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Abstract

This article deals with a degenerate parabolic system coupled with general nonlinear
terms. Using the method of regularization and monotone iteration technique, we
obtain the local existence of solutions to the Dirichlet initial boundary value problem.
We also establish the uniqueness of the solution if the reaction terms satisfy the
Lipschitz condition.
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1 Introduction
In this article, we consider the following degenerate parabolic system

u; ,

3utl = Aul" + fi(x, t, up, ua), (x, 1) € Qr, (1.1)
ui(x,t) =0, (x,t) € 92 x (0, T), (1.2)
ui(x, 0) = uip(x), x e, (1.3)

where m; >1,i=1,2, Qr=Q x (0, T), Q is a bounded domain in R with smooth
boundary, fi(x, t,u1,uy) € C(Q x [0, T] x R?) and 0 < ujo € L®(L2) N H)(L).

The coupled equations in (1.1) provide a class of quasilinear degenerate parabolic
systems. Problems of this form arise in a number of areas of science. For instance, in
models for gas or fluid flow in porous media [1-3] and for the spread of certain biolo-
gical populations [4-6]. When m; = m, = 1, the system (1.1) models the Newtonian
fluids, which is couples with Laplace equations. For various initial boundary problems
to this kind system, many articles have been devoted to the existence of the solutions
and blowup properties of the solutions [7-9].

In recent years, degenerate parabolic systems are of particular interests since they
can take into account nonlinear diffusion occurring in the phenomena appearing in
the models, and have been extensively studied by many researchers (see e.g., [3,10-13]
and the references therein). The degeneracy and coupled with nonlinear terms of this
systems cause great difficulties to study them. In this article, we will establish the local
existence and uniqueness results under some special cases for the nonlinear reaction
terms. First, by making use the method of regularization and monotone iteration tech-
nique, we obtain a sequence of approximation solutions. Then a weak solution is
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obtained as the limit of the solutions of such problems. Executing this program one
encounters two difficulties. The first is proving that the approximating problems which
are nondegenerate admits a solution, the second difficulty is to establish uniform
estimates for these solutions. At last, we establish the uniqueness results when the
reaction terms satisfy the Lipschitz condition.

Since the system (1.1) is degenerate whenever u;, u, vanish, there is no classical
solution in general. So we focus our main efforts on the discussion of weak solutions
in the sense of the following.

Definition 1.1. A nonnegative vector-valued function u = (i3, u,) is called to be a
weak solution of the problem (1.1)-(1.3) provided that u;" € L?(0, T; H}(£2)) N L™(Qr),
du;" /ot € L*(Qr), and

0Q; )
// —U; 8(/: + Vu:"'Vgoidxdt—/uio(x)goi(x, 0) dx =/ fi(x, t, uy, up)@idxdt,
Qr Q Qr

for any test function ¢; € C2(Qr) with ¢;|3ax0, 7 = 0, ¢i(x, T) = 0, i = 1, 2. The

above equation also implies

t
d0; |
/ / _— 5‘; + V" Vdxdr + f wi(x, O)gi(x, 1) dx — f io (%) @i (x, 0)dx
0 Q Q Q
t

=/fﬁ(x,t,u1,u2)¢idxdt, ae. te(0,T).
0 Q

Definition 1.2. A function f = fluy, u,) is said to be quasimonotone nondecreasing
(respectively, nonincreasing) if for fixed u; (or u,), f is nondecreasing (respectively,
nonincreasing) in u, (or u;).

Throughout this article, we assume fi(x, t, u;, u,)(i = 1, 2) satisfies the following con-
dition:

(A0) fi(x, t, uy, uy)(i = 1, 2) is quasimonotonically nondecreasing for u;, u,.
(A1) There exists a nonnegative function g(«) € CHR) such that

|fi(x, t,u1,up)| < min{g(u1),g(u2)} forall (x,1) € Qr, uy, ur €RR.

2 Existence and uniqueness
In this section, we show the local existence and uniqueness of weak solutions of (1.1)-
(1.3). First, we show the local existence results.

Theorem 2.1. Assume (A0), (Al) hold, then there exists a constant T, € [0, T| such
that (1.1)-(1.3) admits a solution (uy, u,) in Qr,.

Proof. Due to the degeneracy of the system (1.1), we consider the following regular-
ized problem

ou;
8utl = div((ma" ™" + &) Vi) + fie (%, t, Uy, t2), (xt) € Qr, (2.1)

ui(x,t) = 0, (x,t) € 92 x (0, T), (2.2)
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ui(x, 0) = uipe (x), x €, (2.3)

where fi, € C'(Q x [0,T] x R?); fic — f; uniformly on bounded subsets of
Q x [0, T] x [RZ, and f;, satisfies the assumptions (AO0), (A1), uip(x) € C3(R2),
Ui, — U, Uy — Uy, strongly in W2 (2) as & — 0.

Now we w111 prove that the regularized problem (2.1)-(2.3) admits a classical solu-

tion. Construct a sequence {(u(k) ))};:01 from the following iteration process

le “2s
W (1) ymi1 (k) (k1) (1) (2.4)
ar div((mi(u; )" +&)Vu; ') = fie(x, tuy, " up, ), (x,t) € Qr, \=
u®(x,1) =0, (x,1) € 32 x (0, T), (2.5)
(k) 2.6
Uige (%, 0) = tioe (x), xeQ, (2.6)

with a suitable initial value (u(o) )) i = 1, 2. By classical results in [14], the pro-

u2£
blem (2.4)-(2.6) admits a classical solution (”1 k)) for fixed k and ¢ when
(u(k 1) (k 1)) is smooth. The choice of the initial iteration value which will be

obtained by the quasimonotone property of (f}, f2) would be crucial to ensure that the
above sequence converges to a solution of the generalized problem.

Let (Hio)(xr t),y(zo)(x, 1) = (igf{ulos(x)},igf{uzog(x)}), and (1!(11)/1!;1)) be a classical

solution of the following problem

8y(1)
(,;t — div((mi(M)" "+ £)VuM) = fir (v, 1,0, u), (x,1) € Qr,
i i le 2
uM(x, 1) =0, (x,t) € Q2 x (0, T),
1€
uM(x, 0) = ujge (x) > ul®(x), x € Q.
i0e ie

By the comparison theorem [15], we have

U > 40 (1) > 0
le le 2¢ 2¢

Then the quasimonotone nondecreasing property of f;, shows that
fls(x/ L, H(l), y(l)) Efls(x, L, H(O), y(l)) Zfls(xl tl lé(o)/ lil(O))/
le 2¢e le 2¢e le 2¢e

Foe (et uM, uMy > o (3, 6, u®, ) > foo (1, u®, ul®).
le 2¢e le 2¢e le 2¢e

Then we can also obtain a classical solution (11(2)/ 1!(2)) from (2.4)-(2.6) when k = 2,

2 1) 02 1
and u(1 ) > u(1 ) ug ) > ug ) So we can obtain a nondecreasing sequence
& & & &

u©® <4 < 4@ <<y <
ie Tie Tie Tie

With the similar method, by setting (“18 (x, 1), “(O) (x,1)) = (SSP{“IOS ()}, SQUP{“Zos (x)}),

we obtain a classical solution (u(ll), uzl)) of the following problem
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=(1)

Uu; . _ m;—1 _
F—div(mi(@M)" +e)Va) = fu (ot 10, 1), (6 0) € Qr,

il (x, 1) =0, (x,t) € 92 x (0, T),
i) (x, 0) = e (x) < 1) (x), reQ

and

i) < ah) <),

And the quasimonotone nondecreasing property of f;, also shows that

-(£)>u()>a§j)2...zﬁg€)z...

Now we show

u® <u® <u® <<u® <y <l <@l <<l <al) <al). 27)
1€ 1€ 1€ 1€ 1€

-(0
It is obvious that IJFO) < “Ea ). Assume that U@ = U@, we just need to prove that
1€ 1€

e
le) = LJQM). Since f;, is quasimonotone nondecreasing, we have
[t 1€
k
froCo tu®, u®) < fro (0052, u) < fre (o, )

fze(xtu( u®) < foe e 1, )ugs))<f28(xtus?, ).

From the iteration equations

ay(k+1)

b dv(Om(u® )™ )Vl D) = £ u®,u), (x.1) € Qr,

oL i i
o) di (1)1 _(Je+1) (k) Z ()

o~ dv((mi@7) ) Vi) = fie(x 4 ), (41) € Qry
u(k+1)(x t)=0=a"" 1), (x,1) € 92 x (0,T),
u(k"l)(x 0) = uioe (x) = u(k+1)(x, 0), xeQ,

O¢

and the comparison theorem, we have EQM) = HF}M). Further we can obtain (2.7).
1€ 1€

Let (u(ll?, U5, ) (y(lk), u(zk)), then {(“(1?' uy ))}Zol is a nondecreasing bounded sequence.

Then there exist functions u;, (i = 1, 2) such that

lim u( ) - =1u,, ae in Q. (2.8)
ke— o0
The continuity of function f;, (i = 1, 2) also shows that
lim £ ® 0y _ ¢ :
klm fie(x t,uy,  uy. ) = fie(x, t,ure, uge), ae. in Qr. (2.9)

Therefore, we claim that there exist 77 € (0, 7] and a positive constant M (indepen-
dent of ¢ and k), such that for all %,

uPlixor) <M, i=1,2, (2.10)
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Let v (t) be the solutions of the ordinary differential equations

dvf (1)

a +g(vy), vf(O) = Flujolr~(@)y, i=1,2.

The results in [16] show that there exists T} € (0,T), i = 1, 2, such that vl?t (t) exists

on [0, T} ] with T} depends only on |uio|=(g). By the comparison theorem, we have

uff)(x, t)‘ < max{v; (t), —v; ()}, i=1,2.
Then by setting T; = mln{T* T3} and M = max{v{ (T1), —v; (T1)}, we obtain (2.10).
Now we show that (uff))’"i ¥ sugf) —~ Ul 4 eu;; in L?(0, Ty; HY (),
(u(k))'”1 - (uj;, )t, wt — uje in L2(Qr,) as k — o, where — stands for weak

convergence.

Multiplying (2.4) by (ul(f))m" + gul(f) and integrating over Qr, = 2 x (0, T1), we have

(i)
i 8 i 2
/ / ()" veull |7 e Qe dx + / / V@™ +evul’| dude

Qr, Qr,

[ sl () s eul] e

Qr,
that is

: 2
f/ ’V(ug))m +8Vul(f)’ dxdt

Qr,

= f/ﬁs(x, t u§’§ by ugz ) [(uf?) +8u(k)] dxdt

Qrn,

o )™~ (o)™
Q
0w m) - (©w0) ] o
Q

Then by (2.10) and the property of f;. , we have

//‘V(u(k) +8Vu

Qr,

(2.11)

where C is a constant independent of k, e.
S a )\ ™ Q) . . )
Multiplying (2.4) by 5 [(uie ) + el ] and integrating over Qr, by Young’s

inequality we have
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dxdt

m;
(k)a (k)
0
[t dxdm//]
ot

Qr, Qry
T
= / / V(u(k) + eVu
0

oy
f fe (e 1, ulD, WD) 5, dude

QJ[
/ fielx, 1, a0 00 ”) v dxdt

/at/) (u(k) +eVuy,
Qr,

a( )(m,+1)/2

2m; (=) Gy () (mi=1)/2 9\ Ui

+mi+1/ fie (x, t, uy, 2; )(ui;> ar dxdt
QTl

(k)
/‘V 1(;5 +8V”10£

(k=1) (k=1 k=1) _ (k=1 ky|™—t
| R e R T ) O T S P B
Qn, Qr,

(m1+1) //

Noticing that the first term of the left side of the above inequality can be rewritten as

f/ au(k) 8(u(k) ded /f ‘ (k) (mi+1)/2 2
(ml + 1) at

Qr,

f itV ) ™ 4 dxdt
Qry

/‘V (k)(x, T) )ML +5Vug‘)(x, Tl)‘zdx

(k)
(m+1)/2|2
ot ”‘) dxdt.

dxdzt.

Then we have

o [
(m,+1)/2

/ / (") dudt + (e — & dxdt

(m, + 1) at
Qr,
/ V()" evuly] / e ) e
Qrn,
. mi—1
+"21’ / / 2(x, 1,0ty dxd.

Qr,

Therefore

Il al

(mi+1)/2|2
” "‘) " dxdt < C.
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Furthermore, we can obtain

][y s 20 ff e

Qr,

[l st

Qr,

= ’

(k))(mﬁl)/Z 2
8t

(2.12)
dxdt <C.

Following (2.8), (2.9), (2.12) and the uniqueness of the weak limits, it is easy to know
that, as k — o,

(k) — Uig, fie (%, L, u(l?,u(z?) — fie(%, t, u1e, Uzs), ae. in Qr, (2.13)
(k) (k)™
ou, 8u,g A (u;, ) uy . )
, , L , (2.14)
ot at ot ar M L7(Qr)

where — stands for weak convergence, i = 1, 2. Furthermore (2.11) implies that there
exists v; € L2(Qr,), $ = 1, .., 1, such that

o (G s )
— v ae in L*Qr).

0Xs
Hence,
// uw - vVidxdt — /uiog(x)goi(x, 0) dx = //ﬁ(x, {, Ule, Uge )i dth,(2_15)
Qr, Qr,

where v = (vy, ..., v,), ¢; € C2(Qr, ) with @ilaax(or) =0, ¢ix, T1) = 0,i =1, 2.
Now for any ¢; given as before, we show

/f (k) 'y eu(k)) Vi dxdt = f/ vVeidxdt, ask — oo. (2.16)
Qr, Qn

For any w € L*(0, T1; Hy(2)), ¢ € CY(Qr,), 0 < C < 1, &loex(o,r) =0 with {(x, T;) =
0, multiplying (2.4) by ¢ (( (k)> + su( )) and integrating over Qr,, we have

[ el (ur)" )

Qr,
f / ()" + eu®) e 1, ) i
Qr,

1 mi+1

+/€(x,0) (mﬁ 1(uf§3) ( ufo)) ) (2.17)
Wy ®

//( ot O U

/ f @™+ eul) v ()" +eul) Vi dxd

Qr,
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Notice that

// ¢ ’V ((ul(f))mi + 8145?) lzdxdt

Qry
// ¢V (u(k) +su(k)) Vwdxdt — // {VwV (u(k)) i +8ul(gk) — w) dxdt

QT1 QT1

// cv ( (™ +eull) — w) v ((ufie))mi +eull) — w) dxdt > 0,

Qrn,

from (2.17), we get

// 15 "+ su(k))f,(x tu (k R ugz 1))dxdt
Qr,
mi+1 £ 2
. / e o) (6" S0l e
(1)) mel 1o
//(m+1( -0 ) s
// k) ml h)) \Y% ((ui(ph))ml + auE?) V¢ dxde

Qr,
/ e V (k)) + eu(k))) Vwdxdt — / tVwV ( (k)) + eugz) - w) dxdt > 0.
Qr, Qr,

Letting k — oo, then

// C((wie)™ + euie)fi(x, t, u1e, uze )i dxdt

Qr,
mi+1
/{(x,O)( 0e 4 2”?03) dx
1+1
// ( 15) gt dxdt - // (u + €uig)UV§ dxdt
m; + 1

—// Zv Vwdxdt — / ;VwV(u;;" + euje — w) dxdt > 0.
Qr, Qr,

(2.18)

Set ¢; = ¢ (u},' + euie) in (2.15), we obtain

/ Z (u;:I + Suif)fi(x/ L Uig, u25) dxdt

Qr,
um,+1 m1+1
i0e
+/§(x,0) (mi+ 105) dx+// <m1+1 ) ¢ dxdt
Q

- // (ug' + euie)v VE dxde + / CvV (u; + suie ) dxdt.

Qr, Qr,
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Substituting the above equation into (2.18), we get

/ (v — Vw)V(ul +eujp —w)dxdt > 0.
Qr,

(2.19)

Taking w = ul':‘ + &Uje — 8¢;, 0 = 0 in (2.19) and then let 6 — 0, we obtain

/ (v —V(u +eui))Ve;dxdt > 0,
Qr,

where ¢; € C1(Qr,) with @ilsex(o,1,) = 0. Obviously, if we let 6 < 0, we can get the
inverted inequality. So we can obtain (2.16) by choosing suitable {, s.t. supp¢; € supp{
and { = 1 on supp@;.

In summary, we have proved that u, = (uy,, u,,) is a weak solution of (2.1)-(2.3).

Now, we will prove that the limit of u, = (uy,, u,,) is a weak solution of (1.1)-(1.3).
Since u, = (uy,, u,,) satisfies similar estimates as (2.10)-(2.12), combining the property
of f;,, we know that there are functions ;" € L?(0, T1; H}(2)), uir, uy' € L*(Qr,), i = 1,
2, such that for some subsequence of (u;,, u,.), denoted by itself for simplicity, when ¢
-0

Uie = Ui, fie (%, t, U1e, t2e) — fi(x, 6 U, u2), ae in Qp,
e du; du, oul
—_ —_

T in I? .
ot ot ot ot m (Qr.)

’

Then a similar argument as above shows that u = (u;, u,) is a weak solution of (1.1)-
(1.3). ©

The following is the uniqueness result to the solution of the system.

Theorem 2.2. Assume that f = (f}, f5) is Lipschitz continuous in (u,, u,), then (1.1)-
(1.3) has a unique solution.

Proof. Assume that u = (uy, u,), v = (v}, vy) are two solutions of (1.1)-(1.3). Form
Definition 1, we see that

t
//—ui 8;: +Vu "V, dxdt+/ui(x, t)ei(x, t)dx — /uio(x)goi(x, 0)dx

0 Q Q Q

t (2.20)
=//ﬁ(x,t,u1,u2)¢idxdt, ae. te(0,T).
0 Q
\ d
//—vi a(ii + V"V, dxdt+/vi(x, ei(x, t) dx — /vio(x)gai(x, 0)dx
0 Q Q Q (2.21)

t
=//ﬁ(x,t,v1,v2)<pidxdt, ae t€(0,T).
0 Q

Page 9 of 11
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Subtracting the two equations, we get

[ it = e 0 ax
Q

¢ ¢ (2.22)
=//(ui—Ui)((p,»t+<D(x,s)A<pi)dxds+//(fi(x, tur, up) — fi(x, t,v1, v2))e; dxds,
0 Q 0 Q

where

1
P(x,5) = /m,-(&ui +(1=0),)™ 'de.
0

Since (41, u,) and (v, v4) are bounded on Q,, it follows from m >1, ®(x, s) is a
bounded nonnegative function. Thus, appropriate test function ¢; may be chosen
exactly as in [[17], pp. 118-123] and combined with the Lipschitz continuity of f; to
obtain

t

/ lui(x, t) — vi(x, t)|dx < C// luy — v1] + |up — vpldxds, i=1,2.
Q

0 Q

where C >0 is a bounded constant. Further, we have

t

f [ug(x, t) — v1(x, 8)] + Jua(x, ) — va(x, t)|dx < Cf / |up — vq| + |up — vo|dxds.
Q Q

0

Combined with the Gronwall’s lemma, we see that u; = v;, i = 1, 2. The proof is com-
pleted. ©
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