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This work formulates existence, uniqueness, and uniqueness-implies-existence theorems
for solutions to two-point vector boundary value problems on time scales. The meth-
ods used include maximum principles, a priori bounds on solutions, and the nonlinear
alternative of Leray-Schauder.

1. Introduction

This paper considers the existence and uniqueness of solutions to the second-order vector
dynamic equation

y24(t) = f(ty(o()) +P()y*(a(t), t€labl, (1.1)

subject to any of the boundary conditions

y@ =4,  y(d*b) =B, (1.2)
ay(a)-By*(a)=C,  yy(o*(b)) +8y"(a(b)) = D, (1.3)
ay(a)-By*a)=C,  y(d’(b)) =B, (1.4)

y(a) = A, yy(a*(b)) +8y*(a(b)) = D, (1.5)

where f: [a,b] x RY — R% P(t) is a d X d matrix; A,B,C,D € R% and a,3,y,8 € R. The
problems (1.1), (1.2); (1.1), (1.3); (1.1), (1.4); and (1.1), (1.5) are known as boundary
value problems (BVPs) on “time scales.”

To understand the notation used above and the idea of time scales, some preliminary
definitions are useful.

Definition 1.1. A time scale T is a nonempty closed subset of the real numbers R.
Since a time scale may or may not be connected, the concept of jump operators is
useful.
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Definition 1.2. Define the forward (backward) jump operator o(f) at t for t < supT
(resp., p(t) at t for t >inf T) by

o(t)=inf{r>t:7€T}, (p(t)=sup{r<t:t€T}), VteT. (1.6)

Also define g(supT) = sup T if sup T < o0, and p(inf T) = inf T if inf T > —oco. For simplic-
ity and clarity denote 0%(t) = o(0(¢)) and y°(t) = y(0(t)). Define the graininess function
p:T —Rbyu(t)=0(t) -t

Throughout this work the assumption is made that T has the topology that it inherits
from the standard topology on the real numbers R. Also assume throughout that a < b
are points in T with [a,b] = {t€ T:a <t < b}.

The jump operators o and p allow the classification of points in a time scale in the
following way: if o(f) > ¢, then call the point ¢ right-scattered; while if p(¢) < ¢, then we
call t left-scattered. If ¢ < supT and o(t) = ¢, then call the point ¢ right-dense; while if
t >inf T and p(t) = t, then we call ¢ left-dense.

If T has a left-scattered maximum at m, then define T* = T — {m}. Otherwise T* = T.

Definition 1.3. Fixt € T andlet y : T — R?. Define y(t) to be the vector (if it exists) with
the property that given € > 0 there is a neighbourhood U of t such that, for all s € U and
eachi=1,...,d,

[[yi(a(®) = yi(s)] =y () [o(t) = s]| <€|a(t)—s]. (1.7)

Call y2(¢) the (delta) derivative of y(t) at t.
Definition 1.4. If FA(t) = f(t), then define the integral by

ff(s)As =F(t) — F(a). (1.8)

The following theorem is due to Hilger [12].

TuEOREM 1.5. Assume that f : T — R? and let t € T .

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

flo(®) - £t

Ay —
o= - (1.9)
(iii) If f is differentiable and t is right-dense, then
fA(t)=limM. (1.10)

s—t t—s
(iv) If f is differentiable at t, then f(o(t)) = f () +u(t) f2(¢).

Definition 1.6. Define f € Crq(T;RY) as right-dense continuous if, atall t € T,

(a) f is continuous at every right-dense point t € T,
(b) lim,_.;~ f(s) exists and is finite at every left-dense point t € T.
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Definition 1.7. Define S to be the set of all functions y : T — R? such that
S=1{y:y€C([a,0’(D);R?), y*2 € Cra(la,b];RY) . (1.11)

A solution to (1.1) is a function y € S which satisfies (1.1) for each t € [a,b].

In order to prove the existence of solutions to the BVPs (1.1), (1.2) through (1.1),
(1.5), the following theorem will be used, which is referred to as the nonlinear alternative
of Leray-Schauder.

TaeoreM 1.8. Let Q) be an open, convex, and bounded subset of a Banach space X with 0 €
Qand let T : QO — X be a compact operator. If y # AT(y) for all y € 9Q and all A € [0,1],
then y = T(y) for some y € Q.

Proof. This is a special case of Lloyd [15, Theorem 4.4.11]. O

Recently the study of dynamic equations on time scales has attracted much interest
(see [1,2,3,4,6,7,8,9, 10, 12, 13, 14]). This has been mainly due to its unification
of the theory of differential and difference equations. The potential for applications is
enormous—especially in those phenomena that manifest themselves partly in continuous
time and partly in discrete time.

To the authors’ knowledge, no papers have yet dealt with second-order systems of
BVPs on time scales. The extension to systems is a natural one; for example, many occur-
rences in nature involve two or more populations coexisting in an environment, with the
model being best described by a system of dynamic equations. (Beltrami [5, Section 5.6]
discusses algae and copepod populations via second-order systems of BVPs.)

This paper deals with two specific types of second-order equations. Sections 2, 3, 4, 5,
and 6 treat the nonlinear equation

YAt = f(t,y°(1), te[ab], (1.12)

and Section 7 treats the linear equation

yA2(1) = P(1)y* (a() +Q()y7 (t) +h(t), t€ [a,b], (1.13)

where P and Q are d X d matrices functions and h is a d X 1 vector function.

In particular, the paper is organized as follows.

In Section 2, the necessary a priori bounds on solutions to the BVPs (1.12), (1.2)
through (1.12), (1.5) are formulated via some simple lemmas involving inequalities on
f and on the boundary conditions.

In Section 3, the a priori bounds from Section 2 are used in conjunction with the non-
linear alternative to prove the existence of solutions to the BVPs (1.12), (1.2) through
(1.12), (1.5).

In Section 4, the inequalities on f from Section 3 are slightly strengthened and some
extra qualitative information about solutions is obtained. Solutions are shown to be non-
increasing or nondecreasing in norm.
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In Section 5, BVPs on infinite intervals are investigated and some existence theorems
are presented. The proofs rely on the existence of solutions on finite intervals and so use
the theorems of Section 3. A standard diagonalization argument is also employed.

In Sections 6 and 7, some simple maximum principles are used to prove the unique-
ness of solutions to (1.12), (1.2) and (1.13), (1.2). A simple uniqueness-implies-existence
theorem is also presented for (1.13), (1.2).

The theory of time scales dates back to Hilger [12]. The monographs [6, 14] also pro-
vide an excellent introduction. Of particular motivation for the research in this paper
were the works [1, 2, 3, 4, 8, 9, 10].

2. A priori bounds on solutions

In order to apply Theorem 1.8, a priori bounds on solutions to the BVPs are needed.
In this section conditions on f and on the boundary conditions are formulated, under
which these bounds are guaranteed.

The following maximum principle will be very useful throughout the rest of the paper
and can be found in [10].

LemMma 2.1. If a function r : T — R has a local maximum at a point ¢ € [a,0%(b)], then
r22(p(c)) < 0 provided that c is not simultaneously left-dense and right-scattered and that
r22(p(c)) exists.

Let y be a solution to (1.1). In what follows, the maximum principle of Lemma 2.1
will be applied to the “Lyapunov-type” function r(t) = || y(¢)||>, and then used to show
that r is bounded on [a,0%(b)] (and therefore solutions y are bounded on [a,02(D)]).
In order to guarantee that r2(p(c)) exists, both y*2(¢) and [y(o(#))]* must exist, since
r(t) = (y(t),y(t)) is the inner product of two functions. As remarked in [6], the product
of two functions is not necessarily differentiable even if each of the functions is twice
differentiable. Therefore, for the rest of the paper, assume that o(t) is such that for those
solutions y € S, [y(a(t))]* exists.

LEmMMA 2.2. Let R > 0 be a constant such that

(u, f(t,u)) >0, Vte[ab], lull =R (2.1
If y is a solution to (1.12) and | y(t)|| does not achieve its maximum value at t = a or
t = 02(b), then || y()|| <R for t € [a,0?(D)].

Proof. Assume that the conclusion of the lemma is false. Therefore r(¢) := || y(¢)I|*> — R?
must have a nonnegative maximum in [a,0%(b)]. By hypothesis, this maximum must
occur in (a,0%(b)). Choose ¢ € (a,02(b)) such that

r(c) = max {r(t); t € [a,0*(b)]} = 0, (2.2)
r(t) <r(c), forc<t<a*(b). (2.3)
First, we show that the point ¢ cannot be simultaneously left-dense and right-scattered.

Assume the contrary by letting p(c) = ¢ < o(c). If r*(c) > 0, then r(0(c)) = r(c), and this
contradicts (2.3). If r2(¢) < 0, then lim,_ . r2(¢) = r2(c) < 0. Therefore there existsa § >0
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such that r2(¢) < 0 on (c — 8,c]. Hence r(t) is strictly decreasing on (c — 8,¢] and this
contradicts the way ¢ was chosen.

Therefore the point ¢ cannot be simultaneously left-dense and right-scattered.

By Lemma 2.1 we must have

A(p(c)) = 0. (2.4)

So using the product rule (see [6]) we have

28 (p(c)) = 207 (p(e)), £ (p(e), 17 (p())) + 1y (p() [P + 11772 (p(e))]]®

25
> 2(y%(p(c), f(p(c), y° (p(c)))) >0, by (2.1), (22)

which contradicts (2.4). Therefore [|y(f)|| < R for t € [a,0?(b)]. (Notice at ¢ that
Iy (p(c)ll = lly(c)ll = R, since ¢ is not simultaneously left-dense and right-scattered.)
This concludes the proof. O

The following lemma provides a priori bounds on solutions to the Dirichlet BVP
(1.12), (1.2).

LemMA 2.3. If f and R satisfy the conditions of Lemma 2.2 with ||All,||Bll < R, then every
solution y to the Dirichlet BVP (1.12), (1.2) satisfies || y(t)|| < R for t € [a,0?(D)].

Proof. This result follows immediately from Lemma 2.2. O

The following lemma provides a priori bounds on solutions to the Sturm-Liouville
BVP (1.12), (1.3).

LemMa 2.4. If f and R satisfy the conditions of Lemma 2.2 with ,f3,y,0 > 0, then every
solution y to the Sturm-Liouville BVP (1.12), (1.3) satisfies

||y(t)||<max{@ ”ly)” R} . forte [a0i(b)]. (2.6)

Proof. Let M = max{||C||/a, |IDll/y,R} and assume that r(t) := || y(t)||*> — (M +1)* has a
nonnegative maximum at t = a. Then

= (y( a)+)’”(a) 2(a))
= (2y(a) +u(a)y*(a), y*(a)) (2.7)
2<y( ),y (a) +u@)ly@)|* <o.

It follows that

2(y(a),y*(@) = —p(a)l[y* @I <0 (2.8)

and therefore

(y(a),y*(a)) <0. (2.9)
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Hence

0= (y(@),By*(a)) = (y(a),ay(a) - C) = ally(a)|’ (1 - Ma)’CZ), (2.10)
o|y(a)l
and therefore (1 — (y(a),C)/ally(a)||?) < 0. Hence we have
1< @0 _[0@.0] _ly@licl_ _Icl_ (2.11)
dly@l’~ ay@|’ ~ aly@[’  ally@I

Thus, rearranging (2.11) we obtain [|y(a)|l < [|Cll/a < M. If a nonnegative maximum
occurs at t = 0%(b), then

r(a(b)) = (y(a(b)) +y° (a(b)),y* (a(b)))
= (2y°(a(b)) —u(a(d)) y*(a(b)), y*(a(b))) (2.12)
= 2(y(2(6)),y* (0(1))) — u(a(®))|[y* (a(®)|] = 0

It follows that
2(y(0*(6)),y"(o(0))) = u(a(b))|[y* (a(B))||* = 0 (2.13)

and therefore
(y(0*(0)),y*(a(b))) = 0. (2.14)

Hence

0 < (y(a*(b)),8y*(a(b)))
= (y(*(b)),D - yy(a*(b)))

(2.15)
)P (M 1),
Yy (e2®)1°
and therefore ({y(c%(b)),D)/ylly(a*(b))||> — 1) = 0. Hence we have
()’( (b)), D) | (y(d%(b)),D) | ||)’ a?(b))||IID|| _ DIl (2.16)
Sy @@ T @O o) A

Thus, rearranging (2.16) we obtain || y(a?(b))|l < [ID||/y < M. If a maximum occurs in
(a,02(b)), then |l y(t)|l <R, t € [a,0%(b)] by Lemma 2.2. This concludes the proof. O
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The question now arises on whether the conditions «,3,y,6 > 0 can be removed from
Lemma 2.4. By “piecing together” parts of Lemmas 2.3 and 2.4, results for the BVPs
(1.12), (1.4) and (1.12), (1.5) are now presented.

LemMa 2.5. Let f and R satisfy the conditions of Lemma 2.2. If a, 3 > 0 and ||Bl| < R, then
every solution y to the BVP (1.12), (1.4) satisfies

||y(t)||<max{g,R}+l, fort € [a,02(b)]. (2.17)

LEmMA 2.6. Let f and R satisfy the conditions of Lemma 2.2. If y,§ > 0 and ||All <R, then
every solution y to the BVP (1.12), (1.5) satisfies

Iyl <max{@,R}+1, fort & [a,0%(b)]. (2.18)

Proofs. The proofs follow lines similar to those of Lemmas 2.3 and 2.4 and so are omitted.
O

3. Existence of solutions

In this section, some existence results are presented for the BVPs (1.12), (1.2) through
(1.12), (1.5). The proofs rely on the a priori bounds on solutions of Section 2 and the
nonlinear alternative.

The following theorem gives the existence of solutions to the Dirichlet BVP on time
scales.

TaEOREM 3.1. Let R > 0 be a constant. Suppose that f(t,u) is continuous on [a,b] x R? and
satisfies (2.1). If [|All, | Bll < R, then the Dirichlet BVP (1.12), (1.2) has at least one solution
y € Ssatisfying | y(t)|l < R on [a,02(b)].

Proof. The BVP (1.12), (1.2) is equivalent (see [6, Corollary 4.76]) to the integral equa-
tion

o(b)
y(t) = L G(t,5)f(s,°(s))As+ ¢(t), te[a,0%(b)], (3.1)

where

_(t=a)(a*(b) —a(s))

, fort<s,
G(t,s) = (o )(02(5)() 2(6;)) )
o(s) —a)(a?(b) -
_ @b) —a) , foro(s) <t (3.2)

Ac*(b) - B B-A
e
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Thus, we want to prove that there exists at least one y satisfying (3.1). Define an operator
T:C([a,0*(b)];R?) — C([a,0?(b)];RY) by

o(b)
(Ty)t) = L G(t,s) f (s,y7(s)) As+ §(2). (3.3)

If we can prove that there exists a y such that T(y) = y, then there exists a solution to
(3.1). To show that T has a fixed point, consider the equation

y=AT(y), forie]0,1]. (3.4)

Define an open, bounded subset of the Banach space Sby Q = {y € S: [|y|l < R}, where
here || - || is the sup norm. Note that (3.4) is equivalent to the BVP

yAA() = Af (ty(o(D)), t€E [ab],

y(a) = AA, y(0(b)) = AB. (3.5)

Now show that all solutions to (3.5) must satisty y € Q, and consequently y ¢ 0€Q) for all
A € [0,1]. Obviously y € Q for A = 0. So consider (3.5) for A € (0,1]. Note that, by (2.1),

(wAf(tu)) =Mu, f(t,u)) >0, Vte [a,b], [lull =R (3.6)

Also [[AA[l, IABIl < [|All, IIBIl < R. Therefore Lemma 2.3 is applicable to solutions of (3.5).
Hence all solutions y to (3.5) must satisfy || y()|| < R for t € [a,02(b)]. Hence y & 0Q.
Since f is continuous, T is continuous and it can be shown that T is a compact oper-
ator by the Arzela-Ascoli theorem. Therefore, Theorem 1.8 is applicable to T and T must
have a fixed point. Hence the BVP has a solution. This concludes the proof. O

The following theorem gives the existence of solutions to the Sturm-Liouville BVP on
time scales.

THEOREM 3.2. Let R >0 be a constant. Suppose that f is continuous on [a,b] x R? and
satisfies inequality (2.1). If &, 3,9,8 > 0, then the Sturm-Liouville BVP (1.12), (1.3) has at
least one solution y € S satisfying (2.6).

Proof. The BVP (1.12), (1.3) is equivalent to the integral equation

a(b)
y(o) = G(t,5)f (s,y°(s))As+ ¢(t), t€ [a,a*(b)], (3.7)
where
_[Brt-aal[s+(@*(0) o)yl
—_— p | _ |
Glt:s) = Bt (o -a)a][d+(*B) =t)y] ¢ oy
) (3.8)

p=ay(a*(b) —a) +ad + By,

[(yo?(b)+8)C+ (B — aa)D+ (Da — Cy)t]
B(t) = » .
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Thus, we want to prove that there exists at least one y satisfying (3.7). Define an operator
T:C([a,0?(b)];R?) — C([a,0?(b)];RY) by

a(b)
(Ty)(t) = J G(t,s) f (s,y7(s)) As + p(2). (3.9)

If we can prove that there exists a y such that T(y) = y, then there exists a solution to
(3.7). To show that T has a fixed point, consider the equation

y=AT(y), foriel0,1]. (3.10)

Define an open, bounded subset of the Banach space S by

Q:{yES:||y||<max{M ”I;” R} } (3.11)

Note that (3.10) is equivalent to the BVP

A =Lf(t,y°), telab],

3.12
ay(a) =By (@) =AC,  yy(a*(b)) +8y"(a(b)) = AD. G2

Now show that all solutions to (3.12) must satisfy y € Q, and consequently y ¢ 0Q for
all A € [0,1]. Obviously y € Q for A = 0. So consider (3.12) for A € (0,1]. Note that, by
(2.1), (3.6) holds. Since Ao, A3,Ay,A8 > 0, we get that Lemma 2.4 is applicable to solutions
of (3.12), hence

AC| IAD C D
ol <o L DU (101100 1o

for t € [a,0%(b)]. Hence all solutions y to (3.12) must satisfy

Hy(t)||<max{@ ||l;|\ R} (3.14)

for t € [a,0%(b)] and therefore y ¢ Q.

Since f is continuous, T is continuous and it can be shown that T is a compact oper-
ator by the Arzela-Ascoli theorem. Therefore, Theorem 1.8 is applicable to T and T must
have a fixed point. Hence the BVP has a solution. This concludes the proof. O

The following result gives the existence of solutions to the BVP (1.12), (1.4), and we
will use this in Section 4 when dealing with BVPs on infinite intervals.

THEOREM 3.3. Let R >0 be a constant. Suppose that f is continuous on [a,b] x R? and
satisfies (2.1). If &, 3 > 0 and ||Bl| < R, then the BVP (1.12), (1.4) has at least one solution
y € Ssatisfying || y(t)|l < max{||C||/a,R} + 1 for t € [a,0%(b)].

Proof. The BVP (1.12), (1.4) is equivalent to the integral equation

o(b)
=J G(t,9)f (5,7(s)) As +6(8), £ € [a,02(b)], (3.15)
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where
_[ﬁ+(t—a)06][‘t()02(b)_0(5))], fort <s,
G(t,s) =
_[B+(a(s) - a);(] et t)]a foro(s) <t, (3.16)
[02(b)C+ (B — aa)B+ (Ba — C)t]
— a(0*(b) - a) +, = ‘
p=a(c’(b)—a)+p ¢(1) p

Thus, we want to prove that there exists at least one y satisfying (3.15). Define an operator
T:C([a,0*(b);RY) — C([a,0*(b)];RY) by

o(b)
(Ty)t) = L G(t,s) f (s,y7(s)) As+ §(2). (3.17)

If we can prove that there exists a y such that T(y) = y, then there exists a solution to
(3.7). To show that T has a fixed point, consider the equation

y=AT(y), foriel0,1]. (3.18)

Define an open, bounded subset of the Banach space S by

Q:{yeS:IIyH<max{@,R}+l}. (3.19)
Note that (3.18) is equivalent to the BVP

Yy =Af(t,y°), te[ab),
ay(a)—Byi(a)=AC,  y(o*(b)) = AB.

Now show that all solutions to (3.20) must satisfy y € Q and consequently y ¢ 0Q for all
A € [0,1]. Obviously y € Q for A = 0. So consider (3.20) for A € (0, 1]. Note that, by (2.1),
(3.6) holds. Since Aa,AB >0 and [|AB|| < ||B|| < R, we see that Lemma 2.5 is applicable to
solutions of (3.20), and hence

Iyl smﬂ{MTC”,R} smﬂ{@ﬂ}. (3.21)

Therefore, all solutions y to (3.20) must satisfy || y[| < max{[|C|l/a,R} + 1 and y ¢ 0Q.
Since f is continuous, T is continuous and it can be shown that T is a compact oper-

ator by the Arzela-Ascoli theorem. Therefore Theorem 1.8 is applicable to T and T must

have a fixed point. Hence the BVP has a solution. This concludes the proof. O

(3.20)

Similarly, the following result holds.

THEOREM 3.4. Let R >0 be a constant. Suppose that f is continuous on [a,b] x R? and
satisfies (2.1). If ||All < R and y,8 >0, then the BVP (1.1), (1.5) has at least one solution
y € S satisfying

|)y(t)||<max{@,1z}+1, fort € [a,02(b)]. (3.22)
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Proof. The proof is similar to that of Theorem 3.3 and so is omitted. O

Remark 3.5. Theorems 3.1, 3.2, 3.3, and 3.4 establish bounds on all solutions to the re-
spective BVPs (1.12), (1.2) through (1.12), (1.5). If there is no concern about bounding
all of the solutions to the BVPs, then inequality (2.1) may be weakened to

(u, f(t,u)) >0, Vte[ab], lull =R, (3.23)

and existence results will still hold, as the following theorems demonstrate.

THEOREM 3.6. Let the conditions of Theorem 3.1 hold with (2.1) replaced by (3.23). Then
the Dirichlet BVP (1.12), (1.2) has at least one solution y € § satisfying || y(t)|l <R on
[a,0%(b)] (and there may exist further solutions satisfying ||y(t)|l = R for some t, €

[a,0?(b)]).

Proof. Consider the modified dynamic equation
y* =m(t,y’), telab], (3.24)

subject to the boundary conditions (1.2), where

i, g):{Rf((t,Rya/||yﬁ||>/||yJ||>, for [|y[| = R, (325)

f(ty9), for [|y7|| < R.

Similar to the proof of Theorem 3.1, define an operator T : C([a,0%(b)];R?) — C([a,
o(b);R?) by

a(b)
(Ty)(t) = L G(t,s)m(s, y°(s)) As+ ¢(t), (3.26)

where G and ¢ are given in the proof of Theorem 3.1. To show that T has a fixed point,
consider the equation

y=AT(y), forde]0,1]. (3.27)
Define an open, bounded subset of the Banach space S by Q = {y € S: [lyll < ME +
N + 1}, where here || - || is the sup norm, E is the bound on m and
a(b)
M = max J G(t,s) | As, N = max ). 3.28
telao2(b)] Ja |G(t,9)] tela,o(b)] 9] ( )

It is easy to see that [[AT(y)l| < MME+N) < ME+ N +1 for all A € [0,1] and that
Theorem 1.8 is applicable. Therefore, the BVP (3.24), (1.2) has a solution y € Q. To show
that this is a solution of the BVP (1.12), (1.2), see that, for || yll = R,

(y%m(t,y7)) = (p. f(t,p)) >0, (3.29)

for ||yll = R = |Ipll by (3.23) and p = Ry?/||y°||. Therefore, all solutions to (3.24), (1.2)
satisty || y|l < R and are solutions to the BVP (1.12), (1.2). This concludes the proof. [
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THEOREM 3.7. Let the conditions of Theorem 3.2 hold with (2.1) replaced by (3.23) and
max{|[[Cll/a,||DII/B} < R. Then the Sturm-Liouville BVP (1.12), (1.3) has at least one solu-
tion y € S satisfying || y(£)|l < R on [a,0*(b)] (and there may exist further solutions satisfy-
ing |ly(to)ll = R for some ty € [a,02(D)]).

Proof. Consider the modified BVP (3.24), (1.3). Similar to the proof of Theorem 3.2, de-
fine an operator T : C([a,0%(b);R?) — C([a,d?(b)];R?) by (3.26), where G and ¢ are
given in the proof of Theorem 3.2. To show that T has a fixed point, consider equation
(3.27). Define an open, bounded subset of the Banach space Sby Q= {y € S: |yl <
ME + N + 1}, where here || - || is the sup norm, E is the bound on m, and (3.28) holds.
It is easy to see that [AT(y)|| < AMME+ N) < ME+ N +1 for all A € [0,1] and see that
Theorem 1.8 is applicable. Therefore, the BVP (3.24), (1.3) has a solution y € Q. To show
that this is a solution of the BVP (1.12), (1.3), see that, for || y|l = R, (3.29) holds, for
lyll = R = [Ipll by (3.23) and p = Ry°/||y?||. Therefore, all solutions to (3.24), (1.3) sat-
isfy || y|l < R and are solutions to the BVP (1.12), (1.3). This concludes the proof. O

THEOREM 3.8. Let the conditions of Theorem 3.3 hold with (2.1) replaced by (3.23) and
ICll/a < R. Then the BVP (1.12), (1.4) has at least one solution y € S satisfying || y(¢)|l <R
on [a,0%(b)] (and there may exist further solutions satisfying || y(to)ll = R for some ty €

[a,d2(b)]).

THEOREM 3.9. Let the conditions of Theorem 3.4 hold with (2.1) replaced by (3.23) and
IDII/B < R. Then the BVP (1.12), (1.5) has at least one solution y € S satisfying || y(¢)|| <R
on [a,0%(b)] (and there may exist further solutions satisfying || y(to)ll > R for some ty €

[a,0?(b)]).

Proofs. The proofs follow the modification technique of Theorems 3.6 and 3.7 and so are
omitted for brevity. O

4. On nonincreasing solutions

Some results about the qualitative nature of solutions for the BVPs

y2 = f(t,y°), telabl, (4.1)
y(a) =A, )’(Uz(b)) =0, (4-2)
y(a)=0,  y(d*(b)) =B, (4.3)

are now proved. In particular, by strengthening inequality (2.1), the solutions furnished
by Theorem 3.1 may be shown to be nondecreasing or nonincreasing in norm.

CoROLLARY 4.1. Let the conditions of Theorem 3.1 hold for the BVP (4.1), (4.2) with (2.1)
strengthened to

(u, f(t,u)) >0, Vte[a,b]andallu+0. (4.4)

Then the solutions to (4.1), (4.2) guaranteed by Theorem 3.1 satisfy that || y(t)|| is nonin-
creasing on [a,0*(b)].
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Proof. Note that (4.4) implies that r(¢) := || y(¢)|> cannot have a nonnegative maximum
in (a,02(b)) for any solution y, and therefore r must have a maximum at either f = a or
t = 02(b) with maxr(t) = max{r(a),r(c%(b))} = A% O

COROLLARY 4.2. Let the conditions of Theorem 3.1 hold for the BVP (4.1), (4.3) with (2.1)
strengthened to (4.4). Then the solutions y to (4.1), (4.3) guaranteed by Theorem 3.1 satisfy
ly(¢) |l is nondecreasing on [a,0?(b)].

Proof. The proof is similar to that of Corollary 4.1. O

5. BVPs on infinite intervals

This section formulates the existence theorems for solutions to the following BVPs on
infinite intervals:

y* = f(ty°), tela,0), (5.1)
y(a)=A, y(t)isbounded for t € [g, ), (5.2)
ay(a) —By®(a) =C, y(t) is bounded for t € [a, ). (5.3)

In particular, Theorems 3.1 and 3.3 will be useful.
Let [a,0) = U, [a,tx]. Throughout this section assume that there exists ¢, € T and
n € N such that

a<ti<th<---<t,<--- witht, ! o asn— oo, (5.4)
TuEOREM 5.1. Suppose that f is continuous on [a, ) x R? and satisfies
(u, f(t,u)) >0, Vt€E[a, o), |lull =R, (5.5)
where R > 0. Then for each ||All < R, the BVP (5.1), (5.2) has at least one solution y €
C([a,);RY) with | y(t)|| < R on [a, ).
Proof. Fix n € N and consider the BVP

P =fty7), telatl,

Y@ =A (k) =o0. (5:6)

It is clear from Theorem 3.1 that (5.6) has a solution y, € C([a, 02(t,)];R4) with lyn (Ol
< Rfort € [a,t,]. (Note also that y22 € C,4(a,0?(t,)];R.) This argument can be used for
each n € N. The theorem then follows from Ascoli’s selection theorem (see [11]) applied
to a sequence of intervals [a,t,] as n — . O

THEOREM 5.2. Suppose that f is continuous on [a, o) X R? and satisfies (5.5), where R > 0.
If o, 3 > 0, then the Sturm-Liouville BVP (5.1), (5.3) has at least one solution y € C([a, );
RY) satisfying

IIC

||y(t)||<max{TH,R}+l, fort € [a,). (5.7)
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Proof. Fix n € N and consider the BVP

P =f(ty7), telat],

(5.8)

ay(a) —By*(a) =C, y(o*(t,)) =0.
It is clear from Theorem 3.3 that (5.8) has a solution y, € C([a,02(t,)];RY) with || y,|l <
M+ 1 for t € [a,t,]. (Note also that y2% € C,4([a,0%(t,)];R?).) This argument can be
used for each n € N. The theorem then follows from Ascoli’s selection theorem applied
to a sequence of intervals [a,t,] as n — . O

6. On uniqueness of solutions

This section provides some results which guarantee the uniqueness of solutions to the
Dirichlet BVP (1.12), (1.2).

THEOREM 6.1. If f satisfies
(u—wv, f(tbu)— f(t,v)) >0, Vte[ab], u+v, (6.1)

then (1.12) has, at most, one solution satisfying (1.2).

Proof. Assume that y and z are solutions to the Dirichlet BVP (1.12), (1.2). Then y — z
satisfies the BVP

YR =224 = f(ty(a(1)) = f(tz(0(D), tE [abl,

y(a) —z(a) =0, y(0?(b)) — z(a*(b)) = 0. (6.2)
Consider r(t) := [l y(t) — z(t)||?, t € [a,0%(b)]. Now r must have a positive maximum at
some point ¢ € [a,0%(b)]. From the boundary conditions, ¢ € (a,02(b)). Choosing ¢ in
the same fashion as in the proof of Lemma 2.2, it can be shown via the same reasoning
that ¢ cannot be simultaneously left-dense and right-scattered. Therefore, by Lemma 2.1
we must have (2.4). So using the product rule we have

2% (p(c)) = 2(y" (p(c)) =27 (p(c)), f (p(c), ¥ (p(€))) = f(p(c),2% (p(c)))) >0, (6.3)

which contradicts (2.4). (Notice at ¢ that |y (p(c)) — z7(p(c)) Il = I y(c) — z(c)l, since ¢
is not simultaneously left-dense and right-scattered.) Therefore r(t) = || y(t) — z(£)[|> =0
for t € [a,02(b)], and solutions of the BVP (1.12), (1.2) must be unique. This concludes
the proof. O

7. Uniqueness implies existence

In this section, a uniqueness-implies-existence result is formulated for the BVP (1.13),
(1.2). Since the nonlinear alternative is not required, the continuity requirements of the
matrices P(t) and Q(t) may be relaxed to P,Q € C,q4.

The following is a vector analogue of a result of Bohner and Peterson [6].
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TaeoreM 7.1. Let P,Q € C.4 and suppose that the BVP

yAA(1) = P()y*(a(t)) + Q) y(a(t)), tE [ab],

(7.1)

y@) =0,  y(o*(b)) =0,
has only the zero solution. Then the BVP (1.13), (1.2) has a unique solution for each h €
Cra([a,b];RY).

Proof. The proof is omitted as it follows lines similar to that of Bohner and Peterson [6]
with only minor modifying changes. O

THEOREM 7.2. Let P(t) and Q(t) be d X d matrices satisfying
((2Q(t) = P()PT (1)) u,u) >0, (7.2)

for t € [a,b], u # 0. Then (1.13) has a unique solution satisfying the boundary conditions
(1.2).

Proof. Since (1.13) is linear, the difference of two solutions to the BVP (1.13), (1.2) is also
a solution of the BVP

A1) = Q(1)y" + P(t)y* (a(t)), tE [a,b],

y@=0,  y(o?*b)=0, 73

and it needs to be shown that the only solution to (7.3) is y = 0.

Assume the contrary, let y be a nontrivial solution to (7.3) and put r(t) = [/ y(t)

Now r must have a positive maximum at some point ¢ € [a,62(b)]. From the boundary

conditions, ¢ € (a,02(b)). Choosing ¢ in the same fashion as in the proof of Lemma 2.2

it can be shown via the same reasoning that ¢ cannot be simultaneously left-dense and
right-scattered. Therefore by Lemma 2.1, (2.4) holds. So using the product rule we have

12,

2(p(0)) = 2037 (p(©)), £ (), y° (p()))) + |17 () [P + [y (p()) ||, (7.4)

Using the identity (Ab,c) = (b,AT¢), it can be verified that

2

2(P(p(c)) y*(a(p(c))) +Q(p(c)) ¥ (p(c)), ¥ (p(c))) +ly* (o (p()))|
= |ly*(a(p())) + PT(p(c)) y (p(0)) [’ (7.5)

+((2Q(p(c)) = P(p(c)) P (p(c))) y7 (p(c)), ¥ (p(c))),

c

and therefore

r2(p(c)) = ((2Q(p(c)) — P(p(c)) P  (p(c))) ¥ (p(c)), ¥ (p(c))). (7.6)
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Hence (7.2) implies r*2(p(c)) > 0, which contradicts (2.4). It follows that r(¢) = 0 on
[a,0%(b)]. That is, the only solution to (7.3) is y = 0. The existence of solutions to (1.13),
(1.2) now follows from Theorem 7.1 and this completes the proof. O

The paper is now concluded with an example of a nonlinear vector BVP on a number
of different time scales. First, we give y** for three simple examples.

Example 7.3. Let T = Z. Here 0(t) =t+1 and
YAA(E) = y(t+2) = 2p(t+ 1) + y(2). (7.7)

Example 7.4. Leth >0and T = hZ = {hk : k € Z}. Here o(t) = t+ h and

yAA(t) _ y(t+2h) =2y(t+h)+ y(1)

2 . (7.8)
Example 7.5. Let ¢ >1and T = gq"°. Here o(t) = qt and
24) —
Joa(gy = 2@ =@+ Dy(ah +qy(t) (7.9)

q(q — 1)21»2

Dynamic equations on the time scale T = g™ are called g-difference equations and there
are many important applications of g-difference equations.

Example 7.6. Consider the BVP

AA 2(4,0\3 _ 0
(ylM> _( Rt ) telabl,a>0, (7.10)
b5 v +y5exp (y1y5)

subject to the boundary conditions

(n(a),y(a) = (1,1), (71(0*(9)), 2(a*(1))) = (0,0). (7.11)

Note that the conditions of Theorem 3.3 are satisfied, and thus the BVP (7.10), (7.11)
has a solution y = (y1, y2) on each of the above time scales, T = Z, hZ and q"", satisfying
[ly(¢)]l < 2. Note also that the inequality (4.4) holds, and therefore || y(¢)|l is nonincreas-
ing on [a,0%(b)].

Remark 7.7. The question on how to ensure that [y(c(t))]* exists is naturally raised. This
“smoothness” requirement will be satisfied if, for example, o is differentiable or when the
points in T are isolated (left-scattered and right-scattered). However, if these cases are
excluded, then the method of upper and lower solutions for systems of equations can be
developed with the a priori bounds on solutions being obtained in a component-wise
fashion. These arguments are essentially minor extensions of the ideas in [4].
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