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1. Introduction

Classification schemes for nonoscillatory solutions of nonlinear difference equations are
important since further investigations of some of the qualitative behaviors of nonoscilla-
tory solutions can then be reduced to only a number of cases. There are several studies
which provide such classification schemes for difference equations, see, for example, [4–
11]. In particular, in [7], a class of nonlinear neutral difference equations of the form

Δm
(
xn + cnxn−k

)
+ f
(
n,xn−l

)= 0, n= 0,1, . . . , (1.1)

wherem, k and l are integers such thatm≥ 2, k > 0 and l ≥ 0 is studied and classification
schemes are given when {cn} is a nonnegative constant sequence {c0}, and in [10], the
same equation is studied with odd integer m≥ 1, positive integer k, integer l and {cn} =
{−1}.

In this paper, we continue our investigation on the possible types of nonoscillatory
solutions when {cn} ⊆ (−1,0] and limn→∞ cn = c0 (while the case {cn} ⊆ (−∞,−1] will be
discussed elsewhere). Besides the assumption that {cn} ⊆ (−1,0], we will assume further
that f is a continuous function defined on {0,1, . . .}×R such that f = f (n,x) is nonde-
creasing in the second variable x and satisfies x f (n,x) > 0 for x �= 0 and n≥ 0.

We will accomplish two things in this paper: to provide a classification scheme for the
nonoscillatory solutions of (1.1) in Section 2 and establish in Section 3 sufficient and/or
necessary criteria for the existence of solutions in each class. There are no overlapping
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results between our paper and [4–11], although some proofs are similar. However, the
existence proofs are different in that Cheng-Patula existence theorem is applied in [7],
monotone method is used in [10] while we use Krasnoselskii fixed point theorem here.
We remark further that classification scheme is also provided for neutral differential equa-
tions in [2].

Before we go into details, we will need some preparatory terminologies and results.
First of all, given initial xi for−max{k, l} ≤ i≤ 0, we may calculate from (1.1) x1,x2,x3, . . .
in a recursive manner. Such a sequence {xn} is said to be a solution of (1.1). Among the
solutions of (1.1), one is said to be nonoscillatory if it is eventually positive or eventually
negative.

Given an integer a, it is convenient to set

N(a)= {a,a+1,a+2, . . .}. (1.2)

Given an integer α≥ 0, the generalized factorial function g(x)= x(α) is defined as fol-
lows

x(α) =
⎧
⎨

⎩
x(x− 1)(x− 2)···(x−α+1) α > 0

1 α= 0.
(1.3)

It is well known that Δn(α) = αn(α−1) for α > 0 (see, e.g., [3]).
Let

l∞N0
=
{

x = {xn
}
n≥N0

: sup
n≥N0

∣
∣xn
∣
∣

rn
<∞

}

, (1.4)

where N0 > 0 is an integer and {rn}n≥N0 is a positive sequence with a uniform posi-
tive lower bound. When endowed with the usual linear structure and the norm ‖x‖ =
supn≥N0

(|xn|/rn), (l∞N0
,‖ · ‖) is a Banach space. A set B ⊆ l∞N0

is said to be uniformly Cauchy
if for any ε > 0 there exists an integerM ≥N0 such that

∣
∣
∣
∣
xi
ri
− xj

r j

∣
∣
∣
∣ < ε i, j > M (1.5)

for all x = {xn} ∈ B.

Lemma 1.1. A bounded and uniformly Cauchy subset B ⊆ l∞N0
is relatively compact.

Proof. By assumption, we know that for any such ε > 0, there exists an integerM ≥N0 > 0
such that for any x ∈ B, we have

∣
∣
∣
∣
xi
ri
− xj

r j

∣
∣
∣
∣ <

ε

3
, i, j ≥M. (1.6)
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Let Γ > 0 be a bound for B. That is ‖x‖ ≤ Γ for all x ∈ B. Choose integersMn, n=N0,N0 +

1, . . . ,M, and numbers y(1)n < y(2)n < ··· < y(Mn)
n such that y(1)n =−rnΓ, y(Mn)

n = rnΓ and

∣
∣
∣
∣
∣
y
( j+1)
n

rn
− y

( j)
n

rn

∣
∣
∣
∣
∣ <

ε

3
, 1≤ j ≤Mn− 1. (1.7)

Now define a sequence {vk}k�N0 as follows. Let vN0 be one of the values {y(1)N0
, . . . , y

(MN0 )
N0

},
vN0+1 be one of the values {y(1)N0+1, . . . , y

(MN0+1)
N0+1 }. In general, forN0 ≤ k ≤M, let vk equal one

of the values {y(1)k , . . . , y(Mk)
k }. For k > M, let vk = (rk/rM)vM . It is clear that the sequence

{vk}k�N0 belongs to l∞N0
. Let L be the set of all possible sequences {vk}k≥N0 defined as

above. Note that L hasMN0MN0+1 ···MM elements.
We assert that L is a finite ε-net forB. It is sufficient to show that for any x = {xk}k�N0 ∈

B, L contains a sequence v = {vk}k�N0 such that

‖x− v‖ = sup
n≥N0

∣
∣xn− vn

∣
∣

rn
< ε. (1.8)

Indeed, by definition of L, we can choose a sequence {vk}k�N0 in L such that

∣
∣
∣
∣
xk
rk
− vk

rk

∣
∣
∣
∣ <

ε

3
, N0 ≤ k ≤M. (1.9)

Furthermore, by (1.6), (1.9), and the definition of v = {vk}k�N0 , for k >M, we have

∣
∣
∣
∣
xk
rk
− vk

rk

∣
∣
∣
∣=

∣
∣
∣
∣
xk
rk
− vM

rM

∣
∣
∣
∣≤

∣
∣
∣
∣
xk
rk
− xM

rM

∣
∣
∣
∣+

∣
∣
∣
∣
xM
rM
− vM

rM

∣
∣
∣
∣≤

ε

3
+
ε

3
= 2ε

3
. (1.10)

From (1.9) and (1.10), we see that (1.8) holds. The proof is complete. �

Lemma 1.2. Suppose that limn→∞ cn = c0 with c0 ∈ (−1,0] and the sequence {xn/n(i)} is
eventually positive or eventually negative, where i is a nonnegative integer. Suppose further
that zn = xn + cnxn−k and limn→∞(zn/n(i))= b. Then limn→∞(xn/n(i))= b/(1+ c0).

Proof. Without loss of generality, we assume that xn/n(i) > 0 for any positive integer n.
In case b is finite, we assert that {xn/n(i)} is bounded. Otherwise, there would exist a
sequence {nλ} of integers with nλ→∞ for λ→∞ such that

lim
λ→∞

xnλ
n(i)λ

=∞, xn ≤ xnλ , 0 < n≤ nλ. (1.11)

On the other hand, we have

znλ
n(i)λ

= xnλ
n(i)λ

+ cnλ
xnλ−k
n(i)λ

≥ (1+ cnλ
) xnλ
n(i)λ

−→∞ (1.12)

as λ→∞. This is contrary to the fact that b is finite.
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Let limsupn→∞(xn/n
(i))=Q and liminfn→∞(xn/n(i))= q. Then 0≤ q ≤Q <∞. More-

over, there exist {nλ} and {nλ} such that limλ→∞nλ=∞, limλ→∞nλ=∞, limλ→∞(xnλ/nλ(i))=
Q and limλ→∞(xnλ/nλ(i))= q. Note that

b = lim
λ→∞

znλ
nλ(i)

= lim
λ→∞

(
xnλ
nλ(i)

+ cnλ
xnλ−k
nλ(i)

)

≥ lim
λ→∞

xnλ
nλ(i)

+ lim
λ→∞

inf cnλ
xnλ−k

(
nλ− k

)(i)

(
nλ− k

)(i)

nλ(i)
≥Q+ c0Q,

b = lim
λ→∞

znλ
nλ(i)

= lim
λ→∞

(
xnλ
nλ(i)

+ cnλ
xnλ−k
nλ(i)

)

≤ lim
λ→∞

xnλ
nλ(i)

+ lim
λ→∞

supcnλ
xnλ−k

(
nλ− k

)(i)

(
nλ− k

)(i)

nλ(i)
≤ q+ c0q,

(1.13)

we have (1 + c0)q ≥ (1 + c0)Q. It follows that q ≥ Q. Hence q = Q and it implies that
limn→∞(xn/n(i)) exists. In view of zn = xn + cnxn−k and limn→∞(zn/n(i))= b, we have

lim
n→∞

xn
n(i)

= b

1+ c0
. (1.14)

In case b is infinite, then b =∞ or b = −∞. We assert that b = −∞ cannot hold. In
fact, for given c1 with −c0 < c1 < 1, there exists a large integer N0 such that −cn ≤ c1 for
n≥N0. Hence, if b =−∞, then zn = xn + cnxn−k < 0 for n≥N and

xn <−cnxn−k ≤ c1xn−k, n≥N , (1.15)

where N ≥N0 is some positive integer. It implies that

0 < xN+λk < c1xN+(λ−1)k < ··· < cλ1xN . (1.16)

So that limλ→∞ xN+λk = 0. Thus

lim
λ→∞

zN+λk = 0 (1.17)

which implies that b =−∞ is impossible.
Now, for arbitraryM > 0, there exists a sufficiently large integer N such that

zn
n(i)

= xn
n(i)

+ cn
xn−k
n(i)

≥M, n≥N. (1.18)

It follows that

xn
n(i)

≥M, n≥N. (1.19)

That is limn→∞(xn/n(i))=∞. The proof is complete. �

The following two propositions are respectively in [1, Theorems 1.7.9 and 1.7.11].
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Lemma 1.3. Suppose that the sequence {xn} and {yn} satisfy the following conditions,
(i) yn > 0 and Δyn > 0 for all large integers n and limn→∞ yn =∞, and
(ii) limn→∞(Δxn/Δyn)= b.

Then limn→∞(xn/yn)= limn→∞(Δxn/Δyn)= b, where b can be finite or infinite.

Lemma 1.4. Let u = u(n) be a sequence defined for n ∈ N(a), u(n) > 0 with Δmu(n) of
constant sign onN(a) and not identically zero. Then, there exists an integerm∗, 0≤m∗ ≤m
withm+m∗ odd for Δmu(n)≤ 0 or,m+m∗ even for Δmu(n)≥ 0 and such that

m∗ ≤m− 1 implies (−1)m∗+iΔiu(n) > 0 ∀n∈N(a), m∗ +1≤ i≤m,

m∗ ≥ 1 implies Δiu(n) > 0 ∀ large n∈N(a), 1≤ i≤m∗.
(1.20)

Remark 1.5. If u(n) < 0 in Lemma 1.4, then there exists m∗, 0 ≤m∗ ≤m with m+m∗

odd for Δmu(n)≥ 0 or,m+m∗ even for Δmu(n)≤ 0 and such that

m∗ ≤m− 1 implies (−1)m∗+iΔiu(n) < 0 ∀n∈N(a), m∗ +1≤ i≤m,

m∗ ≥ 1 implies Δiu(n) < 0 ∀ large n∈N(a), 1≤ i≤m∗.
(1.21)

Lemma 1.6 (Kranoselskii’s fixed point theorem). Suppose B is a Banach space and Ω is a
bounded, convex and closed subset of B. Let U ,S :Ω→ B satisfy the following conditions.

(i) Ux+ Sy ∈Ω for any x, y ∈Ω,
(ii) U is a contraction mapping, and
(iii) S is completely continuous.

Then U + S has a fixed point in Ω.

2. Classifications of nonoscillatory solutions

In the following discussions, we assume throughout that

lim
n→∞cn = c0 ∈ (−1,0]. (2.1)

We set

zn = xn + cnxn−k (2.2)

whenever it is defined. Equation (1.1) can now be written as

Δmzn =− f
(
n,xn−l

)
. (2.3)

We will propose a classification scheme for the nonoscillatory solutions of (1.1). For
this purpose, we first note that if x = {xn} is an eventually negative solution of (1.1), then
y = {yn} defined by yn =−xn will satisfy

Δm
(
yn + cyn−k

)
+ f̃
(
n, yn−l

)= 0, (2.4)

where

f̃ (n,u)=− f (n,−u), n∈N(0), u∈ R (2.5)
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has the same properties satisfied by f , that is, f̃ is a continuous function defined on

{0,1, . . .}×R such that f̃ = f̃ (n,u) is nondecreasing in the second variable u and satisfies

u f̃ (n,u) > 0 for u �= 0 and n≥ 0. Therefore, we may restrict our attention to the set S+ of
all eventually positive solutions of (1.1). Motivated by the classification scheme in [2], we
make use of the following notations for classifying our eventually positive solutions:

Ak(α,β)=
{
{
xn
}∈ S+ : lim

n→∞
xn

n(k−1)
= α, lim

n→∞
xn
n(k)

= β
}
, k ≥ 1,

A0(α)=
{{

xn
}∈ S+ : lim

n→∞xn = α
}
.

(2.6)

Theorem 2.1. (a) Suppose that m is even. If x = {xn} is an eventually positive solution
of (1.1), then either x ∈ A0(0) or there are some j ∈ {1,2, . . . ,m/2} and a > 0 such that x
belongs to A2 j−1(∞,a), A2 j−1(∞,0) or A2 j−1(a,0). (b) Suppose that m is odd. If x = {xn}
is an eventually positive solution of (1.1), then either x belongs to A0(α) for some α≥ 0, or
there are j ∈ {1,2, . . . , (m− 1)/2} and a > 0 such that x belongs to A2 j(∞,a), A2 j(∞,0) or
A2 j(a,0).

Proof. Let m is even and x = {xn} be an eventually positive solution of (1.1). Then, in
view of (2.3), there exists some integer N > 0 such that Δmzn < 0 for n≥N . Therefore, zn
is eventually of fixed sign. For the sake of simplicity, we may assume that {zn} is of fixed
sign for n≥N .

First of all, suppose zn < 0 for n≥N . By the same reasoning as in the proof of Lemma
1.2, we may show that

lim
λ→∞

zN+λk = 0. (2.7)

On the other hand, in view of Lemma 1.4, there exists some even m∗ with 0 ≤m∗ ≤m
such that eventually Δizn < 0 for 0 ≤ i ≤m∗ and (−1)m∗+iΔizn < 0 for m∗ + 1 ≤ i ≤m.
There are now two cases to consider.
Case 1 (m∗ = 0). Then we have eventually

zn < 0, Δzn > 0. (2.8)

By (2.8), we can set

lim
n→∞zn = L0 ≤ 0. (2.9)

In view of (2.7), we find that limn→∞ zn = 0. By Lemma 1.2, we have limn→∞ xn = 0. Hence
x belongs to A0(0).
Case 2 (m∗ ≥ 2). Then we have eventually

zn < 0, Δzn < 0. (2.10)

It implies limn→+∞ zn < 0 which is contrary to (2.7). Hencem∗ ≥ 2 does not hold.
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Now we suppose zn > 0 for n≥N . Similar to the proof in [7, Theorem 1], we may see
that x belongs to A2 j−1(∞,a), A2 j−1(∞,0) or A2 j−1(a,0) for some j ∈ {1,2, . . . ,m/2} and
a > 0.

When m is odd, the proof is similar to those above and hence is skipped. The proof is
complete. �

3. Existence criteria

Eventually positive (and by analog eventually negative) solutions of (1.1) have been clas-
sified according to Theorem 2.1. We now justify our classification schemes by finding
existence criteria for each type of solutions.

Theorem 3.1. Suppose that m is even. If (1.1) has a solution in A2 j−1(∞,a) for some j ∈
{1,2, . . . ,m/2} and a > 0, then there exists some K > 0 such that

∞∑

i=0

(i+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i,K(i− l)(2 j−1)

)
<∞. (3.1)

The converse is also true.

Proof. First of all, we remark that

∞∑

iλ=n

∞∑

iλ−1=iλ
···

∞∑

i2=i3

∞∑

i1=i2
f
(
i1,xi1−l

)=
∞∑

i=n

(i−n+ λ− 1)(λ−1)

(λ− 1)!
f
(
i,xi−l

)
. (3.2)

Let x = {xn} be an eventually positive solution of (1.1) in A2 j−1(∞,a). Then we may
suppose that there exists an integer N0 > 0 such that xn > 0 and xn−l > 0 for n > N0. In
view of (2.3), we have Δmzn < 0 for n > N0. Thereby {Δizn} is eventually monotonic for
i = 0,1,2, . . . ,m− 1. Since limn→∞(xn/n(2 j−1)) = a > 0, there exists some integer N1 > N0

such that

1
2
an(2 j−1) ≤ xn ≤ 3

2
an(2 j−1), n≥N1. (3.3)

Note that limn→∞(zn/n(2 j−1))= (1+ c0)a implies

lim
n→∞Δ

2 j−1zn =
(
1+ c0

)
a
(
2 j− 1

)
!. (3.4)

By (3.4) and the monotonicity of Δizn, we have

lim
n→∞Δ

izn = 0, i= 2 j,2 j +1, . . . ,m− 1. (3.5)

Summing (2.3)m− 2 j times from n to N1 and invoking (3.5) in each time, we obtain

Δ2 j zn =−
∞∑

im−2 j=n
···

∞∑

i2=i3

∞∑

i1=i2
f
(
i1,xi1−l

)

=−
∞∑

i=n

(i−n+m− 2 j− 1)(m−2 j−1)

(m− 2 j− 1)!
f
(
i,xi−l

)
, n≥N1.

(3.6)
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Summing the above equation again from N1 to n, we obtain

Δ2 j−1zn+1 = Δ2 j−1zN1 −
n∑

i2=N1

∞∑

i1=i2

(
i1− i2 +m− 2 j− 1

)(m−2 j−1)

(m− 2 j− 1)!
f
(
i1,xi1−l

)
. (3.7)

By (3.4), the above equation implies that

∞∑

i2=n

∞∑

i1=i2

(
i1− i2 +m− 2 j− 1

)(m−2 j−1)

(m− 2 j− 1)!
f
(
i1,xi1−l

)
<∞, n≥N1. (3.8)

That is,

∞∑

i=n

(i−n+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i,xi−l

)
<∞, n≥N1. (3.9)

Let K = a/2. In view of (3.3), (3.9) and the monotonicity of f (n,x) in x, we see that (3.1)
holds.

Conversely, suppose (3.1) holds for some K > 0. Set Rn = n(2 j−1). In view of (3.2), we
have

∞∑

im−2 j+1=n

∞∑

im−2 j=im−2 j+1
···

∞∑

i2=i3

∞∑

i1=i2
f
(
i1,K

(
i1− l

)(2 j−1))

=
∞∑

i=n

(i−n+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i,K(i− l)(2 j−1)

)
.

(3.10)

Note that (2.1), there are two cases to consider.
In case −1 < c0 < 0, take c1 so that −c0 < c1 < (1− 4c0)/5 < 1. Then (1− 5c1)/(4c0) <

1. Note that limn→∞(|cn|Rn/Rn−k−l) = |c0|, limn→∞(Rn−k/Rn) = 1 and (3.1) holds. Thus
there exists an integer N > k+ l such that when n≥N , we have

∣
∣cn
∣
∣Rn

Rn−k−l
≤ c1, (3.11)

−cn ≤ c1, (3.12)

Rn−k
Rn

≥ 1− 5c1
4cn

, (3.13)

∞∑

im−2 j+1=N

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2
f
(
i1,K

(
i1− l

)(2 j−1))
<

(
1− c1

)
K

8
. (3.14)

Take N0 =N − k− l, rn = R2
n and define the Banach space l∞N0

as in (1.4). Let

Ω=
{
x ∈ l∞N0

:
1
2
KRn ≤ xn ≤ KRn

}
. (3.15)
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Then it is obvious that Ω is a bounded, convex and closed subset of l∞N0
, and for any x ∈

Ω and n≥N0 + l, we have

f
(
n,xn−l

)≤ f
(
n,K(n− l)(2 j−1)

)
. (3.16)

Define operators U and S on Ω as follows:

(Ux)n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3
4
c1KRn− cNxN−k

RN
Rn N0 ≤ n < N

−3
4
c1KRn− cnxn−k n≥N ,

(Sx)n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
4
KRn N0 ≤ n < N

3
4
KRn +F(n) n≥N ,

(3.17)

where

F(n)=
n−1∑

im=N
···

im−2 j+4−1∑

im−2 j+3=N

im−2 j+3−1∑

im−2 j+2=N

∞∑

im−2 j+1=im−2 j+2

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2
f
(
i1,xi1−l

)
. (3.18)

In view of (3.16) and (3.14),we have

F(n)≤
n−1∑

im=N
···

im−2 j+4−1∑

im−2 j+3=N

im−2 j+3−1∑

im−2 j+2=N

(
1− c1

)
K

8
=
(
1− c1

)
K(n−N)(2 j−1)

8(2 j− 1)!
≤
(
1− c1

)
K

8
Rn

(3.19)

for n≥N .
Next, we will show that the operators U and S satisfy the conditions of Kranoselskii’s

fixed point theorem.
First, we claim that Ux + Sy ∈Ω for any x, y ∈Ω. Indeed, for N0 ≤ n < N , in view of

(3.13) and (3.12), we have

(Ux)n + (Sy)n =
(
3
4

(
1− c1

)
K − cN

xN−k
RN

)

Rn ≥
(
3
4

(
1− c1

)
K − cNK

RN−k
2RN

)

Rn ≥ 1
2
KRn,

(Ux)n + (Sy)n ≤
(
3
4

(
1− c1

)
K − cNK

RN−k
RN

)

Rn ≤
(
3
4

(
1− c1

)
+ c1

)

KRn ≤ KRn.

(3.20)

When n≥N , invoking (3.13) again, we have

(Ux)n + (Sy)n ≥ 3
4

(
1− c1

)
KRn− cnxn−k ≥ 3

4

(
1− c1

)
KRn− cn

1
2
K
Rn−k
Rn

Rn ≥ 1
2
KRn

(3.21)
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and, in view of (3.19) and (3.12), we have

(Ux)n + (Sy)n ≤ 3
4

(
1− c1

)
KRn− cnxn−k +

(
1− c1

)
K

8
Rn

≤ 3
4

(
1− c1

)
KRn− cnKRn−k +

(
1− c1

)
K

8
Rn ≤ KRn.

(3.22)

That is, Ux+ Sy ∈Ω for any x, y ∈Ω.
Let x, y ∈Ω. In view of (3.11), we have

1
R2
n

∣
∣(Ux)n− (Uy)n

∣
∣=

∣
∣cN

∣
∣
∣
∣xN−k − yN−k

∣
∣

RNRn

=
∣
∣xN−k − yN−k

∣
∣

R2
N−k

∣
∣cN

∣
∣R2

N−k
RNRn

≤ c1 sup
n≥N0

∣
∣xn− yn

∣
∣

R2
n

(3.23)

for N0 ≤ n < N . And, for n≥N , we have

1
R2
n

∣
∣(Ux)n− (Uy)n

∣
∣≤ ∣∣cn

∣
∣ sup
n≥N0

∣
∣xn− yn

∣
∣

R2
n

. (3.24)

Therefore, we have

‖Ux−Uy‖ ≤ c1‖x− y‖ (3.25)

for any x, y ∈Ω. Hence, U is a contraction mapping.
Next, we will prove that S is a completely continuous mapping. Indeed, it is obvious

that (Sx)n ≥ (K/2)Rn for n≥N0 and (Sx)n ≤ KRn forN0 ≤ n < N . When n≥N , by means
of (3.19), we have

(Sx)n ≤ 3
4
KRn +

(
1− c1

)
K

8
Rn ≤ KRn. (3.26)

That is, the operator Smaps Ω into Ω.
Now we consider the continuity of S. Let x(λ) ∈Ω and ‖x(λ)− x‖→ 0 when λ→∞, we

assert that Sx(λ) converges to Sx by ‖ · ‖. Indeed, ‖x(λ) − x‖ → 0 implies that x ∈Ω and

|x(λ)n − xn| → 0 when λ→∞ for any integer n≥N0. Thereby, we have

∣
∣
∣ f
(
n,x(λ)n−l

)
− f

(
n,xn−l

)∣∣
∣−→ 0, λ−→∞ (3.27)

for any integer n≥N0 + l. By definition of S, we have

∣
∣(Sx(λ)

)
n− (Sx)n

∣
∣= 0 (3.28)

for N0 ≤ n < N and

∣
∣(Sx(λ)

)
n− (Sx)n

∣
∣≤Hλ(n) (3.29)
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for n≥N , where

Hλ(n)=
n−1∑

im=N
···

im−2 j+4−1∑

im−2 j+3=N

im−2 j+3−1∑

im−2 j+2=N

∞∑

im−2 j+1=im−2 j+2

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2

∣
∣
∣ f
(
i1,x

(λ)
i1−l
)
− f
(
i1,xi1−l

)∣∣
∣.

(3.30)

In view of (3.16), we have

∣
∣
∣ f
(
i1,x

(λ)
i1−l
)
− f

(
i1,xi1−l

)∣∣
∣≤ 2 f

(
i1,K

(
i1− l

)(2 j−1))
, n≥N0 + l. (3.31)

Thus

Hλ(n)≤
n−1∑

im=N
···

im−2 j+4−1∑

im−2 j+3=N

im−2 j+3−1∑

im−2 j+2=N

∞∑

im−2 j+1=N

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2

∣
∣
∣ f
(
i1,x

(λ)
i1−l
)
− f

(
i1,xi1−l

)∣∣
∣

≤ Rn

∞∑

im−2 j+1=N

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2

∣
∣
∣ f
(
i1,x

(λ)
i1−l
)
− f

(
i1,xi1−l

)∣∣
∣.

(3.32)

To sum up, we have

∥
∥(Sx(λ)

)
n− (Sx)n

∥
∥≤ sup

n≥N0

1
Rn

∞∑

im−2 j+1=N

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2

∣
∣
∣ f
(
i1,x

(λ)
i1−l
)
− f

(
i1,xi1−l

)∣∣
∣

= sup
n≥N0

1
Rn

∞∑

i=N

(i−N +m− 2 j)(m−2 j)

(m− 2 j)

∣
∣
∣ f
(
i,x(λ)i−l

)
− f

(
i,xi−l

)∣∣
∣.

(3.33)

In view of (3.27) and (3.31), the Lebesque’s dominated theorem [3] then implies
limλ→∞‖(Sxλ)− (Sx)‖ = 0. This means S is continuous.

Finally, we prove that SΩ is relatively compact. We assert that SΩ is uniformly Cauchy.
Indeed, for any ε > 0, there existsN1 > N such that 1/Rn < ε/3K for n≥N1. For any x ∈Ω
and i1, i2 ≥N1, in view of (3.19), we have that

∣
∣
∣
∣
(Sx)i1
R2
i1

− (Sx)i2
R2
i2

∣
∣
∣
∣≤

(Sx)i1
R2
i1

+
(Sx)i2
R2
i2

≤ 3K
4

(
R−1i1 +R−1i2

)
+

2∑

j=1

(
1− c1

)
K

8Rij
≤ ε

2
+

ε

12
< ε.

(3.34)

By Lemma 1.1, SΩ is relatively compact.
To sum up, we have proved that S is a completely continuous mapping.
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By the Kranoselskii’s fixed point theorem, there then exists x = {xn} ∈ Ω such that
(Ux)n + (Sx)n = xn. Therefore, we have

xn = 3
4

(
1− c1

)
KRn− cnxn−k +F(n), n≥N. (3.35)

It is easy to verify that xn satisfy (1.1). Furthermore, we have

Δ2 j−1F(n)=
∞∑

im−2 j+1=n

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2
f
(
i1,xi1−l

)

≤
∞∑

im−2 j+1=n

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2
f
(
i1,K

(
i1− l

)(2 j−1))
.

(3.36)

In view of (3.1) and (3.10), we have

lim
n→∞Δ

2 j−1F(n)= 0, (3.37)

so that

lim
n→∞

F(n)
n(2 j−1)

= 0. (3.38)

Now we turn to (3.35) and obtain

lim
n→∞

zn
n(2 j−1)

= 3
4

(
1− c1

)
K. (3.39)

By Lemma 1.2, we have

lim
n→∞

xn
n(2 j−1)

= 3
(
1− c1

)
K

4
(
1+ c0

) , (3.40)

which infers that limn→∞(xn/n(2 j−2))=∞. In summary, (1.1) has a solution inA2 j−1(∞,a)
when −1 < c0 < 0.

In case c0 = 0, take c1 so that 0 < c1 ≤ 1/3. Then, there exists an integer N > k + l such
that when n≥N , (3.11) to (3.14) hold. Take operators U and S to be the same operators
as above. Then we may prove in similar manners that (1.1) has a solution in A2 j−1(∞,a).
The proof is complete. �

A similar theorem holds when m is odd, the proof is similar to that of Theorem 3.1
and hence is skipped.

Theorem 3.2. Suppose m is odd. If (1.1) has a solution in A2 j(∞,a) for some j ∈ {1,2, . . . ,
(m− 1)/2} and a > 0, then there exists some K > 0 such that

∞∑

i=0

(i+m− 2 j− 1)(m−2 j−1)

(m− 2 j− 1)!
f
(
i,K(i− l)(2 j)

)
<∞. (3.41)

The converse also holds.
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Theorem 3.3. Suppose thatm is even. If (1.1) has an eventually positive solution inA2 j−1(a,
0) for some j ∈ {1, . . . ,m/2} and a > 0, then there is some K > 0 such that

∞∑

i=0

(i+m− 2 j +1)(m−2 j+1)

(m− 2 j +1)!
f
(
i,K(i− l)(2 j−2)

)
<∞. (3.42)

The converse is also true.

The proof is similar to that of Theorem 3.1 by taking Rn = n(2 j−2).

Theorem 3.4. Suppose m is odd. If (1.1) has a solution in A2 j(a,0) for some j ∈ {1,2, . . . ,
(m− 1)/2} and a > 0, then there is some K > 0 such that

∞∑

i=0

(i+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i,K(i− l)(2 j−1)

)
<∞. (3.43)

The converse also holds.

Theorem 3.5. Suppose that m is even. If (1.1) has a solution in A2 j−1(∞,0) for some j ∈
{1,2, . . . ,m/2}, then

∞∑

i=0

(i+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i, (i− l)(2 j−2)

)
<∞, (3.44)

∞∑

i=0

(i+m− 2 j +1)(m−2 j+1)

(m− 2 j +1)!
f
(
i, (i− l)(2 j−1)

)
=∞. (3.45)

Conversely, if there is some j ∈ {1,2, . . . ,m/2} such that

∞∑

i=0

(i+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i, (i− l)(2 j−1)

)
<∞, (3.46)

∞∑

i=0

(i+m− 2 j +1)(m−2 j+1)

(m− 2 j +1)!
f
(
i, (i− l)(2 j−2)

)
=∞, (3.47)

then (1.1) has a solution in A2 j−1(∞,0).

Proof. Let x = {xn} be an eventually positive solution of (1.1) in A2 j−1(∞,0). Note that
limn→∞(xn/n(2 j−1)) = 0, limn→∞(xn/n(2 j−2)) = ∞ and (2.3) holds. Therefore there exists
an integer N0 > 0 such that

Δmzn < 0, n≥N0, (3.48)

xn ≤ n(2 j−1), n≥N0, (3.49)

xn ≥ n(2 j−2), n≥N0. (3.50)
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In view of (3.48), {Δizn} is eventuallymonotonic for i=0,1,2, . . . ,m− 1. Since limn→∞(zn/
n(2 j−1))= 0 and limn→∞(zn/n(2 j−2))=∞, we have

lim
n→∞Δ

2 j−1zn = 0, (3.51)

lim
n→∞Δ

2 j−2zn =∞. (3.52)

In view of (3.51) and the monotonicity of {Δizn}, we see that

lim
n→∞Δ

izn = 0, i= 2 j,2 j +1, . . . ,m− 1. (3.53)

Now summing (2.3)m− 2 j +1 times from N0 + l to n and invoking (3.53), we have

Δ2 j−1zn+1 = Δ2 j−1zN0+l −
n∑

i2=N0+l

∞∑

i1=i2

(
i1− i2 +m− 2 j− 1

)(m−2 j−1)

(m− 2 j− 1)!
f
(
i1,xi1−l

)
. (3.54)

Noticing (3.50) and (3.51), we see that (3.44) holds.
By taking limits on both sides of (3.54) as n→∞ and then replacing N0 + l by n, we

see from (3.51) that

Δ2 j−1zn =
∞∑

i1=n

(
i1−n+m− 2 j

)(m−2 j)

(m− 2 j)!
f
(
i1,xi1−l

)
, n≥N0. (3.55)

Summing (3.55) from N0 + l to n, we have

Δ2 j−2zn+1−Δ2 j−2zN0+l =
n∑

i2=N0+l

∞∑

i1=i2

(
i1−n+m− 2 j

)(m−2 j)

(m− 2 j)!
f
(
i1,xi1−l

)
. (3.56)

Invoking (3.49) and (3.52), we see that (3.45) holds.
Conversely, we demonstrate the sufficiency. Suppose that −1 < c0 < 0. Set Ln = n(2 j−2)

and Rn=n(2 j−1). Take c1 so that−c0 < c1 < (1−4c0)/5 < 1. Similar to the proof of Theorem
3.1, there exists an integer N > k+ l such that when n≥N , we have

2Ln ≤ Rn, −cn ≤ c1,
|c|Rn

Rn−k−l
≤ c1,

Ln−k
Ln

≥ 1− 5c1
4cn

,
∞∑

im−2 j+1=N

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2
f
(
i1,
(
i1− l

)(2 j−1))
<
1− c1
8

.
(3.57)

Take N0 =N − k− l, rn = R2
n and define the Banach space l∞N0

as in (1.4). Let

Ω= {x ∈ l∞N0
: Ln ≤ xn ≤ Rn

}
. (3.58)
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Define two operators on Ω as follows:

(Ux)n =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
Ln N0 ≤ n < N

−3
2
c1Ln− cnxn−k n≥N ,

(Sx)n =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
Ln N0 ≤ n < N

3
2
Ln +F(n) n≥N ,

(3.59)

where

F(n)=
n−1∑

im=N
···

im−2 j+4−1∑

im−2 j+3=N

im−2 j+3−1∑

im−2 j+2=N

∞∑

im−2 j+1=im−2 j+2

∞∑

im−2 j=im−2 j+1
···

∞∑

i1=i2
f
(
i1,xi1−l

)
. (3.60)

Analogous to the discussions in Theorem 3.1, there exists x = {xn} ∈Ω such that

xn = 3
2

(
1− c1

)
Ln− cnxn−k +F(n), n≥N. (3.61)

From (3.61) and (3.46), we see that

lim
n→∞

zn
n(2 j−1)

= 0. (3.62)

By Lemma 1.2, we have

lim
n→∞

xn
n(2 j−1)

= 0. (3.63)

Note that (3.47) implies

lim
n→∞Δ

2 j−2F(n)=∞. (3.64)

Hence, in view of (3.61) and Lemma 1.2, we see that

lim
n→∞

xn
n(2 j−2)

=∞. (3.65)

This means (1.1) has an eventually positive solution in A2 j−1(∞,0) when −1 < c0 < 0.
When c0 = 0, we take c1 so that 0 < c1 ≤ 1/3 and the rest of proof is the same as the

above and is thus skipped. The proof is complete. �

A result similar to Theorem 3.5 is the following.
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Theorem 3.6. Suppose m is odd. If (1.1) has a solution in A2 j(∞,0) for some j ∈ {1,2, . . . ,
(m− 1)/2}, then

∞∑

i=0

(i+m− 2 j− 1)(m−2 j−1)
(
m− 2 j− 1

)
!

f
(
i, (i− l)(2 j−1)

)
<∞,

∞∑

i=0

(i+m− 2 j)(m−2 j)
(
m− 2 j

)
!

f
(
i, (i− l)(2 j)

)
=∞.

(3.66)

Conversely, if

∞∑

i=0

(i+m− 2 j− 1)(m−2 j−1)
(
m− 2 j− 1

)
!

f
(
i, (i− l)(2 j)

)
<∞,

∞∑

i=0

(i+m− 2 j)(m−2 j)

(m− 2 j)!
f
(
i, (i− l)(2 j−1)

)
=∞,

(3.67)

then (1.1) has a solution in A2 j(∞,0).

Theorem 3.7. Suppose m is even and c0 < 0. If there exist constants α > 0, c1 with 0 < c1 <
−c0 and integerM > k+ l such that

c1e
αk > 1 (3.68)

as well as
∞∑

i=n

(i−n+m− 1)(m−1)

(m− 1)!
f
(
i,

1
i− l

)
≤ (c1eαk − 1)e−αn, n≥M, (3.69)

then (1.1) has a solution in A0(0).

Proof. First note that there exists integer N >M such that

e−αn <
1
n
, n≥N − k− l, −cn ≥ c1, n≥N ,

−cn
n− k

≤ 1
n
, n≥N ,

∞∑

i=n

(i−n+m− 1)(m−1)

(m− 1)!
f
(
i,

1
i− l

)
≤ (c1eαk − 1

)
e−αn, n≥N.

(3.70)

Take N0 =N − k− l, rn = 1 and define the Banach space l∞N0
as in (1.4). Let

Ω=
{
x ∈ l∞N0

: e−αn ≤ xn ≤ 1
n

}
. (3.71)

Define two operators on Ω as follows:

(Ux)n = 0 for n≥N0,

(Sx)n =
⎧
⎪⎨

⎪⎩

1
n

N0 ≤ n < N

−cnxn−k −F(n) n≥N ,

(3.72)
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where

F(n)=
∞∑

im=n

∞∑

im−1=im
···

∞∑

i2=i3

∞∑

i1=i2
f
(
i1,xi1−l

)
. (3.73)

By arguments similar to those in the proof of Theorem 3.1, we may prove that there exists
x = {xn} ∈Ω such that

xn =−cnxn−k +F(n), n≥N. (3.74)

In view of the definition of Ω, we see that x is a solution of (1.1) in A0(0). The proof is
complete. �

A variant of Theorem 3.7 is the following and its proof is omitted.

Theorem 3.8. Suppose m is odd and c0 < 0. If there exist constants α > 0, c1, c2 with 0 <
c1 <−c0 < c2 < 1 and integerM > l+ k such that

c1e
αk > 1 (3.75)

as well as

∞∑

i=n

(i−n+m− 1)(m−1)

(m− 1)!
f
(
i,

1
i− l

)
≤ 1

n
− c2
n− k

, n≥M, (3.76)

then (1.1) has a solution in A0(0).

Theorem 3.9. Suppose that m is odd. If (1.1) has a solution in A0(a) for some a > 0, then
there exists some K > 0 such that

∞∑

i=0

(i+m− 1)(m−1)

(m− 1)!
f (i,K) <∞. (3.77)

The converse also holds.

The proof is similar to that of Theorem 3.1 and is skipped.

Example 3.10. Consider the equation

Δ2
(
xn− 3

4
xn−1

)
+

1
16

xn−1 = 0, (3.78)

here f (n,x)= (1/16)x.
It is clear that

∞∑

i=0
f
(
i,K(i− 1)

)=∞,
∞∑

i=0
(i+1) f (i,K)=∞ (3.79)

for any K > 0 and

∞∑

i=0
(i+1) f

(
i, i− 1

)=∞. (3.80)
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Hence by Theorems 3.1 and 3.3, an eventually positive solution of (3.78) cannot be in
A1(∞,a) nor in A1(a,0). In addition, by Theorem 3.5, an eventually positive solution of
(3.78) cannot be in A1(∞,0). However, by Theorem 2.1, (3.78) has a solution in A0(0)
if it has some eventually positive solution. Indeed, {xn} = {1/2n} satisfies (3.78) and
limn→∞ xn = 0.

Consider another equation

Δ3
(
xn− 1

5
xn−2

)
+

1
80

xn−1 = 0, (3.81)

here f (n,x)= (1/80)x. Then, it is easy to see that

∞∑

i=0
f
(
i,K(i− 1)(2)

)
=∞,

∞∑

i=0
(i+1) f

(
i,K(i− 1)

)=∞, (3.82)

as well as

∞∑

i=0

(i+2)(2)

2
f (i,K)=∞ (3.83)

for any K > 0, and

∞∑

i=0
f (i, i− 1)=∞. (3.84)

By the similar reasons to the above, (3.81) has a solution inA0(0) if it has some eventually
positive solution. Indeed, {xn} = {1/2n} is such a solution of (3.81).
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