 2.5. Let g and m be as in Lemma 2.1. Assume there exist constants R >0,

a ≥ 0 such that

max
t∈[0,1]

[
1

e
∫ t
0 m(q)dq

(
1 +

1

|e
∫ 1
0 m(q)dq − 1|

)]
M(R) < R

and

λ||g(t, x, (Kx)(t))||e
∫ t
0 m(q)dq ≤ −2α

[〈x,λg(t, x, (Kx)(t))〉 − m(t)||x||2] +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(2:20)

where M(R) is a positive constant dependent on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

PBVP (2.1) has at least one solution x Î C with ||x||C < R.

Proof. The proof is similar to that of Theorem 2.1 except choosing r(t) = - ||x(t) ||2

instead.

See that (1.1) is equivalent to the PBVP

x′ + x = f (t, x, (Kx)(t)) + x, t ∈ [0, 1];

x(0) = x(1).
(2:21)

Corollary 2.4. Suppose there exist constants R >0, a ≥ 0 such that

e
e − 1

M(R) < R

and

||f (t, x, (Kx)(t)) + x||et ≤ −2α
[〈x, f (t, x, (Kx)(t))〉] +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(2:22)

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

PBVP (1.1) has at least one solution x Î C with ||x||C < R.

Proof. Consider PVPB (2.21), which is in the form from (2.1) with m(t) ≡ 1 and g(t,

x, (Kx)(t)) = f(t, x, (Kx)(t)) + x. Clearly,

max
t∈[0,1]

[
1
et
(1 +

1
|1 − e|)] =

e

e − 1
.

Multiply both sides of (2.22) by l Î [0, 1] to obtain

λ||f (t, x, (Kx)(t)) + x||et ≤ −2α[〈x,λf (t, x, (Kx)(t))〉] + λM(R)

≤ −2α[〈x,λf (t, x, (Kx)(t))〉 + (λ − 1)||x||2] +M(R)

= −2α[〈x,λ(f (t, x, (Kx)(t)) + x)〉 − ||x||2] +M(R),

∀(t, x) ∈ [0, 1] × BR.

Then the conclusion follows from Theorem 2.5.

Remark 2.1. Corollary 2.4 and Corollary 2.2 differ in sense that Corollary 2.4 may

apply to certain problems, whereas Corollary 2.2 may not apply, and vice-versa.

Example 2.3 3. Let us prove that the PBVP⎧⎪⎨
⎪⎩ x′ = −2x + tx2 − x3 + 1

600 [−t +
t∫
0
e−tsx(s)ds]

3

,

x(0) = x(1).
(2:23)
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has at least one solution x(t) with |x(t)| <1, ∀t Î [0, 1].

Denote f (t, x, (Kx)(t)) = −2x + tx2 − x3 + 1
600 [−t +

∫ t
0 e

−tsx(s)ds]3. It is clearly that for

all (t, x) Î [0, 1] × BR,∣∣∣∣∣∣∣
1

600
[−t +

t∫
0

e−tsx(s)ds]

3
∣∣∣∣∣∣∣ ≤ (1 + R)3

600
;

Then for all (t, x) Î [0, 1] × BR,

et|f (t, x, (Kx)(t)) + x| ≤ e(|x| + |x|2 + |x|3 + (1 + R)3

600
).

On the other hand,

−2α〈x, f (t, x, (Kx)(t))〉

= −2α(−2x + tx2 − x3 + 1
600 [−t +

t∫
0

e−tsx(s)ds]3)

= 20x2 + 10x4 − 10tx3 − x
60 [−t +

t∫
0

e−tsx(s)ds]3, forα = 5

≥ 20x2 + 10x4 − 10|x|3 − 1
60R[1 + R]3.

Taking into account that

min
x∈R

{20x2 + 10x4 − 10|x|3 − e(|x| + |x|2 + |x|3)} ≥ −0.15,

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3 Figure of Example 2.3
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we choose

M(R) =
R(1 + R)3

60
+
e(1 + R)3

600
+ 0.15.

It is not difficult to check that eM(R)
e−1 < R if R Î [0.5, 2]. So the conclusion follows

from Corollary 2.4.

Remark 2.2 Since the coefficient of x3 is negative, it appears impossible to find two

constants R >0 and a ≥ 0 satisfying (2.12) and (2.13) at the same time.

3. Existence results for “non-periodic” conditions
In this section we study the problem of existence of solutions for BVP (1.2).

Lemma 3.1. The BVP (1.2) is equivalent to the integral equation

x(t) =

t∫
0

f (s, x(s), (Kx)(s))ds − (A + B)−1B

1∫
0

f (s, x(s), (Kx)(s))ds, t ∈ [0, 1].

Proof. The result can be obtained by direct computation.

Theorem 3.1. Assume det B ≠ 0 and ||B-1A|| ≤ 1. Suppose there exist constants R

>0, a ≥ 0 such that

(1 + ||(A + B)−1B||)M(R) < R, (3:1)

and

||f (t, x, (Kx)(t))|| ≤ 2α〈x, f (t, x, (Kx)(t))〉 +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(3:2)

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

BVP (1.2) has at least one solution x Î C with ||x||C < R.

Proof. Let C = C([0, 1], Rn) and Ω = {x(t) Î C, ||x(t)||C < Rg. Define an operator

T : �̄ → C by

Tx(t) =

t∫
0

f (s, x(s), (Kx)(s))ds − (A + B)−1B

1∫
0

f (s, x(s), (Kx)(s))ds, t ∈ [0, 1].(3:3)

Since f is continuous, we see that T is also a continuous map. It is easy to verify that

the operator T is compact by the Arzela-Ascoli theorem. It is sufficient to prove

x 	= λTx for all x ∈ C with ||x||C = R and for all λ ∈ [0, 1]. (3:4)

See that the family of problems

x = λTx,λ ∈ [0, 1] (3:5)

is equivalent to the family of BVPs{
x′ = λf (t, x, (Kx)(t)), t ∈ [0, 1];
Ax(0) + Bx(1) = θ .

(3:6)

Consider function r(t) = ||x(t)||2, t Î [0, 1], where x(t) is a solution of (3.6). By the

product rule we have
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r′(t) = 2〈x(t), x′(t)〉 = 2〈x(t),λf (t, x(t), (Kx)(t))〉, t ∈ [0, 1].

Note that ||B-1A||| ≤ 1 implies

||x(1)|| = ||B−1Ax(0)|| ≤ ||B−1A|| · ||x(0)|| ≤ ||x(0)||.

Let x be a solution of (3.5) with x ∈ �̄. We now show that x ∉ ∂Ω. From (3.2) and

(3.3) we obtain, for each t Î [0, 1] and each l Î [0, 1],

||x(t)|| = ||λTx(t)||

= ||
t∫

0

λf (s, x(s), (Kx)(s))ds − (A + B)−1B

1∫
0

λf (s, x(s), (Kx)(s))ds||

≤ (1 + ||(A + B)−1B||)
1∫

0

λ||f (s, x(s), (Kx)(s))||ds

≤ (1 + ||(A + B)−1B||)
1∫

0

||f (s, x(s), (Kx)(s))||ds

≤ (1 + ||(A + B)−1B||)
1∫

0

[2α〈x, f (s, x(s), (Kx)(s))〉 +M(R)] ds

≤ (1 + ||(A + B)−1B||)
1∫

0

[α
d
ds

(||x(s)||2) +M(R)] dq

≤ (1 + ||(A + B)−1B||)[α(||x(1)||2 − ||x(0)||2) +M(R)]

≤ (1 + ||(A + B)−1B||)M(R).

Then it follows from (3.1) that x ∉ ∂Ω. Thus, (3.4) is true and the proof is

completed.

Corollary 3.1 Let f be a scalar-valued function in (1.1). and assume there exist con-

stants R >0, a ≥ 0 such that

3
2
M(R) < R,

and

|f (t, x, (Kx)(t))| ≤ 2α〈x, f (t, x, (Kx)(t))〉 +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(3:8)

where M(R) is a positive constant depending on R, BR = {x Î ℝn, |x| ≤ R}. Then anti-

periodic boundary value problem{
x′ = f (t, x, (Kx)(t)), t ∈ [0, 1];
x(0) = −x(1),

has at least one solution x Î C[0, 1] with |x(t)| < R, t Î [0, 1].

Proof. Since A = B = 1, we have (A + B)−1 = 1
2, B

-1 A = 1, (1 + ||(A + B)−1B||) = 3
2.

Then the conclusion follows from Lemma 3.1.
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Example 3.1. Let us show that⎧⎨
⎩ x′ = x

1
3 + x3 + 1

20

t∫
0
e−tsx(s)ds + 1

40 cos(2π t),

x(0) = −x(1).
(3:9)

has at least one solution x(t) with |x(t)| <1, ∀t Î [0, 1].

Denoting f (t, x, (Kx)(t)) = x
1
3 + x3 + 1

20

∫ t
0 e

−tsx(s)ds + 1
40 cos(2π t), we see that, for all

(t, x) Î [0, 1] × BR,

|f (t, x, (Kx)(t))| ≤ |x|
1
3 + |x|3 + R

20
+

1
40

.

On the other hand,

2α〈x, f (t, x, (Kx)(t))〉

= 2α(x
4
3 + x4 + x

20

t∫
0

e−tsx(s)ds + x
40 cos(2π t)

= 2x
4
3 + 2x4 + x

10

t∫
0

e−tsx(s)ds + x
20 cos(2π t), for α = 1

≥ 2x

4
3 + 2x4 − R2

10
− R

20
.

Since

min
x∈R

{x
4
3 + 2x4 − |x|

1
3 − |x|3} ≥ −0.4,

we choose

M(R) =
R2

10
+

R
10

+ 0.425.

Then

||f (t, x, (Kx)(t))|| ≤ 2〈x, f (t, x, (Kx)(t))〉 +M(R).

It is not difficult to check that 3
2M(1) < 1. So, the conclusion follows from Corollary

3.1.

Now we modify Theorem 3.1 to include another class of f.

Theorem 3.2. Assume det B ≠ 0 and ||A-1B|| ≤ 1. Suppose there exist constants R

>0, a ≥ 0 such that

(1 + ||(A + B)−1B||)M(R) < R,

and

||f (t, x, (Kx)(t))|| ≤ −2α〈x, f (t, x, (Kx)(t))〉 +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(3:10)

where M(R) is a positive constant depending on R, BR = {x Î ℝn, ||x|| ≤ R}. Then

BVP (1.2) has at least one solution x Î C with ||x||C < R.
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Proof. Note that ||A-1B|| ≤ 1 implies

||x(0)|| = ||A−1Bx(1)|| ≤ ||A−1B|| · ||x(1)|| ≤ ||x(1)||.

Introducing the function r(t) = -||x(t) ||2, t Î [0, 1], where x(t) is a solution of (3.6),

for the rest part of the proof we proceed as in the proof of Theorem 3.1.

Corollary 3.2 Let f be a scalar-valued function in (1.1). If there exist constants R >0,

a ≥ 0 such that

3
2
M(R) < R, (3:11)

and

|f (t, x, (Kx)(t))| ≤ −2α〈x, f (t, x, (Kx)(t))〉 +M(R),

∀λ ∈ [0, 1];∀(t, x) ∈ [0, 1] × BR,
(3:12)

where M(R) is a positive constant dependent on R, BR = {x Î ℝn, |x| ≤ R}. Then anti-

periodic boundary value problem{
x′ = f (t, x, (Kx)(t)), t ∈ [0, 1];
x(0) = −x(1),

has at least one solution x Î C[0, 1] with |x(t)| < R, t Î [0, 1].

Proof. Since A = B = 1, we have (A + B)−1 = 1
2, A

-1 B = 1, (1 + ||(A + B)−1B||) = 3
2.

Then the conclusion follows from Lemma 3.2.

In what follows, we discuss the problem of existence of solutions for (1.2) with f

satisfying

(∗) ||f (t, u, v)|| ≤ p(t)||u|| + q(t)||v|| + r(t), ∀t ∈ [0, 1], ∀(u, v) ∈ Rn × Rn,

where nonnegative functions p, q, r Î L1[0, 1]. We denote ||x|| 1 =
∫ 1
0 | x(t)|dt for any

function x Î L1 [0, 1].

Theorem 3.3. Assume (*) is true and

(1 + ||(A + B)−1B||)(||p|| 1 + K0||q||1) < 1, (3:13)

where K0 = max
0≤s≤t≤1

{ki(t, s), i = 1, 2, . . . ,n}. Then (1.2) has at least one solution.

Proof. Let C = C([0, 1], Rn). Define an operator T : C ® C by

Tx(t) =

t∫
0

f (s, x(s), (Kx)(s))ds − (A + B)−1B

1∫
0

f (s, x(s), (Kx)(s))ds, t ∈ [0, 1].

As we discussed in the proof of Theorem 3.1, T is compact. Taking into account that

the family of BVP (1.2) is equivalent to the family of problem x = Tx, our problem is

reduced to show that T has a least one fixed point. For this purpose, we apply Schae-

fer’s Theorem by showing that all potential solutions of

x = λTx, λ ∈ [0, 1], (3:14)

are bounded a priori, with the bound being independent of l. With this in mind, let

x be a solution of (3.14). Note that x is also a solution of (3.6). We have, for ∀t Î [0,

1] and ∀l [0, 1],
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||x(t)|| = ||λTx(t)||

= ||
t∫

0

λf (s, x(s), (Kx)(s))ds − (A + B)−1B

1∫
0

λf (s, x(s), (Kx)(s))ds||

≤ (1 + ||(A + B)−1B||)
1∫

0

λ||f (s, x(s), (Kx)(s))||ds

≤ (1 + ||(A + B)−1B||)
1∫

0

||f (s, x(s), (Kx)(s))||ds

≤ (1 + ||(A + B)−1B||)
1∫

0

[p(t)||x(s)|| + q(t)||Kx(s)|| + r(s)] ds

≤ (1 + ||(A + B)−1B||)[(||p||1 + K0||q||1)||x||C + ||r||1].

Thus,

||x||C ≤ (1 + ||(A + B)−1B||)[(||p||1 + K0||q||1)||x||C + ||r||1].

It then follows from (3.13) that

||x||C ≤ (1 + ||(A + B)−1B||)||r||1
1 − [(1 + ||(A + B)−1B||)(||p||1 + K0||q||1)]

.

The proof is completed.

Remark 3.1. If A = B = I, then (2.13) reduces to
√
n + 2
2

(||p||1 + K0||q||1) < 1.

We can also extend the discussion to the existence of at least one solution for inte-

gro-differential equations of mixed type with “anti-periodic” conditions.{
x′ = f (t, x, (Kx)(t), (Lx)(t)), t ∈ [0, 1];
x(0) = −x(1).

We omit it here because it is trivial.
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