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We will give the generalization of a recently developed functional-analytic method for
studying linear and nonlinear, ordinary and partial, difference equations in the �1p and �2p
spaces, p ∈N, p ≥ 1. The method will be illustrated by use of two examples concerning a
nonlinear ordinary difference equation known as the Putnam equation, and a linear par-
tial difference equation of three variables describing the discrete Newton law of cooling
in three dimensions.

1. Introduction

The aim of this paper is to present the generalization of a functional-analytic method,
which was recently developed for the study of linear and nonlinear difference equations
of one, two, three, and four variables in the Hilbert space

�2p =
{
f
(
i1, . . . , ip

)
:Np −→C :

∞∑
i1=1
···

∞∑
ip=1

∣∣ f (i1, . . . , ip)∣∣2 < +∞
}

(1.1)

and the Banach space

�1p =
{
f
(
i1, . . . , ip

)
:Np −→C :

∞∑
i1=1
···

∞∑
ip=1

∣∣ f (i1, . . . , ip)∣∣ < +∞
}
, (1.2)

where Np =N×···×N︸ ︷︷ ︸
p-times

and p = 1,2,3,4.

More precisely, this method was introduced for the first time by Ifantis in [5] for
the study of linear and nonlinear ordinary difference equations. Later, this method was
extended by the authors in [7, 9, 10] in order to study a class of nonlinear ordinary
difference equations more general than the one studied in [5]. For the study of linear and
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nonlinear partial difference equations of two variables, we developed a similar functional-
analytic method in [11, 12], which was extended in [8] in order to study partial difference
equations of three and four variables.

The aim of this paper is to present the generalization of this functional-analytic
method for the study of linear and nonlinear partial difference equations of p variables
in the Hilbert space �2p, defined by (1.1), and the Banach space �1p, defined by (1.2), re-
spectively, with p ∈ N, p ≥ 1. The motivation for seeking solutions of partial difference
equations in the spaces �2p and �1p arises from various problems of mathematics, physics,
and biology, such as probability problems, problems concerning integral equations, gen-
erating analytic functions, Laurent or z-transforms, numerical schemes, boundary value
problems of partial differential equations, problems of quantum mechanics, and prob-
lems of population dynamics and epidemiology (for more details, see [11] and the refer-
ences therein). Also, by assuring the existence of a solution of a difference equation in the
space �2p or �

1
p, we obtain information regarding the asymptotic behavior of the unknown

sequence for initial conditions which are in general complex numbers.
We would like, at this point, to give an outline of the functional-analytic method that

we will present in details in Section 2. (For a sketch of the main ideas used in the proofs
of our main results, see the beginning of Section 3.) By use of this method, the linear
or nonlinear difference equation under consideration is transformed equivalently into a
linear or nonlinear operator equation defined in an abstract Hilbert space H or Banach
space H1, respectively. In this way, we can use various results (e.g., fixed point theorems)
from the wealth of operator theory, in order to assure the existence of a unique solution
of the operator equation in H or H1. In the case of linear equations, we use the following
classical result of operator theory [4, pages 70–71].

Theorem 1.1. Let T be a linear, bounded operator of the Hilbert space H with ‖T‖ < 1.
Then the inverse of I − T exists on H and is uniquely determined and bounded by ‖(I −
T)−1‖ ≤ 1/(1−‖T‖).

In the case of nonlinear equations, we use the following fixed point theorem of Earle
and Hamilton [3].

Theorem 1.2. LetX be a bounded, connected, and open subset of a Banach space B. Further,
let g : X → g(X) be holomorphic, that is, its Fréchet derivative exists and g(X) lies strictly
inside X . Then g has a unique fixed point in X . (By saying that a subset X ′ of X lies strictly
inside X , we mean that there exists ε > 0 such that ‖x′ − y‖ > ε for all x′ ∈ X ′ and y ∈
B−X .)

For both linear and nonlinear difference equations, we obtain, by use of our method,
a bound of the solution of the difference equation under consideration. Moreover, in the
case of nonlinear difference equations, we use a constructive technique, which allows us to
obtain a region, depending on the initial conditions and the parameters of the equations,
where the solution of the difference equation under consideration holds.

We illustrate our method in Section 3 by applying it to two difference equations which
arise from a mathematical problem (the Putnam equation) and a physical problem con-
cerning the discrete Newton law of cooling in three dimensions.
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2. The functional-analytic method

We denote by H an abstract separable Hilbert space with orthonormal base {ei1,...,ip},
i1, . . . , ip = 1,2, . . . , and elements u∈H which have the form

u=
∞∑

i1=1
···

∞∑
ip=1

(
u,ei1,...,ip

)
ei1,...,ip , (2.1)

with norm ‖u‖2 =∑∞
i1=1 ···

∑∞
ip=1 |(u,ei1,...,ip)|2. Also, by H1 we mean the Banach space

consisting of those elements u∈H which satisfy the condition

∞∑
i1=1
···

∞∑
ip=1

∣∣(u,ei1,...,ip)∣∣ < +∞. (2.2)

The norm inH1 is denoted by ‖u‖1 =
∑∞

i1=1 ···
∑∞

ip=1 |(u,ei1,...,ip)|. By u(i1, . . . , ip) wemean

an element of l2p or l
1
p, and by u =∑∞

i1=1 ···
∑∞

ip=1(u,ei1,...,ip)ei1,...,ip we mean that element
of H or H1 generated by u(i1, . . . , ip).

Finally, we define in H the shift operators Vj , j = 1, . . . , p, as follows:

Vjei1,...,i j ,...,ip = ei1,...,i j+1,...,ip . (2.3)

It can be easily seen that their adjoint operators are

V∗
j ei1,...,i j ,...,ip = ei1,...,i j−1,...,ip , i j = 2,3, . . . , V∗

j ei1,...,1,...,ip = 0, (2.4)

and that

∥∥V∗
j

∥∥= ∥∥Vj

∥∥= ∥∥V∗
j

∥∥
1 =

∥∥Vj

∥∥
1 = 1, j = 1, . . . , p. (2.5)

The following proposition is of fundamental importance in our approach.

Proposition 2.1. The function

φ :H −→ l2p, φ(u)= (u,ei1,...,ip)= u
(
i1, . . . , ip

)
, (2.6)

is an isomorphism from H onto l2p.

Proof. We begin by showing that the mapping defined by (2.6) is well defined. Indeed,
since u∈H , we have

∥∥u(i1, . . . , ip)∥∥2l2p =
∞∑

i1=1
···

∞∑
ip=1

∣∣u(i1, . . . , ip)∣∣2

=
∞∑

i1=1
···

∞∑
ip=1

∣∣(u,ei1,...,ip)∣∣2
= ‖u‖2 < +∞.

(2.7)
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By use of the properties of an inner product, it is obvious that φ is linear. Also, φ is a
one-to-one mapping onto l2p. Indeed, if u∈H , v ∈H with φ(u)= φ(v), then

(
u− v,ei1,...,ip

)= 0⇐⇒ u= v, (2.8)

because ei1,...,ip is an orthonormal base of H .
Furthermore, if α(i1, . . . , ip)∈ l2p, then there exists u∈H such that φ(u)= α(i1, . . . , ip).

This u is given by

u=
∞∑

i1=1
···

∞∑
ip=1

α
(
i1, . . . , ip

)
ei1,...,ip , (2.9)

and it belongs to H since

‖u‖2 =
∞∑

i1=1
···

∞∑
ip=1

∣∣α(i1, . . . , ip)∣∣2 = ∥∥α(i1, . . . , ip)∥∥2l2p < +∞. (2.10)

Finally, the mapping φ preserves the norm since

∥∥φ(u)∥∥2 = ∞∑
i1=1
···

∞∑
ip=1

∣∣u(i1, . . . , ip)∣∣2 = ∞∑
i1=1
···

∞∑
ip=1

∣∣(u,ei1,...,ip)∣∣2 = ‖u‖2. (2.11)

Thus, the mapping φ defined by (2.6) is an isomorphism from H onto l2p. �

In a similar way, the following proposition can also be proved.

Proposition 2.2. The function

φ :H −→ l1p, φ(u)= (u,ei1,...,ip)= u
(
i1, . . . , ip

)
, (2.12)

is an isomorphism from H onto l1p.

We call the element u, defined by (2.6) or (2.12), the abstract form of u(i1, . . . , ip) in H
or H1, respectively. In general, if G is a mapping in l2p(l

1
p) and N is a mapping in H(H1),

we call N(u) the abstract form of G(u(i1, . . . , ip)) if

G
(
u
(
i1, . . . , ip

))= (N(u),ei1,...,ip
)
. (2.13)

3. Illustrative examples

In this section, we will illustrate our method using two characteristic examples of dif-
ference equations arising in a problem of mathematics and a problem of physics. More
precisely, we will establish conditions so that the difference equations under considera-
tion have a unique bounded solution in l1p or l

2
p. Such kind of solutions is extremely useful

not only from a mathematical point of view, but also from an applied point of view (see
Remarks 3.2 and 3.4).
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We would like now to give the main ideas used in the proofs of our results. First,
using (2.6) or (2.12), we transform the linear or nonlinear difference equation under
consideration into an equivalent linear or nonlinear operator equation in an abstract
separable Hilbert H or Banach H1 space. Then, after some manipulations, we bring the
linear operator equation into the form

(I −T)u= f , (3.1)

where u∈H is the unknown variable, f a known element of H , and T :H →H a known
linear operator. At this point, we impose conditions so that ‖T‖ < 1, in order to apply
Theorem 1.1 to the preceding operator equation and obtain information for the initial
linear difference equation under consideration.

In the case of nonlinear equations, we do some manipulation in order to write the
operator equation in the form

u= g(u), (3.2)

where u ∈H is the unknown variable and g : X ⊂H1 → g(X) a known nonlinear map-
ping. Usually, g(u) has the form

g(u)= h+φ(u), (3.3)

where h is a known element of H1 depending on the initial conditions and the nonho-
mogeneous term (if any) of the initial nonlinear difference equation, and φ :H1 →H1 is
a known nonlinear mapping. At this point, we impose conditions on ‖h‖1 in order to
apply the fixed point Theorem 1.2 to equation u = g(u) and obtain information for the
initial nonlinear difference equation under consideration.

3.1. The Putnam equation. Consider the nonlinear, homogeneous, ordinary difference
equation

f (i+3)+ f (i+2)= f (i+4) f (i+3) f (i+2)+ f (i+4) f (i+1)

+ f (i+4) f (i)− f (i+1) f (i), i= 1,2, . . . .
(3.4)

Equation (3.4) appeared in a problem given in the 25th William Lowell Putnam Math-
ematical Competition, held on December 5, 1964 (see [1]). This problem is as follows
[1]:

“Let pn, n= 1,2, . . . , be a bounded sequence of integers, which satisfies the recursion

pn = pn−1 + pn−2 + pn−3pn−4
pn−1pn−2 + pn−3 + pn−4

. (3.5)

Show that the sequence eventually becomes periodic.”
As mentioned in [1], the solution of this problem is independent of the recurrence

relation that the sequence pn satisfies, as long as pn is bounded. In the years that passed, it
turned out that (3.5) is quite attractive from a mathematical point of view. In this paper,
we will prove the following result.
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Result 3.1. The Putnam equation (3.4) has a unique bounded solution in �11 + {1} if
∣∣ f (1)− 1

∣∣+∣∣ f (2)− 1
∣∣+∣∣ f (3)− 1

∣∣+∣∣ f (4)− 1
∣∣ < 0.120227, (3.6)

which satisfies

∣∣ f (i)∣∣ < 1.236068, (3.7)

where the initial conditions f (1), f (2), f (3), and f (4) are in general complex numbers.

Remark 3.2. (a) It is obvious from the preceding result that the solution of the Putnam
equation (3.4) tends to 1 if (3.6) holds. Thus, 1 is a locally asymptotically stable equilib-
rium point of (3.4) if (3.6) holds.

(b) In [6], it was proved, among other things, that the equilibrium point 1 of (3.4) is
globally asymptotically stable for positive initial conditions.

Proof of Result 3.1. Equation (3.4) is a nonlinear ordinary difference equation, that is, a
difference equation of p = 1 variable. As a consequence, we will work in the Banach space
�11 and the isomorphic abstract Banach space H1 with orthonormal base {ei}, i= 1,2, . . . .
(For reasons of simplicity, we will use the symbol i instead of the symbol i1.)

First of all, we mention that ρ = 1 is an equilibrium point of (3.4) and we set f (i) =
u(i) + ρ. Then (3.4) becomes

(
ρ2 + 2ρ

)
u(i+4)+

(
ρ2− 1

)
u(i+3)+

(
ρ2− 1

)
u(i+2)

=−u(i+4)u(i+1)−u(i+4)u(i+3)u(i+2)−u(i+4)u(i)

+u(i+1)u(i)− ρu(i+4)u(i+3)− ρu(i+4)u(i+2)− ρu(i+3)u(i+2).

(3.8)

Using (2.12), we find the abstract forms of all the terms involved in (3.8). More precisely,
we have

u(i+ k)= (u,ei+k)= (u,Vk
1 ei
)= ((V∗

1

)k
u,ei

)
, k = 2,3,4,

u(i+m)u(i+n)= (u,ei+m)(u,ei+n)ei =Nmn(u), m,n= 0,1,2,3,4,

u(i+4)u(i+3)u(i+2)= (u,ei+4)(u,ei+3)(u,ei+2)ei =N2(u).

(3.9)

Moreover, we can prove that the nonlinear operators Nmn(u), N2(u) are Frechét-differen-
tiable in H1. Thus, the abstract form of (3.8) in H1 is

(
ρ2 + 2ρ

)(
V∗
1

)4
u+

(
ρ2− 1

)(
V∗
1

)3
u+

(
ρ2− 1

)(
V∗
1

)2
u

=−N41(u)−N2(u)−N40(u) +N10(u)− ρN43(u)− ρN42(u)− ρN32(u)=⇒
(
V∗
1

)4
u

=−1
3
N41(u)− 1

3
N2(u)− 1

3
N40(u) +

1
3
N10(u)− 1

3
N43(u)− 1

3
N42(u)− 1

3
N32(u)

(3.10)
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or, due to the fact that V∗e1 = 0,

u= g(u)

= u(1)e1 +u(2)e2 +u(3)e3 +u(4)e4

− 1
3
V 4[N41(u) +N2(u) +N40(u)−N10(u) +N43(u) +N42(u) +N32(u)

]
.

(3.11)

From the preceding equation we obtain, taking the norm of both parts in H1,

‖u‖1 =
∥∥g(u)∥∥1

≤ ∣∣u(1)∣∣+∣∣u(2)∣∣+∣∣u(3)∣∣+∣∣u(4)∣∣
+
1
3

[∥∥N41(u)
∥∥
1 +
∥∥N2(u)

∥∥
1 +
∥∥N40(u)

∥∥
1 +
∥∥N10(u)

∥∥
1

+
∥∥N43(u)

∥∥
1 +
∥∥N42(u)

∥∥
1 +
∥∥N32(u)

∥∥
1

]=⇒ ‖u‖1
≤ ∣∣u(1)∣∣+∣∣u(2)∣∣+∣∣u(3)∣∣+∣∣u(4)∣∣+ 1

3

(‖u‖31 + 6‖u‖21
)
.

(3.12)

Let ‖u‖1 ≤ R, R sufficiently large but finite. Then, from (3.12), we have

‖u‖1 ≤
∣∣u(1)∣∣+∣∣u(2)∣∣+∣∣u(3)∣∣+∣∣u(4)∣∣+ 1

3
R3 + 2R2. (3.13)

Let P(R)= R− 2R2− (1/3)R3. This function has a maximum at R0 =
√
5− 2∼= 0.236068,

which is P0 ∼= 0.120227. Thus, for R= R0, we find that if

∣∣u(1)∣∣+∣∣u(2)∣∣+∣∣u(3)∣∣+∣∣u(4)∣∣≤ P0− ε, ε > 0, (3.14)

then

∥∥g(u)∥∥1 ≤ R0− ε < R0, (3.15)

for ‖u‖1 < R0. This means that for

∣∣u(1)∣∣+∣∣u(2)∣∣+∣∣u(3)∣∣+∣∣u(4)∣∣ < P0, (3.16)

g is a holomorphic mapping fromX = B(0,R0)= {u∈H1 : ‖u‖1 < R0} strictly inside X =
B(0,R0). Indeed, it is obvious that g(X)⊆ X . Moreover, g(X) lies strictly inside X , since if
w ∈H1−X ⇒‖w‖1 ≥ R0 and w′ ∈ g(X), that is, there exists an f ∈ X ⇒‖ f ‖1 < R0 such
that g( f ) = w′, then we find easily that ‖w−w′‖ ≥ ε > ε/2 = ε1. As a consequence, the
fixed point theorem of Earle and Hamilton can be applied to (3.11). Thus, for

∣∣u(1)∣∣+∣∣u(2)∣∣+∣∣u(3)∣∣+∣∣u(4)∣∣ < P0, (3.17)
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(3.11) has a unique solution in H1 bounded by R0. Equivalently, this means that if (3.17)
holds, then the difference equation (3.8) has a unique solution in �11 bounded by R0. As
a consequence, if (3.6) holds, (3.4) has a unique solution in �11 + {1} bounded by 1+R0.

�

3.2. A linear difference equation of three variables describing the discrete Newton law
of cooling. Consider the linear, homogeneous, partial difference equation

u(i, j,n+1)+
[
4r(i, j,n)− 1

]
u(i, j,n)− r(i, j,n)u(i− 1, j,n)

− r(i, j,n)u(i+1, j,n)− r(i, j,n)u(i, j− 1,n)− r(i, j,n)u(i, j +1,n)= 0,
(3.18)

where i, j,n = 1,2, . . . , and r(i, j,n) is a known sequence. Equation (3.18) describes the
discrete Newton law of cooling in three dimensions. More precisely, the physical problem
that (3.18) describes is the following.

Consider the distribution of heat through a “very long” (so long that it can be labelled
by the set of integers) nonuniform thin plate. Let u(i, j,n) be the temperature of the plate
at the position (i, j) and time n. At time n, if the temperature u(i− 1, j,n) is higher than
u(i, j,n), heat will flow from the point (i− 1, j) to (i, j) at a rate r(i, j,n). Similarly, heat
will flow from the point (i+1, j) to (i, j) at the same rate, r(i, j,n). Thus, the total effect
will be

u(i, j,n+1)−u(i, j,n)= r(i, j,n)
[
u(i− 1, j,n)− 2u(i, j,n) +u(i+1, j,n)

]
+ r(i, j,n)

[
u(i, j− 1,n)− 2u(i, j,n) +u(i, j +1,n)

]
,

(3.19)

which is essentially (3.18). For (3.18), bounded and/or positive solutions of (3.18) are of
interest (see [2]). In this paper, we will prove the following result.

Result 3.3. (a) Let

sup
i, j,n

∣∣∣∣ 1
4r(i, j,n)− 1

∣∣∣∣ < +∞, (3.20)

sup
i, j,n

∣∣∣∣ 1
4r(i, j,n)− 1

∣∣∣∣
[
1+4sup

i, j,n

∣∣r(i, j,n)∣∣] < 1. (3.21)

Then the unique solution of (3.18) in �23 is the zero solution.
(b) Let

sup
i, j,n

∣∣4r(i, j,n)− 1
∣∣+4sup

i, j,n

∣∣r(i, j,n)∣∣ < 1. (3.22)
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Then (3.18) has a unique bounded solution in �23 , which satisfies

∣∣u(i, j,n)∣∣≤
∥∥u(i, j,1)∥∥�2

N2

1− supi, j,n
∣∣4r(i, j,n)− 1

∣∣− 4supi, j,n
∣∣r(i, j,n)∣∣ , (3.23)

provided that the initial conditions u(i, j,1) (which are in general complex) belong to �22 .

Proof of Result 3.3. Equation (3.18) is a linear partial difference equation of p = 3 vari-
ables. As a consequence, we will work in the Hilbert space �23 and the isomorphic abstract
Hilbert spaceH with orthonormal base {ei, j,n}, i, j,n= 1,2, . . . . (For reasons of simplicity,
we will use the symbols i, j, and n instead of the symbols i1, i2, and i3, respectively.)

Using (2.6), we find the abstract forms of all the terms involved in (3.18). More pre-
cisely, we have

u(i+1, j,n)= (u,ei+1, j,n)= (u,V1ei, j,n
)= (V∗

1 u,ei, j,n
)
,

u(i, j +1,n)= (u,ei, j+1,n)= (u,V2ei, j,n
)= (V∗

2 u,ei, j,n
)
,

u(i, j,n+1)= (u,ei, j,n+1)= (u,V3ei, j,n
)= (V∗

3 u,ei, j,n
)
,

u(i− 1, j,n)= (u,ei−1, j,n)= (u,V∗
1 ei, j,n

)= (V1u,ei, j,n
)
,

u(i, j− 1,n)= (u,ei, j−1,n)= (u,V∗
2 ei, j,n

)= (V2u,ei, j,n
)
,

b(i, j,n)u(i, j,n)= (Bu,ei, j,n),

(3.24)

where B is the diagonal operator Bei, j,n = b(i, j,n)ei, j,n for a sequence b(i, j,n). Thus, the
abstract form of (3.18) in H is

V∗
3 u+R1u−RV1u−RV∗

1 u−RV2u−RV∗
2 u= 0, (3.25)

where R, R1 are the diagonal operators

Rei, j,n = r(i, j,n)ei, j,n, R1ei, j,n =
[
4r(i, j,n)− 1

]
ei, j,n, i, j,n≥ 1. (3.26)

(a) Due to (3.20), (3.25) is rewritten as follows:

(I −T)u= 0, (3.27)

where T = −R−11 V∗
3 + R−11 RV1 + R−11 RV∗

1 + R−11 RV2 + R−11 RV∗
2 . But ‖T‖ ≤ ‖R−11 ‖(1 +

4‖R‖) < 1 due to (3.21). Thus, according to Theorem 1.1, the inverse of I −T exists and is
a linear bounded operator inH . Thus, the unique solution of (3.27) inH is the zero solu-
tion. Equivalently, this means that the unique solution of (3.18) in �23 is the zero solution.

(b) Since V∗
3 ei, j,1 = 0, (3.25) is written as follows:

(I −T)u=
∞∑
i=1

∞∑
j=1

u(i, j,1)ei, j,1, (3.28)
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whereT =−V3R1 +V3RV1 +V3RV
∗
1 +V3RV2 +V3RV

∗
2 . But ‖T‖ ≤ ‖R1‖+4‖R‖ < 1 due

to (3.22). Thus, the inverse of I −T exists and is a linear operator of H bounded by

∥∥(I −T)−1
∥∥≤ 1

1− supi, j,n
∣∣4r(i, j,n)− 1

∣∣− 4supi, j,n
∣∣r(i, j,n)∣∣ . (3.29)

Thus, (3.28) has a unique solution in H bounded by

‖u‖ ≤
∥∥∑∞

i=1
∑∞

j=1u(i, j,1)ei, j,1
∥∥

1− supi, j,n
∣∣4r(i, j,n)− 1

∣∣− 4supi, j,n
∣∣r(i, j,n)∣∣ . (3.30)

Equivalently, this means that (3.18) has a unique solution in �23 , which satisfies (3.23).
�

Remark 3.4. (a) Since u(i, j,n)∈ �23 , we have limi, j,n→∞u(i, j,n)= 0. The physical impor-
tance of this fact is that after a long period of time (theoretically infinite), at the end of
the plate (which is assumed to be of infinite length), the temperature will tend to zero,
which is in agreement with the physical laws.

(b) In [2], (3.18) is mentioned but not studied. More precisely, it is stated there that
if the plate has an initial temperature at n = 0, then after a quite large time interval, the
temperature of the plate will not depend on time, but only on the position (i, j). When
this happens, the temperature u(i, j) of the plate will satisfy the linear, homogeneous
partial difference equation of two variables, which is characterized as the steady state
equation

u(i− 1, j) +u(i+1, j) +u(i, j− 1)+u(i, j +1)− 4u(i, j)= 0. (3.31)

This equation has a positive, bounded solution which is u(i, j)≡ 1. (Note that this solu-
tion does not belong to �22 .) Then an important question is the following [2].

“Do equations of the form

α(i, j)u(i− 1, j) +β(i, j)u(i+1, j) + γ(i, j)u(i, j− 1)

+ δ(i, j)u(i, j +1)− σ(i, j)u(i, j)= 0,
(3.32)

where α(i, j), β(i, j), γ(i, j), δ(i, j), and σ(i, j) are real sequences, have bounded and/or
positive solutions?”

The following was proved in [2]: if α(i, j), β(i, j), γ(i, j), δ(i, j), and σ(i, j) are positive
sequences with

sup
i, j

{∣∣∣∣α(i, j)σ(i, j)

∣∣∣∣+
∣∣∣∣β(i, j)σ(i, j)

∣∣∣∣+
∣∣∣∣ γ(i, j)σ(i, j)

∣∣∣∣+
∣∣∣∣δ(i, j)σ(i, j)

∣∣∣∣
}
< 1, (3.33)

then the unique bounded solution of (3.32) with i, j = 0,±1,±2, . . . is the zero solution.
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In a way similar to the proof of Result 3.3, we can prove the following.
(i) If

sup
i, j

∣∣∣∣α(i, j)σ(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣β(i, j)σ(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣ γ(i, j)σ(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣δ(i, j)σ(i, j)

∣∣∣∣ < 1, (3.34)

then the unique bounded solution of (3.32) in �22 is the zero solution.
Note that (3.34) implies (3.33).
(ii) If u(i,1)∈ �21 and

sup
i, j

∣∣∣∣α(i, j)δ(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣β(i, j)δ(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣γ(i, j)δ(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣σ(i, j)δ(i, j)

∣∣∣∣ < 1, (3.35)

then (3.32) has a unique bounded solution in �22 , which satisfies

∣∣u(i, j)∣∣≤
∥∥u(i,1)∥∥�2N

1− supi, j

∣∣∣∣α(i, j)δ(i, j)

∣∣∣∣− supi, j

∣∣∣∣β(i, j)δ(i, j)

∣∣∣∣− supi, j

∣∣∣∣γ(i, j)δ(i, j)

∣∣∣∣− supi, j

∣∣∣∣σ(i, j)δ(i, j)

∣∣∣∣
.

(3.36)

(iii) If u(1, j)∈ �21 and

sup
i, j

∣∣∣∣α(i, j)β(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣γ(i, j)β(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣δ(i, j)β(i, j)

∣∣∣∣+ sup
i, j

∣∣∣∣σ(i, j)β(i, j)

∣∣∣∣ < 1, (3.37)

then (3.32) has a unique bounded solution in �22 , which satisfies

∣∣u(i, j)∣∣≤
∥∥u(1, j)∥∥�2N

1− supi, j

∣∣∣∣α(i, j)β(i, j)

∣∣∣∣− supi, j

∣∣∣∣γ(i, j)β(i, j)

∣∣∣∣− supi, j

∣∣∣∣δ(i, j)β(i, j)

∣∣∣∣− supi, j

∣∣∣∣σ(i, j)β(i, j)

∣∣∣∣
.

(3.38)
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