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1. Introduction

Classification schemes for nonoscillatory solutions of nonlinear difference equations are
important since further investigations of some of the qualitative behaviors of nonoscilla-
tory solutions can then be reduced to only a number of cases. There are several studies
which provide such classification schemes for difference equations, see, for example, [4—
11]. In particular, in [7], a class of nonlinear neutral difference equations of the form

A" (X + cnXn—k) + f (n,x4-1) =0, n=0,1,..., (1.1)

where m, k and [ are integers such that m > 2, k >0 and [ > 0 is studied and classification
schemes are given when {c,} is a nonnegative constant sequence {cy}, and in [10], the
same equation is studied with odd integer m > 1, positive integer k, integer  and {c,} =
{-1}.

In this paper, we continue our investigation on the possible types of nonoscillatory
solutions when {c,} < (—1,0] and lim,,. ¢, = ¢y (while the case {c,} < (—o,—1] will be
discussed elsewhere). Besides the assumption that {c,} < (—1,0], we will assume further
that f is a continuous function defined on {0,1,...} X R such that f = f(n,x) is nonde-
creasing in the second variable x and satisfies x f (1,x) >0 for x # 0 and n = 0.

We will accomplish two things in this paper: to provide a classification scheme for the
nonoscillatory solutions of (1.1) in Section 2 and establish in Section 3 sufficient and/or
necessary criteria for the existence of solutions in each class. There are no overlapping
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results between our paper and [4-11], although some proofs are similar. However, the
existence proofs are different in that Cheng-Patula existence theorem is applied in [7],
monotone method is used in [10] while we use Krasnoselskii fixed point theorem here.
We remark further that classification scheme is also provided for neutral differential equa-
tions in [2].

Before we go into details, we will need some preparatory terminologies and results.
First of all, given initial x; for — max{k,/} <i <0, we may calculate from (1.1) x1,x2,3,...
in a recursive manner. Such a sequence {x,} is said to be a solution of (1.1). Among the
solutions of (1.1), one is said to be nonoscillatory if it is eventually positive or eventually
negative.

Given an integer g, it is convenient to set

N(a) = {a,a+1,a+2,...}. (1.2)

Given an integer a > 0, the generalized factorial function g(x) = x* is defined as fol-
lows

L@ x(x—1D(x—-2)---(x—a+1) a>0 (13)
1 a=0.
It is well known that An'® = an*~ for a > 0 (see, e.g., [3]).
Let
oo __ _ . |x”|
N, =qx= {x,,}nzNo. sup —— < oo, (1.4)
n=N, I'n

where Ny >0 is an integer and {r,},-n, is a positive sequence with a uniform posi-
tive lower bound. When endowed with the usual linear structure and the norm ||x|| =
sup,., (1x21/12), (15> Il - II) is a Banach space. A set B < I is said to be uniformly Cauchy
if for any & > 0 there exists an integer M > N, such that

X X

<e Lj>M (1.5)
ri Tj
forall x = {x,} € B.

Lemma 1.1. A bounded and uniformly Cauchy subset B < Iy, is relatively compact.

Proof. By assumption, we know that for any such ¢ > 0, there exists an integer M = Ny >0
such that for any x € B, we have

. X
N_oZ <t gjeMm (1.6)

ri i’j



Zhi-qiang Zhu etal. 3

LetT > 0 be abound for B. Thatis ||x|| <T for allx € B. Choose integers M,,, n = Ny, Ny +

.,M, and numbers yﬁ,l) < )/1(12) - < yn ") such that yn = —r,TI, ynM") =r,I[ and
(j+1) ()
‘y’“—}'” <f 1<js=M, -1 (1.7)
Tn Tn 3
Now define a sequence {vk}r>n, as follows. Let vy, be one of the values { )’I(\}o) Y NZL/IN 1,

VNp+1 be one of the Values {yl(\,lo)ﬂ, ,yNofT” }. In general, for Ny < k < M, let v equal one

of the values {y,(:), ,yk ")} For k > M, let vi = (ri/rm)vm. It is clear that the sequence
{vk}k=n, belongs to Iy, . Let L be the set of all possible sequences {vi}=n, defined as
above. Note that L has My, My,+1 - - - My elements.

We assert that L is a finite e-net for B. It is sufficient to show that for any x = {xx}r>n, €
B, L contains a sequence v = {vk}>n, such that

llx —v| = sup E ] <e (1.8)

n=Ny n
Indeed, by definition of L, we can choose a sequence {vi}r>n, in L such that

Xk Vk
Tk Tk

< No <k <M. (1.9)

£
3)

Furthermore, by (1.6), (1.9), and the definition of v = {vi}i>n,, for k > M, we have

Xk Vk ﬁ_LM‘S Xe x| |\ xm_ vm| _ €, E_ 28 (1.10)
L e ™ R ™ ™ M 3 3 3
From (1.9) and (1.10), we see that (1.8) holds. The proof is complete. O

LEMMA 1.2. Suppose that lim, .« c, = co with ¢y € (—1,0] and the sequence {x,/n?} is
eventually positive or eventually negative, where i is a nonnegative integer. Suppose further
that z, = X + cpXn—k and im, .« (z,/nD) = b. Then lim,—.. (x,/n'D) = b/(1 + ¢).

Proof. Without loss of generality, we assume that x,/n'? > 0 for any positive integer n.
In case b is finite, we assert that {x,/n”} is bounded. Otherwise, there would exist a
sequence {n)} of integers with 1y — oo for A — oo such that

LoXx
}LI?OHT%ZOO’ Xn < Xy, 0 <1 < ny. (1.11)
On the other hand, we have
z X X
=k, (i)k2(1+cm)%—»oo (1.12)
ny ny n ny

as A — co. This is contrary to the fact that b is finite.
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Let limsup, . (x,/n'?) = Q and liminf,_(x,/n?) = q. Then 0 < g < Q < 0. More-
over, there exist {1} and {7} such that lim) . 7y =00, lim) ., 71} =00, lim) .o (x5, /1) V) =
Q and lim) .« (x7,/m!) = q. Note that

.z : X Xy —
b=1lim % = lim | —% 4, ~2k
A= 00 n)t(l) A= 00 n/\(l) ”)L(l)

X (m—k)?

o Xm ..
> lim —% + liminfc . . > Q+¢Q,
I N T SO Q+aQ
(1.13)
T 27y T Xy . Xy —k
b=lim o = fim (m@ + om0 )
_ 0
. xﬁ/\ . xﬁ}—k (7’1/\ - k)
< lim —% + lim supc; - - <g+coq,
RTICAP S M-k mo Tl

we have (1+¢p)g = (1 +¢y)Q. It follows that g = Q. Hence g = Q and it implies that
limy,— o (x,/n?) exists. In view of z,, = x,, + ¢uXp—k and lim,_ « (z,/n?) = b, we have

X b

Iim — = . 1.14
M0 T The (1.14)
In case b is infinite, then b = o0 or b = —oo. We assert that b = —o0 cannot hold. In
fact, for given ¢; with —¢g < ¢; < 1, there exists a large integer Ny such that —c, < ¢, for
n > Np. Hence, if b = — 0, then z,, = x,, + ¢,x,_k < 0 for n > N and
Xp < —CpXp—k < C1Xp—ks HN=N, (1.15)
where N > Nj is some positive integer. It implies that
0 < XNk < CIXN+(A-1k < - < C%XN. (1.16)
So that lim) . o Xy 11k = 0. Thus
)ltim ZNie =0 (1.17)
which implies that b = — oo is impossible.
Now, for arbitrary M > 0, there exists a sufficiently large integer N such that
Zn _ ﬁ Xn—k
0 = +C"_n<") >M, n=N. (1.18)
It follows that
Xn
— >M, n=N. (1.19)
n(l)
That is lim,, . (x,,/n?) = 0. The proof is complete. O

The following two propositions are respectively in [1, Theorems 1.7.9 and 1.7.11].
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LemMa 1.3. Suppose that the sequence {x,} and { y,} satisfy the following conditions,
(i) yn >0and Ay, >0 for all large integers n and lim, ., y, = o, and
(ii) limy,— o (Ax,/Ayy,) = b.

Then limy,—.co (Xn/ yn) = limy,— o (Ax,/Ay,) = b, where b can be finite or infinite.

LemMma 1.4. Let u = u(n) be a sequence defined for n € N(a), u(n) >0 with A"u(n) of
constant sign on N (a) and not identically zero. Then, there exists an integer m*, 0 < m* < m
with m+m™* odd for A"u(n) <0 or, m+m* even for A™u(n) = 0 and such that

m* < m— 1 implies (—1)™ " Alu(n) >0 VneN(a), m* +1<i<m, (120)
. 1.20
m* > 1 implies N'u(n) >0 V largen € N(a), 1 <i<m*.

Remark 1.5. If u(n) < 0 in Lemma 1.4, then there exists m*, 0 < m* < m with m + m*
odd for A"™u(n) = 0 or, m+ m* even for A"u(n) < 0 and such that

m* < m—1implies (—1)" "'A'u(n) <0 VneN(a), m* +1<i<m, (121)
. 1.21
m* > 1 implies A'u(n) <0 V largen € N(a), 1 <i<m*.

LemMA 1.6 (Kranoselskii’s fixed point theorem). Suppose B is a Banach space and Q is a
bounded, convex and closed subset of B. Let U,S : Q) — B satisfy the following conditions.
(1) Ux+Sy e Qforanyx,y € Q,
(ii) U is a contraction mapping, and
(iii) S is completely continuous.
Then U + S has a fixed point in Q.

2. Classifications of nonoscillatory solutions

In the following discussions, we assume throughout that
%&r?ocnzcoe(—l,o]. (2.1)
We set
Zn = Xn + CnXnk (2.2)
whenever it is defined. Equation (1.1) can now be written as
A"z = — f (1,%4-1). (2.3)

We will propose a classification scheme for the nonoscillatory solutions of (1.1). For
this purpose, we first note that if x = {x,,} is an eventually negative solution of (1.1), then
y = {yn} defined by y, = —x, will satisfy

~

A" (yn+ cyn-k) + f (1, yn-1) = 0, (2.4)
where

f(n,u)=—f(n,—u), neN(0), ucR (2.5)
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has the same properties satisfied by f, that is, f is a continuous function defined on
{0,1,...} X R such that f = fN(n,u) is nondecreasing in the second variable # and satisfies
u f(n, u) >0 for u # 0 and n > 0. Therefore, we may restrict our attention to the set S* of
all eventually positive solutions of (1.1). Motivated by the classification scheme in [2], we
make use of the following notations for classifying our eventually positive solutions:

Xn

_ + LT o i
Ax(a, ) = {{xn} €S %1{130 D = a,%hngo o —/5}, k=>1,

(2.6)

Ag(a) = {{xn} est: ,l,ijlolox” = oc}.
THEOREM 2.1. (a) Suppose that m is even. If x = {x,} is an eventually positive solution
of (1.1), then either x € A¢(0) or there are some j € {1,2,...,m/2} and a >0 such that x
belongs to Ayj_1(o0,a), Azj—1(0,0) or Ayj—1(a,0). (b) Suppose that m is odd. If x = {x,}
is an eventually positive solution of (1.1), then either x belongs to Ao(e) for some a = 0, or
there are j € {1,2,...,(m —1)/2} and a > 0 such that x belongs to Asj(,a), A3j(,0) or
Azj (61,0).

Proof. Let m is even and x = {x,} be an eventually positive solution of (1.1). Then, in
view of (2.3), there exists some integer N > 0 such that A"z, < 0 for n > N. Therefore, z,
is eventually of fixed sign. For the sake of simplicity, we may assume that {z,} is of fixed
sign for n > N.

First of all, suppose z, < 0 for n = N. By the same reasoning as in the proof of Lemma
1.2, we may show that

){im Zn+ak = 0. (2.7)

On the other hand, in view of Lemma 1.4, there exists some even m* with 0 < m* <m
such that eventually Aiz, < 0 for 0 <i < m* and (—1)" Az, <0 for m*+1 <i < m.
There are now two cases to consider.

Case I (m* =0). Then we have eventually

z, <0, Az, > 0. (2.8)
By (2.8), we can set
limz, =Ly <0. (2.9)
n— o0
In view of (2.7), we find that lim,— « z, = 0. By Lemma 1.2, we have lim,,—.. x, = 0. Hence
x belongs to A((0).
Case 2 (m* = 2). Then we have eventually

z, <0, Az, < 0. (2.10)

It implies limy,— 1 2, < 0 which is contrary to (2.7). Hence m* > 2 does not hold.
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Now we suppose z, >0 for n = N. Similar to the proof in [7, Theorem 1], we may see
that x belongs to Az;_1(0,a), Azj—1(,0) or A;_1(a,0) for some j € {1,2,...,m/2} and
a>0.

When m is odd, the proof is similar to those above and hence is skipped. The proof is
complete. 0

3. Existence criteria

Eventually positive (and by analog eventually negative) solutions of (1.1) have been clas-
sified according to Theorem 2.1. We now justify our classification schemes by finding
existence criteria for each type of solutions.

TueoreM 3.1. Suppose that m is even. If (1.1) has a solution in Ayj_i(o0,a) for some j €
{1,2,...,m/2} and a > 0, then there exists some K > 0 such that

i%fj)’“” F(KG— D) < o, (3.1)

The converse is also true.

Proof. First of all, we remark that

(Y]

S5 S fliw) = UV ) )
R A-=1)!

= i=n

=

=
|
Il

=

Let x = {x,} be an eventually positive solution of (1.1) in A;; 1(c0,a). Then we may
suppose that there exists an integer Ny > 0 such that x,, >0 and x,_; > 0 for n > Ny. In
view of (2.3), we have A"z, < 0 for n > Ny. Thereby {Az,} is eventually monotonic for
i=0,1,2,...,m— 1. Since lim, . (x,/n?~V) = a > 0, there exists some integer N; > Ny
such that

%an(zj*” <x, < %an(zj*”, n>Nj. (3.3)

Note that lim,,— « (z,/n%~V) = (1 + ¢y)a implies

lim A%z, = (1+¢p)a(2j — 1)L (3.4)

By (3.4) and the monotonicity of Aiz,, we have

lim A'z, =0, i=2j,2j+1,....m— L. (3.5)

n— oo

Summing (2.3) m — 2j times from 7 to N, and invoking (3.5) in each time, we obtain

A¥z, =— i i if(il’xilfl)

im 2j=n i2:i3 i1=iz

(i-n+m—2j—1)m-2-Y

:_z (m—=2j—-1)!

(3.6)

f(i,x,;l), n > Nj.
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Summing the above equation again from N; to n, we obtain

A2z, = Ay — Z z (=i +n”: 22]]_1)) " 2jil)f(il,x,-l,l). (3.7)
=N\ i1=i, :
By (3.4), the above equation implies that
i i ll—lz+n1:1 22]1_—11))'m 2j71)f(i1,x,-1,1)<oo, n=Ni. (3.8)
bh=ni=i :
That is,
i(i_”+m_2j)(m_2j)f(i,xi_l)<oo, n=N. (3.9)

= (m—2j)!
Let K = a/2. In view of (3.3), (3.9) and the monotonicity of f(n,x) in x, we see that (3.1)
holds.

Conversely, suppose (3.1) holds for some K > 0. Set R, = n>/=V_ In view of (3.2), we
have

0 (o]
D I (R CRU R
Im=2j+1 =M im—2j=im—2j+1 =iz iy =i

(3.10)

—n+ 2)’“1) N
S o),

Note that (2.1), there are two cases to consider.

In case —1 < ¢y < 0, take ¢; so that —cq < ¢; < (1 —4cg)/5 < 1. Then (1 — 5¢1)/(4co) <
1. Note that lim, .« (¢, |R./Ry_k_1) = |col, lim, o (R,_x/R,;) = 1 and (3.1) holds. Thus
there exists an integer N > k + [ such that when n > N, we have

|Cn|Rn

<c, (3.11)
Rojr
—Cy <01, (3.12)
Rnfk 1- 5C1

> — 3.13
R, 4c, ( )

> > ; 1-¢)K
DOED YRERD Sy (N O L) ISR S ER Y

im-2j+1=N im-2j=im-2j+1 i1=iy

Take No = N — k — I, r, = R? and define the Banach space Iy, asin (1.4). Let

1
Q= {x ely,: EKR" <Xy < KR,,}. (3.15)
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Then it is obvious that Q is a bounded, convex and closed subset of lﬁo, and for any x €
Q and n = Ny + [, we have

f(nxn1) < f(n,K(n - l)Qj*l)). (3.16)
Define operators U and S on Q as follows:

(3 CNXN_—
—2c,KR, — NXN—k

R, No=<n<N
4 Ry n o=n
(Ux)n = 3
—chKRn—cnxn,k n>N,
(3.17)
EKR,Z No<n<N
4
(Sx)n = 3
ZKR;H'F(”) n=N,
where
n—1 im—2j+4*1 l‘m—Zﬁ}*l ) o Y]
Fn)= > --- > > > > D flinx). (318
im=N im-2j43=N im-2j42=N im-2js1=Im-2j+2 im—2j=Im-2j+1 i1=iy

In view of (3.16) and (3.14),we have

im*z’i‘_l im?z’zﬁ_l (1-c)K _ (1—c;)K(n—N)@&D - (l—cl)KR
8 8(2j —1)! -8 "

n—1
F(n)< > ---
im=N

im-2j4+3=N im-2j42=N

(3.19)

forn > N.

Next, we will show that the operators U and S satisty the conditions of Kranoselskii’s
fixed point theorem.

First, we claim that Ux + Sy € Q for any x, y € Q. Indeed, for Ny < n < N, in view of
(3.13) and (3.12), we have

3 . 3 Ry 1
2(1—e)K - chNk)Rn > ((1 —cl)K—cNKNk>R,, = JKR,,

(Ux)n + (Sy)n = <4 Ry 4 2Ry

(Ux)n+ (Sy)n < (z(l —c1)K - CNKRN_k)Rn < (i(l —c) +c1)KRn <KR,.

Ry 4
(3.20)
When # = N, invoking (3.13) again, we have
3 3 1 _R,_ 1
(Ux)a+(Sy)u = 5 (1= c)KRy = cuxni = (1= 1) KRy — 605K 1’; kR, > KR,

(3.21)
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and, in view of (3.19) and (3.12), we have

3 1—¢)K
(Ux)n+(Sy)n < Z(l —c1)KR, — cpxn_k + %Rn
(3.22)
1-¢)K
< 2(1 —¢1)KR, — c, KR,k + (1=a)k SC‘) R, < KR,.
That is, Ux+ Sy € Q for any x, y € Q.
Let x, y € Q. In view of (3.11), we have
1 _ |CN||XN—k—yN—k|
) | (Ux)y = (Uy)al| = RuR.
, (3.23)
—k— VN— R —
EY k= k| Jen Ry < sup | %n I
RN—k RNRn n=N, Rn
for Ng < n < N. And, for n > N, we have
1 |xn _}’n|
— | (U. —(U < —_— 3.24
R%|( X)n—( }’)n| |Cn|:;11\1]70 R% ( )
Therefore, we have
lUx—=Uyll <cllx—yll (3.25)

for any x, y € Q. Hence, U is a contraction mapping.

Next, we will prove that S is a completely continuous mapping. Indeed, it is obvious
that (Sx),, = (K/2)R, for n = Ny and (8x), < KR, for Ny < n < N. When n = N, by means
of (3.19), we have

(I—CI)K

3
(SX)n < ZKR,,'F 3

R, <KR,. (3.26)

That is, the operator S maps () into Q.

Now we consider the continuity of S. Let W e Qand ||xW — x|| — 0 when A — o0, we
assert that Sx® converges to Sx by || - [|. Indeed, lx® — x|| — 0 implies that x € () and
Ix;(f\) — x| — 0 when A — co for any integer n > Ny. Thereby, we have

)f(n,xff_)» — f(n,xn-1) ‘ —0, A— (3.27)
for any integer n > Ny + . By definition of S, we have
[ (8xM),, = ($x)u| =0 (3.28)
for Ng <n< N and

| (5xM), = (Sx) | < Ha(n) (3.29)
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for n > N, where

n—1 im72j+471 z'm—2j+3*1 [+ 0 o
Hm= - > > 3 S | i) = f (i) |-
im=N im-2j+3=N im-2jr2=N im—2js1=im-2j+2 m-2j=im-2j+1 i1 =iy
(3.30)
In view of (3.16), we have
’f(ihxl(,/\zz) — f (i, xi-1) ‘ < 2f<i1,K(1'1 - l)(zjil)), n>Ny+1. (3.31)
Thus
n—1 im—2jra—1 im-2j43—1 ) o
YO IRTTED S YRS YRR YRRRPPD o V(WL B Cee |
im=N im-2j+3=N im—2j42=N im—2js1 =N im-2j=im—2j+1 i1=ip
<R, Z Z P Z ‘f(il,xfﬁﬁ —f(il,xil_l) )
im—2j41=N im-2j=im-2j+1 i1=i
(3.32)
To sum up, we have
1 < < ,
||(qu))n - (Sx)n|| < sup R_ z Z Z ’f i1,X 11 l f(zl,x,-l,l) ‘
n2No S G i =N dyeaj=im2je1 i1=
(1—N+m 2])(m 2j) . ) -
- 3 M) <G|
(3.33)

In view of (3.27) and (3.31), the Lebesque’s dominated theorem [3] then implies
limy— o [[(Sx}) — (Sx)|| = 0. This means S is continuous.

Finally, we prove that SQ is relatively compact. We assert that SQ is uniformly Cauchy.
Indeed, for any ¢ > 0, there exists N; > N such that 1/R, < ¢/3K for n > N,. For any x € Q)
and ij,i, > Ny, in view of (3.19), we have that

(S¥)iy _ (Sx)iy | _ (Sx)iy  (Sx)i, _ 3K

2 2 - 2 2
Ri[ Riz Ri] Riz

By Lemma 1.1, SQ is relatively compact.
To sum up, we have proved that S is a completely continuous mapping.
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By the Kranoselskii’s fixed point theorem, there then exists x = {x,} € Q such that
(Ux)n + (Sx), = x,. Therefore, we have

3
xn = Z (1 - Cl)KRn - Cnxn—k +F(n)) n= N (3'35)

It is easy to verify that x, satisfy (1.1). Furthermore, we have

Y]

AT F(n) = > i e i f (i1, xi,-1)

Im-2j+1 =M im—2j=im-2j+1 i =i
(3.36)
> > ; (2] 1)
< 2 2. Z K ( ).
Im-2j+1 =M im—2j=im—2j+1 i =iy
In view of (3.1) and (3.10), we have
lim A¥~'F(n) =0, (3.37)
n— o0
so that
. F(n)
Now we turn to (3.35) and obtain
Zn 3
By Lemma 1.2, we have
lim % _ 3= c)K (3.40)

n—c n2i-1  4(1+c¢y)

which infers that lim,,—  (x,/n'%~?)) = c0. In summary, (1.1) has a solution in Az (c0,a)
when —1 < ¢y <0.

In case ¢y = 0, take ¢; so that 0 < ¢; < 1/3. Then, there exists an integer N > k + [ such
that when n = N, (3.11) to (3.14) hold. Take operators U and S to be the same operators
as above. Then we may prove in similar manners that (1.1) has a solution in A,; (0, a).
The proof is complete. O

A similar theorem holds when m is odd, the proof is similar to that of Theorem 3.1
and hence is skipped.

THEOREM 3.2. Suppose m is odd. If (1.1) has a solution in A,;(c0,a) for some j € {1,2,...,
(m—1)/2} and a > 0, then there exists some K > 0 such that

i i+m—2j—1)m=2-D

21 f(LKGi=D®) < . (3.41)

The converse also holds.
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TueorEM 3.3. Suppose that m is even. If (1.1) has an eventually positive solution in As;_(a,
0) for some j € {1,...,m/2} and a > 0, then there is some K >0 such that

w0 (m—2j+1) .
O (4

The converse is also true.

The proof is similar to that of Theorem 3.1 by taking R, = n?/=2.

THEOREM 3.4. Suppose m is odd. If (1.1) has a solution in Ayj(a,0) for some j € {1,2,...,
(m—1)/2} and a > 0, then there is some K > 0 such that

i i+m—2j)m=2j)

= 25) f(LKGE=D@D) <, (3.43)

i=0

The converse also holds.

TueoreM 3.5. Suppose that m is even. If (1.1) has a solution in Azj_i(c0,0) for some j €
{1,2,...,m/2}, then

00 4. _ 9 :\(m=-2j)
i=0 )

S (i+m—2j+1)m=2+D)
(m—2j+1)!

f(i(i=DP) = . (3.45)

i=0

Conversely, if there is some j € {1,2,...,m/2} such that

S o2 (o) <o (340

(=9

(i+m—2j+1)m=2j*D
(m—=2j+1)!

M

Fii=DP) =, (3.47)

i=0

then (1.1) has a solution in Ayj_1(0,0).
Proof. Let x = {x,} be an eventually positive solution of (1.1) in Az;_;(c0,0). Note that
limy,— o (x,/n%~D) = 0, lim,— e (x,/n%~2)) = 00 and (2.3) holds. Therefore there exists
an integer Ny > 0 such that
A"z, <0, n=Ny, (3.48)
X, <n¥V > Ny, (3.49)

xp=n%" nx=Np. (3.50)
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In view of (3.48), {Az,} is eventually monotonic fori=0,1,2,...,m — 1. Since lim,_ « (z,/
121y = 0 and lim, .« (2,/n*72)) = 00, we have

lim A%~ 'z, =0, (3.51)
lim A%2z, = oco. (3.52)

In view of (3.51) and the monotonicity of {Az,}, we see that

lim Az, =0, i=2j,2j+1,...,m—1. (3.53)

n—oo
Now summing (2.3) m —2j + 1 times from Ny + [ to n and invoking (3.53), we have

) m—2j—1)

) (i—i+m—-2j—-1
A¥7lg n+l = =AY~ ZNO+I - Z Z
i,=No+l i1=1i> m 2J 1)!

f(il,xil,l). (3.54)
Noticing (3.50) and (3.51), we see that (3.44) holds.

By taking limits on both sides of (3.54) as #n — o and then replacing Ny + [ by n, we
see from (3.51) that

2j-1 > (il—n+m—2j)(m72j) )
ATz, = Z (m=2))! f(i1,xi,-1), n=No. (3.55)
i]=l1 °
Summing (3.55) from Ny + [ to n, we have
: : (ii—n+m-2 m=2j) .
A2]722n+1 - Az']izZNU_p] = Z Z ! m 2]57) f(llaxilfl)- (356)

= N(]+l i1=

Invoking (3.49) and (3.52), we see that (3.45) holds.

Conversely, we demonstrate the sufficiency. Suppose that —1 < ¢y < 0. Set L, = n(?/=?)
and R, =n%~V, Take ¢; so that —c < ¢; < (1—4cy)/5 < 1. Similar to the proof of Theorem
3.1, there exists an integer N > k + [ such that when n > N, we have

|c|R
2L, < R, —Cy = C1, —n < Cl,
Ry

(3.57)

[

L, 1-5c > (2 1) 1-c¢
zn = 4Cn 1’ Z Z ,z f(ll) : ) 8 1.

im-2j41=N im-2j=im-2j+1

Take No = N — k — I, r, = R? and define the Banach space I§, asin (1.4). Let

Q={xely :L, <x, <Ry} (3.58)
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Define two operators on (Q as follows:

1
EL” No<n<N
(Ux)n = 3
_ECIL” —CuXpn_k n=N,
) (3.59)
=L, No<n<N
2
(Sx)n = 3
EL" +F(n) n=>=N,
where
n—1 im—2jra—1 im—2js3—1 o 00 00
Fim= > - > 2 2. > > flinxa).  (3.60)
im=N im-2j43=N im-2j42=N im-2j41=Im-2j+2 im-2j=Im-2j+1 i1=i
Analogous to the discussions in Theorem 3.1, there exists x = {x,,} € Q such that
3
X, = 5(1*61)Ln*Cnxn—k+F(”)a n=>N. (3.61)
From (3.61) and (3.46), we see that
. Zn
By Lemma 1.2, we have
. Xn
Note that (3.47) implies
lim A%~2F(n) = oo. (3.64)
Hence, in view of (3.61) and Lemma 1.2, we see that
. X

This means (1.1) has an eventually positive solution in Az;_;(c0,0) when —1 < ¢y <0.
When ¢ = 0, we take ¢; so that 0 < ¢; < 1/3 and the rest of proof is the same as the
above and is thus skipped. The proof is complete. O

A result similar to Theorem 3.5 is the following.
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THEOREM 3.6. Suppose m is odd. If (1.1) has a solution in A;j(,0) for some j € {1,2,...,
(m—1)/2}, then

i(i+m—2j—1)(m—2]‘—1)f(l’(l_l) 2j-1) ><oo’

i=0 (m-2j-1)!
(i+m—2j)m=2) (3:66)
; m—zj).f(i,(i—z)un) .
Conversely, if
S (iemo2j )AL
f:ZO (m—2j-1)! Fii=D®) < oo,
(3.67)

i (i+m—2j)m=2)

= (m=2j)! f(ia(i—l)(21—1)> .

then (1.1) has a solution in Ayj(,0).

THEOREM 3.7. Suppose m is even and ¢ < 0. If there exist constants o > 0, ¢; with 0 < ¢; <
—co and integer M > k + [ such that

e >1 (3.68)

as well as

0 ._ _ -1)
PRSI SNSRI

then (1.1) has a solution in Ay(0).

Proof. First note that there exists integer N > M such that

1
e*“"<;, n=N-k-1, —c,=¢, n=N,
—Cp 1
k= "EN (3.70)
= (i—n+m—1)m-D 1
Z(l n(mm_l)') f(i,m>s(cle“k—l)e_“”, n=> N.

Take No = N — k — I, r, = 1 and define the Banach space I as in (1.4). Let

1
a=lreremsn <l (3.71)

Define two operators on ( as follows:

(Ux), =0 forn= Ny,

. . No<n<N (3.72)
! —CpXy_k —F(n) n>=N,
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where
Fn)= > > > > flin,x-1). (3.73)
[ ir=i3 i1=i

By arguments similar to those in the proof of Theorem 3.1, we may prove that there exists
x = {x,} € Q such that

Xp = —CpXn_k + F(n), n> N. (3.74)

In view of the definition of ), we see that x is a solution of (1.1) in A¢(0). The proof is
complete. O

A variant of Theorem 3.7 is the following and its proof is omitted.

TaEOREM 3.8. Suppose m is odd and cy < 0. If there exist constants o > 0, ¢, ¢ with 0 <
€1 < —¢p < ¢ < 1 and integer M > [+ k such that

ok 51 (3.75)

as well as

_ _1)m=1)
Z(l n+m )]-) f(l’:1l> S% n_k’ n=>M, (376)

then (1.1) has a solution in Ay(0).
THEOREM 3.9. Suppose that m is odd. If (1.1) has a solution in Ay(a) for some a > 0, then
there exists some K >0 such that

s (”m_—_l)(m) F,K) < o, (3.77)

The converse also holds.
The proof is similar to that of Theorem 3.1 and is skipped.

Example 3.10. Consider the equation

3 1
A? (xn — an—l) + Exn_l =0, (378)
here f(n,x) = (1/16)x.
It is clear that
> f,K(i—1)) = o, D (i+1)f(i,K) = o (3.79)
i=0 i=0

for any K >0 and

i(l‘r D)f(i,i—1) = co. (3.80)

i=0
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Hence by Theorems 3.1 and 3.3, an eventually positive solution of (3.78) cannot be in
A;(o0,a) nor in A;(a,0). In addition, by Theorem 3.5, an eventually positive solution of
(3.78) cannot be in A;(c0,0). However, by Theorem 2.1, (3.78) has a solution in A((0)
if it has some eventually positive solution. Indeed, {x,} = {1/2"} satisfies (3.78) and
lim, . x, = 0.

Consider another equation

1 1
N (x,1 — ng) 5okl T 0, (3.81)

here f(n,x) = (1/80)x. Then, it is easy to see that

if(i,K(i— 1)?) = o, i(i+ D f(i,K(i—1)) = oo, (3.82)
i=0 i=0
as well as
(o] . (2)
7(”22) f(i,K) = (3.83)
i=0

for any K >0, and

[

> flii—1) = . (3.84)

i=0

By the similar reasons to the above, (3.81) has a solution in A((0) if it has some eventually
positive solution. Indeed, {x,} = {1/2"} is such a solution of (3.81).
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