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Global almost sure asymptotic stability of solutions of some nonlinear stochastic dif-
ference equations with cubic-type main part in their drift and diffusive part driven by
square-integrable martingale differences is proven under appropriate conditions in R1.
As an application of this result, the asymptotic stability of stochastic numerical methods,
such as partially drift-implicit θ-methods with variable step sizes for ordinary stochastic
differential equations driven by standard Wiener processes, is discussed.

1. Introduction

Suppose that a filtered probability space (Ω,�,{�n}n∈N,P) is given as a stochastic basis
with filtrations {�n}n∈N. Let {ξn}n∈N be a one-dimensional real-valued {�n}n∈N martin-
gale difference (for details, see [2, 14]) and let �(S) denote the set of all Borel sets of the
set S. Furthermore, let a = {an}n∈N be a nonincreasing sequence of strictly positive real
numbers an and let κ = {κn}n∈N be a sequence of real numbers κn. We use “a.s.” as the
abbreviation for wordings “P-almost sure” or “P-almost surely”.

In this paper, we consider discrete-time stochastic difference equations (DSDEs)

xn+1− xn = κnx
3
n− anx

3
n+1 + fn

((
xl
)
0≤l≤n

)
+ σn

((
xl
)
0≤l≤n

)
ξn+1 (1.1)

with cubic-type main part of their drift in R1, real parameters an,κn ∈ R1, driven by
the square-integrable martingale difference ξ = {ξn+1}n∈N of independent random vari-
ables ξn+1 with E[ξn+1]= 0 and E[ξn+1]2 < +∞. We are especially interested in conditions
ensuring the almost sure global asymptotic stability of solutions of these DSDEs (1.1).
The main result should be such that it can be applied to numerical methods for related
continuous-time stochastic differential equations (CSDEs) as its potential limits. For ex-
ample, consider

dXt =
(
a1
(
t,Xt

)
+ a2

(
t,Xt

))
dt+ b

(
t,Xt

)
dWt (1.2)
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driven by standard Wiener process W = {Wt}t≥0 and interpreted in the Itô sense, where
a1,a2,b : [0,+∞)×R→R are smooth vector fields. Such CSDEs (1.2) with additive drift
splitting can be discretized in many ways; for example, see [13] for an overview. However,
only few of those discretization methods are appropriate to tackle the problem of almost
sure asymptotic stability of their trivial solutions. One of the successful classes is that of
partially drift-implicit θ-methods with the schemes

xn+1 = xn +
(
θna

1(tn+1,xn+1)+ (1− θn
)
a1
(
tn,xn

)
+ a2

(
tn,xn

))
∆n

+ b
(
tn,xn

)
∆Wn

(1.3)

applied to equation (1.2), where ∆n = tn+1 − tn and ∆Wn =Wtn+1 −Wtn , along any dis-
cretizations 0= t0 ≤ t1 ≤ ··· ≤ tN = T of time intervals [0,T]. These methods with uni-
formly bounded θn (with supn∈N |θn| < +∞) provide L2-converging approximations to
(1.2) with rate 0.5 in the worst case under appropriate conditions on a1,a2,b. For details,
see [8, 10, 13]. Obviously, schemes (1.3) applied to Itô-type CSDEs

dXt =
(
f
(
t,Xt

)− γ2
[
Xt
]3)

dt+ b
(
t,Xt

)
dWt (1.4)

possess the form of (1.1) with an = θnγ2∆n, κn = (θn− 1)γ2∆n, fn((xl)0≤l≤n)= f (tn,xn)∆n,
a1(t,x)=−γ2x3, a2(t,x)= f (t,x), σn((xl)0≤l≤n)= b(tn,xn), and ∆Wn = ξn+1. Thus, asser-
tions on the asymptotic behavior of (1.1) help us to understand the asymptotic behavior
of methods (1.3) and provide criteria to choose possibly variable step sizes ∆n in its al-
gorithm such that asymptotic stability can be guaranteed for the discretization of the re-
lated continuous-time system too. In passing, we note that, in the bilinear case, moment
stability issues have been examined for corresponding drift-implicit θ- and trapezoidal
methods in [8, 9, 11, 12, 13]. Here, we concentrate on almost sure stability issues of non-
linear and nonautonomous subclasses of (1.1) exclusively, in particular, when discretized
by additive drift splitting methods with variable step sizes ∆n. Effects of nonlinearities on
the stability behavior of discrete integrodifference equations subjected to bounded per-
turbations and cubic terms are studied in [1, 4, 7] by using Lyapunov functionals.

2. Auxiliary statements

The following lemma is a generalization of Doob decomposition of submartingales (for
details, see [2, 14]).

Lemma 2.1. Let {ξn}n∈N be an {�n}n∈N-martingale difference. Then there exist an
{�n}n∈N-martingale difference µ= {µn}n∈N and a positive (�n−1,�(R1))-measurable (i.e.,
predictable) stochastic sequence η = {ηn}n∈N such that, for every n= 1,2, . . . a.s.,

ξ2n = µn +ηn. (2.1)

The process {ηn}n∈N can be represented by ηn = E(ξ2n|�n−1). Moreover, η = (ηn)n∈N is a
nonrandom sequence when ξn are independent random variables. In this case,

ηn = E
(
ξ2n
)
, µn = ξ2n −E

(
ξ2n
)
. (2.2)
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To establish asymptotic stability, we will also make use of a certain application of well-
known martingale convergence theorems (cf. [14]) in the form of Lemma 2.2 which is
originally proved in [15, Lemma A, page 243].

Lemma 2.2. Let Z = {Zn}n∈N be a nonnegative decomposable stochastic process with Doob-
Meyer decomposition Zn = Z0 +A1

n −A2
n +Mn, where A1 = {A1

n}n∈N and A2 = {A2
n}n∈N

are a.s. nondecreasing, predictable processes with A1
0 = A2

0 = 0, andM = {Mn}n∈N is a local
{�n}n∈N-martingale withM0 = 0. Assume that limn→+∞A1

n <∞ a.s. Then both limn→+∞A2
n

and limn→+∞Zn exist and are finite.

Lemma 2.3. For every a ≥ 0, the function x → F(x) = x + ax3 is strictly increasing and
uniquely invertible with strictly increasing Lipschitz continuous inverse F−1 satisfying

∀y1, y2 ∈R
1,

∣∣F−1(y1)−F−1
(
y2
)∣∣≤ ∣∣y1− y2

∣∣. (2.3)

Proof. If x1 < x2, then there is some intermediate value θ ∈ (x1,x2) (or θ ∈ (x2,x1) if
x1 ≥ x2) such that F(x1)− F(x2) = F′(θ)(x1 − x2) = (1 + 3aθ2)(x1 − x2) < 0, hence F is
strictly increasing. Any strictly monotone function is invertible. Therefore, the inverse of
F exists and is strictly monotone as well. The strict monotonicity of the inverse F−1 is
also clear from the mean value theorem. To show (2.3), just note that F′(x) ≥ 1, hence
0≤ F−1′(x)≤ 1, and relation (2.3) is apparent. Consequently, the proof is complete. �

3. Almost sure global asymptotic stability of (1.1)

We suppose that the difference equation (1.1) has nonrandom coefficients satisfying

∀n∈N, an >
∣∣κn∣∣, (3.1)

with nonincreasing sequence a= {an}n∈N, and there exist nonnegative nonrandom num-

bers λn,δ
(1)
n ,δ(2)n ,δ(3)n ∈R+ for all n∈N such that

∣∣σn((xl)0≤l≤n)∣∣2 ≤ λn
(
1+ x6n

)
+ δ(1)n x4n + δ(2)n x6n,

+∞∑
n=1

λnE
[
ξ2n+1

]
< +∞, (3.2)

∣∣ fn((xl)0≤l≤n)∣∣2 ≤ δ(3)n x6n. (3.3)

Furthermore, we assume that δ
( j)
n , j = 1,2,3, are small enough such that there exist some

nonrandom real constants N1 ≥ 0, ε1 ≥ 0, ε2 ≥ 0 with ε1 + ε2 > 0 such that for all n≥N1,

2
(
an− κn

)− 2
√
δ(3)n − δ(1)n ηn+1 ≥ ε1, (3.4)

(
a2n− κ2n

)− δ(2)n ηn+1− δ(3)n − 2κn

√
δ(3)n − λnηn+1 ≥ ε2. (3.5)
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Theorem 3.1. Let ξn+1 be square-integrable, independent random variables (n ∈ N) with
E[ξn+1]= 0 and conditions (3.1), (3.2), (3.3), (3.4), and (3.5) be fulfilled. Then the solution
xn of equation (1.1) for every initial condition x0 has the property that limn→+∞ xn = 0 a.s.,
that is, if additionally σ and f have 0 as their trivial equilibrium, then 0 is an asymptotically
stable equilibrium with probability one.

Proof. First, note that equation (1.1) can be rewritten equivalently to

Fn+1
(
xn+1

)
+
(
an− an+1

)
x3n+1 = Fn

(
xn
)− (an− κn

)
x3n

+ fn
((
xl
)
0≤l≤n

)
+ σn

((
xl
)
0≤l≤n

)
ξn+1,

(3.6)

where Fn(x)= x+ anx3 for x ∈R1. We also observe that

F2
n+1

(
xn+1

)≤ F2
n+1

(
xn+1

)
+2
(
an− an+1

)
x3n+1Fn+1

(
xn+1

)
+
(
an− an+1

)2
x6n+1

= (Fn+1(xn+1)+ (an− an+1
)
x3n+1

)2 (3.7)

due to the assumption of nonincreasing {an}n∈N and the monotone structure of the se-
quence {Fn(x)}n∈N for any x ∈R1. Using Lemma 2.1 and taking the square at both sides
of (3.6) lead to

F2
n+1

(
xn+1

)≤ F2
n

(
xn
)− 2

(
an− κn

)
Fn
(
xn
)
x3n +

(
an− κn

)2
x6n

+2 fn
((
xl
)
0≤l≤n

)(
Fn
(
xn
)− (an− κn

)
x3n
)

+ f 2n
((
xl
)
0≤l≤n

)
+ σ2n

((
xl
)
0≤l≤n

)
ηn+1 +∆m(1)

n+1,

(3.8)

where ηn+1 = E[ξ2n+1], and the therein occurring expression

∆m(1)
n+1 = 2

(
Fn
(
xn
)− (an− κn

)
x3n + fn

((
xl
)
0≤l≤n

))
σn(···)ξn+1 + σ2n(···)µn+1, (3.9)

with µn+1 = ξ2n+1−E[ξ2n+1], is a martingale difference. Note that

Fn
(
xn
)− (an− κn

)
x3n = xn + κnx

3
n,

2
(
xn + κnx

3
n

)
fn
((
xl
)
0≤l≤n

)
+ f 2n

((
xl
)
0≤l≤n

)≤ 2
∣∣xn + κnx

3
n

∣∣√δ(3)n
∣∣x3n∣∣+ δ(3)n x6n

≤ 2
√
δ(3)n x4n +

(
δ(3)n +2κn

√
δ(3)n

)
x6n.

(3.10)
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Then, after returning to (3.8), we have

F2
n+1

(
xn+1

)≤ F2
n

(
xn
)− 2

(
an− κn

)
Fn
(
xn
)
x3n +

(
an− κn

)2
x6n

+2 fn
((
xl
)
0≤l≤n

)(
xn + κnx

3
n

)
+ f 2n

((
xl
)
0≤l≤n

)
+ σ2n

((
xl
)
0≤l≤n

)
ηn+1 +∆m(1)

n+1

≤ F2
n

(
xn
)− 2

(
an− κn

)(
xn + anx

3
n

)
x3n +

(
an− κn

)2
x6n

+2
√
δ(3)n x4n +

(
δ(3)n +2κn

√
δ(3)n

)
x6n + λnηn+1

(
1+ x6n

)

+ δ(1)n ηn+1x
4
n + δ(2)n ηn+1x

6
n +∆m(1)

n+1

= F2
n

(
xn
)
+ λnηn+1−

[
2
(
an− κn

)− 2
√
δ(3)n − δ(1)n ηn+1

]
x4n

−
[(
a2n− κ2n

)− δ(3)n − 2κn

√
δ(3)n − δ(2)n ηn+1− λnηn+1

]
x6n +∆m(1)

n+1.

(3.11)

Now, recall that δ
( j)
n , j = 1,2,3, are supposed to be small enough such that conditions

(3.4) and (3.5) with real constants N1 ≥ 0, ε1 ≥ 0, and ε2 ≥ 0 satisfying ε1 + ε2 > 0 hold
for all n≥N1. Without loss of generality, we may suppose that N1 = 0 (otherwise, we can
start with summing up from N1 onwards below). Through telescoping and estimation of
the quadratic differences F2

k (xk)−F2
k−1(xk−1) by (3.11), we obtain

F2
n

(
xn
)= n∑

k=1

(
F2
k

(
xk
)−F2

k−1
(
xk−1

))
+F2

0

(
x0
)≤ F2

0

(
x0
)
+A1

n−A2
n +mn, (3.12)

where

A1
n =

n−1∑
i=1

λiηi+1, A2
n =

n−1∑
i=1

(
ε1x

4
n + ε2x

6
n

)
(3.13)

are predictable (i.e., (�n−1,�(R1
+))-measurable) nondecreasing processes. Recall also that

condition (3.2) guarantees that limn→+∞A1
n exists and is finite. Define Zn = F2

n(xn) along
the sequence of xn. Then Lemma 2.2 can be applied to Z = {Zn}n∈N, and hence the limit
Z+∞ := limn→+∞F2

n(xn) a.s. exists and is finite too. Thus, we also know this fact about
limsupn→+∞F

2
n(xn) which equals Z+∞. Note that, by squeezing theorem from calculus, we

have

0≤ limsup
n→+∞

x2n ≤ limsup
n→+∞

[
x2n +

(
inf
n∈N

an

)2
x6n

]
≤ limsup

n→+∞
F2
n

(
xn
)
< +∞. (3.14)

Therefore, the limit limsupn→+∞ x
2
n is finite (a.s.). In the constant case an = a (a con-

stant), we can obtain the same conclusion for the limit limn→+∞ x2n instead of limsup
using the unique invertibility of the function F with parameter a and the continuity of its
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inverse F−1 by Lemma 2.3. Thus, we may conclude that the finite limit limsupn→∞ x
2
n =

c20(ω) a.s. exists, where c
2
0(ω) ≥ 0. It remains to prove that limn→+∞ x2n = 0. Suppose, in-

directly, that the opposite is true. Then there exists a.s. a finite c20(ω) > 0 on Ω1 = {ω :
limsupn→+∞ x

2
n(ω) = c20(ω) > 0} with P(Ω1) = p1 > 0. There also exist a subsequence

{xnk}nk∈N and an integer N(ω) such that

limsup
nk→+∞

x2nk = c20(ω),
3c20
2
(ω)≥ x2nk (ω)≥

c20
2
(ω), (3.15)

for all nk ≥N(ω) on ω ∈Ω1. Let InN = {nk ∈N : n≥ nk ≥N , (3.15) holds}. Note that the
cardinality #(InN ) tends to +∞ as n→ +∞. Then, for all ω ∈Ω1, some a.s. finite c21(ω) =
(ε1((c0/2)(ω))2 + ε2((c0/2)(ω))3) > 0 and for all n > N(ω), we have

A2
n(ω)=

n∑
i=1

(
ε1x

4
i + ε2x

6
i

)= N∑
i=1

(
ε1x

4
i + ε2x

6
i

)
+

n∑
i=N

(
ε1x

4
i + ε2x

6
i

)

≥
n∑

i=N

(
ε1x

4
i + ε2x

6
i

)≥ n∑
i=N , i∈InN

(
ε1

(
c20
2
(ω)
)2

+ ε2

(
c20
2
(ω)
)3)

=
n∑

i=N ,i∈InN
c21(ω)= #

(
InN
)
c21(ω)−→ +∞,

(3.16)

as n→ +∞. Therefore, limsupn→+∞A
2
n = limn→+∞A2

n = +∞. This result contradicts the
finiteness of limn→+∞A2

n resulting from Lemma 2.2. Thus, Theorem 3.1 is proved. �

Remarks 3.2. We briefly discuss the conditions of Theorem 3.1.

(i) We can suppose that δ
( j)
n , j = 1,2, are just arbitrary nonrandom constants with

sufficiently small δ(3), but in this case, to ensure the fulfilment of (3.2), (3.3), (3.4),
and (3.5), we need to require that ηn→ 0 as n→ +∞.

(ii) If ηn does not tend to 0, then λn has to tend to 0. In this case, λn can be considered
as a small enough number (in (3.5)), and instead of (3.2), we can demand

∣∣σn((xl)0≤l≤n)∣∣2 ≤ λn + δ(1)n x4n + δ(2)n x6n,
+∞∑
n=1

λnηn < +∞. (3.17)

Then a similar analysis as in the proof before leads to the less-restrictive condition

(
a2n− κ2n

)− δ(2)n ηn+1− δ(3)n − 2κn

√
δ(3)n ≥ ε2 (3.18)

which replaces condition (3.5), and hence asymptotic stability can be established.
Consequently, Theorem 3.1 is valid under the hypotheses of (3.1), (3.17), (3.3),
(3.4), and (3.18) too.

(iii) If ηn→ 0 is fast enough as n→ +∞ (e.g., when
∑+∞

n=1ηn < +∞), then λn can be even
bounded below away from zero. In this case, it is reasonable that, instead of (3.2),
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we require

∣∣σn((xl)0≤l≤n)∣∣2 ≤ λn
(
1+ x6n

)
+ δ(1)n x4n,

+∞∑
n=1

λnηn < +∞. (3.19)

That means that, by putting δ(2)n = 0, Theorem 3.1 with conditions (3.1), (3.19),
(3.3), (3.4), and (3.5) is applicable and implies asymptotic stability of (1.1) as well.

4. An application to numerical methods for CSDEs

As an example of applicability of our main result, consider the Itô-interpreted CSDEs

dXt =
(
ρ sin

([
Xt
]3)− γ2

[
Xt
]3)

dt+
(
σ0

∣∣Xt

∣∣3
1+ t

+ σ1
[
Xt
]2
+ σ2

[
Xt
]3)

dWt (4.1)

with real constants ρ, γ, σ0, σ1, and σ2, discretized by the partially drift-implicit θ-method

xn+1 = xn +
(
ρ sin

([
xn
]3)− γ2

(
θn
[
xn+1

]3
+
(
1− θn

)[
xn
]3))

∆n

+
(
σ0

∣∣xn∣∣3
1+ tn

+ σ1
[
xn
]2
+ σ2

[
xn
]3)

ξn+1,
(4.2)

where ξn+1 = ∆Wn with ηn+1 = E[ξn+1]2 = ∆n, while using nonrandom step sizes ∆n. Ob-
viously, both equations possess the trivial equilibrium 0. For the CSDE (4.1), 0 is a locally
stable equilibrium (a.s.). This fact can be seen immediately from a discussion of the sta-
bility of a related linearized equation dXt/dt = 0 for X (linearized about its steady state
0). A discussion with respect to global a.s. asymptotic stability and instability of CSDE
(4.1) is more delicate. One obvious result in this direction is given as follows.

Theorem 4.1. Assume that the initial values X0 = x0 are independent of the σ-algebra
σ(Ws : s ≥ 0), σ20 + σ22 = 0 and 2(γ2 − |ρ|)− σ21 > 0. Then the trivial solution 0 of CSDE
(4.1) is globally asymptotically stable (a.s.).

Proof. Apply Itô formula to the Lyapunov function V(x) = x2 for the solution of (4.1).
Thus, combining with the fact that |sin(z)/z| ≤ 1 for all z ∈R, we obtain that, for t ≥ 0,

dX2
t =

(
2ρ sin

([
Xt
]3)

Xt − 2γ2
[
Xt
]4
+ σ21

[
Xt
]4)

dt+dmt

≤ (2(|ρ|− γ2
)
+ σ21

)[
Xt
]4
dt+dmt,

(4.3)

where m= {mt}t≥0, with mt = 2σ1
∫ t
0[Xs]3dWs, is a locally square-integrable martingale.

Suppose that µ := 2(γ2−|ρ|)− σ21 > 0. Hence, the asymptotic behavior of the nonnegative
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semimartingale X2
t governed by (4.3) is controlled by the solution Z = {Zt}t≥0 of

dZt =−µ
[
Zt
]2
dt+dmt, (4.4)

with sufficiently large µ = 2(γ2 − |ρ|)− σ21 > 0. Therefore, we may decompose its drift
into nondecreasing processes A1 = {A1

t }t≥0 and A2 = {A2
t }t≥0 given by

A1
t = 0, A2

t = µ
∫ t

0

[
Zs
]2
ds. (4.5)

Notice also that Z = {Zt}t≥0 is a nonnegative supermartingale. Now, wemay apply Doob’s
martingale convergence theorems or a continuous version of Lemma 2.2 (which is also
found in [2, Chapter 2, Theorem 7, page 139] and generalized in [3]) in order to know
about the existence of the finite limits Z+∞ = limt→+∞X2

t and limt→+∞A2
t < +∞. It re-

mains to show that Xt converges to 0 (a.s.). Note that Zt ≥ 0 for all t ≥ 0, µ > 0 and
limt→+∞A2

t = µ
∫ +∞
0 [Zs]2ds < +∞ holds. It is well known that the convergence of posi-

tive integrand [Zs]2 to 0 as s tends to +∞ is necessary for the convergence of the im-
proper integral in limt→+∞A2

t . Hence, limt→+∞Z2
t = 0 (a.s.) implies that limt→+∞X2

t = 0
and X+∞ = limt→+∞Xt = 0 (a.s.). Therefore, the proof is complete. �

However, for DSDE (4.2), the situation might depend on the choice of step sizes ∆n.

Corollary 4.2. Let x = {xn}n∈N satisfy the stochastic difference equation (4.2) under the
above-mentioned conditions with γ2 > 0, θn > 0.5, and nonrandom variable step sizes ∆n

which are uniformly bounded such that

∃∆a,∆b :∀n∈N, 0 < ∆b ≤ ∆n ≤ ∆a < +∞, (4.6)

and {θn∆n}n∈N is nonincreasing. Furthermore, assume that

c1 = 2
(
γ2−|ρ|)− 3σ21 ≥ 0, (4.7)

c2 = inf
n∈N

((
γ4
(
2θn− 1

)
+2γ2

(
1− θn

)|ρ|− ρ2
)
∆n− 3σ22 −

3σ20(
1+ tn

)2
)
≥ 0. (4.8)

Then the limits liminfn→+∞ x2n, limsupn→+∞ x
2
n, liminfn→+∞ xn, and limsupn→+∞ xn for the

sequences x = {xn}n∈N governed by equation (4.2) are finite (i.e., independent of the magni-
tude of its initial values x0). Moreover, if additionally c1 + c2 > 0, then the related difference
equation (4.2) possesses an a.s. globally asymptotically stable trivial solution.

Proof. Apply Theorem 3.1. For this purpose, note that equation (4.2) has the form (1.1)
with fn((xl)0≤l≤n)= ρ sin(x3n)∆n, an = γ2θn∆n > 0, and κn =−γ2(1− θn)∆n. It remains to
check conditions (3.1), (3.2), (3.3), (3.4), and (3.5). After division by γ2∆n, condition
(3.1) is equivalent to θn > |1− θn| which is trivially guaranteed by the choice θn > 0.5.
Furthermore, define

λn = 3σ20
(1+ tn)2

, δ(1)n = 3σ21 , δ(2)n = 3σ22 , δ(3)n = ρ2∆2
n. (4.9)
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One easily estimates

∣∣σn((xl)0≤l≤n)∣∣2 =
∣∣∣∣σ0

∣∣xn∣∣3
1+ tn

+ σ1
[
xn
]2
+ σ2

[
xn
]3∣∣∣∣

2

≤ 3

(
σ20

∣∣xn∣∣6(
1+ tn

)2 + σ21
[
xn
]4
+ σ22

[
xn
]6)

≤ λn
(
1+ x6n

)
+ δ(1)n x4n + δ(2)n x6n,

+∞∑
n=1

λnE
[
ξ2n+1

]= +∞∑
n=1

3σ20(
1+ tn

)2∆n

≤ 3σ20∆a

+∞∑
n=1

1(
1+n∆b

)2 < 3σ20
∆a(
∆b
)2 π

2

6
< +∞,

∣∣ fn((xl)0≤l≤n)∣∣2 = ∣∣ρ sin(x3n)∆n

∣∣2 ≤ δ(3)n x6n,

(4.10)

hence conditions (3.2) and (3.3) are fulfilled too. It remains to check (3.4) and (3.5). To
evaluate condition (3.4), we compute

2
(
an− κn

)− 2
√
δ(3)n − δ(1)n ηn+1 = 2

(
γ2θn∆n + γ2

(
1− θn

)
∆n
)− 2|ρ|∆n− 3σ21∆n

= (2(γ2−|ρ|)− 3σ21
)
∆n ≥

(
2
(
γ2−|ρ|)− 3σ21

)
∆b

= c1∆b =: ε1.
(4.11)

Condition (3.5) is verified by

(
a2n− κ2n

)− δ(2)n ηn+1− δ(3)n − 2κn

√
δ(3)n − λnηn+1

= γ4θ2n∆
2
n− γ4

(
1− θn

)2
∆2
n− 3σ22∆n− ρ2∆2

n +2γ2
(
1− θn

)
∆2
n|ρ|−

3σ20(
1+ tn

)2∆n

=
(
γ4
(
2θn− 1

)
∆n− 3σ22 − ρ2∆n +2γ2

(
1− θn

)
∆n|ρ|− 3σ20(

1+ tn
)2
)
∆n

≥ inf
n∈N

((
γ2
[
γ2
(
2θn− 1

)
+2
(
1− θn

)|ρ|]− ρ2
)
∆n− 3σ22 −

3σ20(
1+ tn

)2
)
∆b = c2∆b.

(4.12)

Therefore, we have found mathematical expressions for ε1 = c1∆b ≥ 0 and ε2 = c2∆b ≥ 0
under (4.7) and (4.8). Summarizing our prior calculations, the validity of (3.1), (3.2),
(3.3), (3.4), and (3.5) could be verified when c1 + c2 > 0. Hence, Theorem 3.1 can be ap-
plied directly. If c1 = c2 = 0, then the limits liminf and limsup are finite by the appli-
cation of Lemmas 2.1, 2.2, and 2.3 as in the proof of Theorem 3.1. Hence, the proof of
Corollary 4.2 is complete. �
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Consequently, under (4.6), (4.7), and (4.8), our main result says that 0 is an asymp-
totically stable equilibrium for the method (4.2) with probability one. Thus, this extends
results for the linear case (cf. [9, 11, 13]) to the nonlinear case with cubic main drift part.

A special role of themagnitudes of σi (i= 0,1,2) is seen for the stability of the dynamics
of equations (4.2). If∆a tends to 0 and all other parameters are fixed with σ20 + σ22 > 0, then
(4.8) is violated. This fact is natural since ω-dependent explosions of strong solutions of
(4.1) as limits of (4.2) might occur due to the interaction of its inherent nonlinearities.
If ρ and σ1 are small enough (i.e., also γ2 > 0 is large enough), then condition (4.7) can
be fulfilled. It also confirms the fact that conditions on the magnitudes of ρ, γ, and σi
must play an essential role in the proof of strong existence and uniqueness results for the
nonlinear equations (4.1) based on discrete approximation techniques.

In view of Theorem 4.1, a refinement of Corollary 4.3 with slightly relaxed conditions
is found as follows.

Corollary 4.3. Let x = {xn}n∈N satisfy the stochastic difference equation (4.2) with γ2 > 0,
θn > 0.5, σ20 + σ22 = 0, and nonrandom variable step sizes ∆n which are uniformly bounded
such that there exist ∆a,∆b such that for all n∈N, 0 < ∆b≤∆n≤∆a <+∞, and {θn∆n}n∈N
is nonincreasing. Furthermore, assume that

c1 = 2
(
γ2−|ρ|)− σ21 ≥ 0, (4.13)

c2 = inf
n∈N

(
γ4
(
2θn− 1

)
+2γ2

(
1− θn

)|ρ|− ρ2
)≥ 0. (4.14)

Then, the limits liminfn→+∞ x2n, limsupn→+∞ x
2
n, liminfn→+∞ xn, and limsupn→+∞ xn for the

sequences x = {xn}n∈N governed by equation (4.2) are finite (i.e., independent of the magni-
tude of its initial values x0). Moreover, if additionally c1 + c2 > 0, then the related difference
equation (4.2) possesses an a.s. globally asymptotically stable trivial solution.

Proof. Apply Theorem 3.1 as before. One can take λn = 0, δ(1)n = σ21 , δ
(2)
n = 0, and δ(3)n .

Then the only difference to the proof before is that we do not need to apply the dis-
crete Hölder inequality in the estimation of |σn((xl)0≤l≤n)|2 here. Furthermore, trivially,∑+∞

n=1 λnηn = 0 holds. Thus, the proof is obvious. �

Remark 4.4. Conditions (4.13) and (4.14) do not depend on the choice of step sizes ∆n.
This fact is due to the specific construction of partially drift-implicit θ-methods with
parameters θn > 0.5 only under the right choice of noise (i.e., when σ0 = 0 and σ2 = 0).
Moreover, condition (4.13) coincides with that of Theorem 4.1 resulting from the behav-
ior of solutions of the underlying continuous equation (4.1). Condition (4.14) exhibits
the interactive interplay of the choice of parameters θn, the nonlinearity intensity γ2, and
the rotation-controlling magnitude of ρ. It shows that both noise and rotation terms have
to be chosen carefully in order not to destabilize the long-term dynamics by partially
drift-implicit θ-methods (4.2). Anyway, note that we have only found sufficient condi-
tions for asymptotic stability. Hence, necessary and sufficient conditions may still depend
on the choice of step sizes ∆n.

Further remarks. More care is needed when choosing variable step size algorithms in
order to achieve adequate convergence and asymptotic stability results. An analysis in this



A. Rodkina and H. Schurz 259

direction is omitted here. In passing, we note that conditions (4.6) are not always fullfilled
in the case of variable step sizes ∆n; for example, ∆n = 1/n which are not very meaningful
anyway since they can run below any natural machine accuracy (note that in this case
we cannot clearly distinguish between computer-generated noise and the random noise
originating from the underlying analytic equations). Again, we have some indications
that the choice of step sizes following the restriction (4.6) gives meaningful qualitative
results for stochastic numerical methods (cf. [9, 12, 13]). These latter remarks might be
interesting for the implementation and convergence proofs referring to the use of variable
step sizes in stochastic numerical algorithms instead of the more trivial case of constant
ones. It is worth noting that our main result (Theorem 3.1) is applicable to both “weak”
and “strong” approximations of CSDEs (1.2) with variable (but nonrandom) step sizes
since we have only exploited techniques frommartingale theory. In particular, our proofs
rely heavily on the assumption that {ξn}n∈N are martingale differences, which is the case
for “weak” and “strong” approximations of CSDEs.

Our results can be extended to the case of stochastic Volterra-type difference equations
while using the method of Lyapunov-Krasovskiǐ functionals as similarly done in [5, 6],
a subject that will be discussed in our future works. We do not claim that our results
are of the most general nature. However, we have shown their verification and potential
applicability.
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