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We study the solvability of the fractional integrodifferential equations of neutral type with infinite
delay in a Banach space X. An existence result of mild solutions to such problems is obtained
under the conditions in respect of Kuratowski’s measure of noncompactness. As an application of
the abstract result, we show the existence of solutions for an integrodifferential equation.

1. Introduction

The fractional differential equations are valuable tools in the modeling of many phenomena
in various fields of science and engineering; so, they attracted many researchers (cf., e.g.,
[1–6] and references therein). On the other hand, the integrodifferential equations arise
in various applications such as viscoelasticity, heat equations, and many other physical
phenomena (cf., e.g., [7–10] and references therein). Moreover, the Cauchy problem for
various delay equations in Banach spaces has been receivingmore and more attention during
the past decades (cf., e.g., [7, 10–15] and references therein).

Neutral functional differential equations arise in many areas of applied mathematics
and for this reason, the study of this type of equations has received great attention in the last
few years (cf., e.g., [12, 14–16] and references therein). In [12, 16], Hernández and Henrı́quez
studied neutral functional differential equations with infinite delay. In the following, we
will extend such results to fractional-order functional differential equations of neutral type
with infinite delay. To the authors’ knowledge, few papers can be found in the literature for
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the solvability of the fractional-order functional integrodifferential equations of neutral type
with infinite delay.

In the present paper, we will consider the following fractional integrodifferential
equation of neutral type with infinite delay in Banach space X:

dq

dtq
(x(t) − h(t, xt)) = A(x(t) − h(t, xt)) +

∫ t

0
β(t, s)f(s, x(s), xs)ds, t ∈ [0, T],

x(t) = φ(t) ∈ P, t ∈ (−∞, 0],

(1.1)

where T > 0, 0 < q < 1, P is a phase space that will be defined later (see Definition 2.5). A is
a generator of an analytic semigroup {S(t)}t≥0 of uniformly bounded linear operators on X.
Then, there exists M ≥ 1 such that ‖S(t)‖ ≤ M. h : [0, T] × P → X, f : [0, T] ×X × P → X,
β : D → R (D = {(t, s) ∈ [0, T] × [0, T] : t ≥ s}), and xt : (−∞, 0] → X defined by
xt(θ) = x(t + θ), for θ ∈ (−∞, 0], φ belongs to P and φ(0) = 0. The fractional derivative is
understood here in the Caputo sense.

The aim of our paper is to study the solvability of (1.1) and present the existence of
mild solution of (1.1) based on Kuratowski’s measures of noncompactness. Moreover, an
example is presented to show an application of the abstract results.

2. Preliminaries

Throughout this paper, we set J := [0, T] and denote by X a real Banach space, by L(X) the
Banach space of all linear and bounded operators on X, and by C(J, X) the Banach space of
all X-valued continuous functions on J with the uniform norm topology.

Let us recall the definition of Kuratowski’s measure of noncompactness.

Definition 2.1. Let B be a bounded subset of a seminormed linear space Y . Kuratowski’s
measure of noncompactness of B is defined as

α(B) = inf
{
d > 0 : B has a finite cover by sets of diameter ≤ d

}
. (2.1)

This measure of noncompactness satisfies some important properties.

Lemma 2.2 (see [17]). Let A and B be bounded subsets of X. Then,

(1) α(A) ≤ α(B) if A ⊆ B,

(2) α(A) = α(A), where A denotes the closure of A,

(3) α(A) = 0 if and only if A is precompact,

(4) α(λA) = |λ|α(A), λ ∈ R,

(5) α(A ∪ B) = max{α(A), α(B)},
(6) α(A + B) ≤ α(A) + α(B), where A + B = {x + y : x ∈ A, y ∈ B},
(7) α(A + a) = α(A) for any a ∈ X,

(8) α(convA) = α(A), where convA is the closed convex hull of A.
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For H ⊂ C(J, X), we define
∫ t

0
H(s)ds =

{∫ t

0
u(s)ds : u ∈ H

}
for t ∈ J, (2.2)

where H(s) = {u(s) ∈ X : u ∈ H}.
The following lemmas will be needed.

Lemma 2.3 (see [17]). IfH ⊂ C(J, X) is a bounded, equicontinuous set, then

α(H) = sup
t∈J

α(H(t)). (2.3)

Lemma 2.4 (see [18]). If {un}∞n=1 ⊂ L1(J, X) and there exists anm ∈ L1(J,R+) such that ‖un(t)‖ ≤
m(t), a.e. t ∈ J , then α({un(t)}∞n=1) is integrable and

α

({∫ t

0
un(s)ds

}∞

n=1

)
≤ 2

∫ t

0
α({un(s)}∞n=1)ds. (2.4)

The following definition about the phase space is due to Hale and Kato [11].

Definition 2.5. A linear space P consisting of functions from R− into X with semi-norm ‖ · ‖P
is called an admissible phase space if P has the following properties.

(1) If x : (−∞, T] → X is continuous on J and x0 ∈ P, then xt ∈ P and xt is continuous
in t ∈ J and

‖x(t)‖ ≤ C‖xt‖P, (2.5)

where C ≥ 0 is a constant.

(2) There exist a continuous functionC1(t) > 0 and a locally bounded functionC2(t) ≥ 0
in t ≥ 0 such that

‖xt‖P ≤ C1(t) sup
s∈[0,t]

‖x(s)‖ + C2(t)‖x0‖P, (2.6)

for t ∈ [0, T] and x as in (1).

(3) The space P is complete.

Remark 2.6. (2.5) in (1) is equivalent to ‖φ(0)‖ ≤ C‖φ‖P, for all φ ∈ P.

The following result will be used later.

Lemma 2.7 (see [19, 20]). Let U be a bounded, closed, and convex subset of a Banach space X such
that 0 ∈ U, and let N be a continuous mapping of U into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} =⇒ α(V ) = 0 (2.7)

holds for every subset V of U, thenN has a fixed point.
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LetΩ be a set defined by

Ω =
{
x : (−∞, T] −→ X such that x|(−∞, 0] ∈ P, x|J ∈ C(J, X)

}
. (2.8)

Motivated by [4, 5, 21], we give the following definition of mild solution of (1.1).

Definition 2.8. A function x ∈ Ω satisfying the equation

x(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t ∈ (−∞, 0],

−Q(t)h
(
0, φ

)
+ h(t, xt) +

∫ t

0

∫ s

0
R(t − s)β(s, τ)f(τ, x(τ), xτ)dτ ds, t ∈ J

(2.9)

is called a mild solution of (1.1), where

Q(t) =
∫∞

0
ξq(σ)S(tqσ)dσ,

R(t) = q

∫∞

0
σtq−1ξq(σ)S(tqσ)dσ

(2.10)

and ξq is a probability density function defined on (0, ∞) such that

ξq(σ) =
1
q
σ−1−(1/q)
q

(
σ−1/q

)
≥ 0, (2.11)

where


q(σ) =
1
π

∞∑
n=1

(−1)n−1σ−qn−1 Γ
(
nq + 1

)
n!

sin
(
nπq

)
, σ ∈ (0,∞). (2.12)

Remark 2.9. According to [22], direct calculation gives that

‖R(t)‖ ≤ Cq,Mtq−1, t > 0, (2.13)

where Cq,M = qM/Γ(1 + q).

We list the following basic assumptions of this paper.

(H1) f : J ×X × P → X satisfies f(·, v,w) : J → X is measurable, for all (v,w) ∈ X × P
and f(t, ·, ·) : X × P → X is continuous for a.e. t ∈ J , and there exist two positive
functions μi(·) ∈ L1(J,R+) (i = 1, 2) such that

‖f(t, v,w)‖ ≤ μ1(t)‖v‖ + μ2(t)‖w‖P, (t, v,w) ∈ J ×X × P. (2.14)
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(H2) For any bounded sets D1 ⊂ X, D2 ⊂ P, and 0 ≤ s ≤ t ≤ T , there exists an integrable
positive function η such that

α
(
R(t − s)f(τ,D1, D2)

) ≤ ηt(s, τ)

(
α(D1) + sup

−∞<θ≤0
α(D2(θ))

)
, (2.15)

where ηt(s, τ) := η(t, s, τ) and supt∈J
∫ t
0

∫s
0 ηt(s, τ)dτds := η∗ < ∞.

(H3) There exists a constant L > 0 such that

‖h(t1, ϕ) − h
(
t2, ϕ̃

)‖ ≤ L
(
|t1 − t2| + ‖ϕ − ϕ̃‖P

)
, t1, t2 ∈ J, ϕ, ϕ̃ ∈ P. (2.16)

(H4) For each t ∈ J , β(t, s) is measurable on [0, t] and β(t) = ess sup{|β(t, s)|, 0 ≤ s ≤ t}
is bounded on J . The map t → Bt is continuous from J to L∞(J,R), here, Bt(s) =
β(t, s).

(H5) There existsM∗ ∈ (0, 1) such that

LC∗
1 +

TqβCq,M

q

(
‖μ1‖L1(J, R+) + C∗

1‖μ2‖L1(J, R+)

)
< M∗, (2.17)

where C∗
1 = supt∈JC1(t), β = supt∈Jβ(t).

3. Main Result

In this section, we will apply Lemma 2.7 to show the existence of mild solution of (1.1). To
this end, we consider the operator Φ : Ω → Ω defined by

(Φx)(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t∈(−∞, 0],

−Q(t)h
(
0, φ

)
+ h(t, xt) +

∫ t

0

∫ s

0
R(t − s)β(s, τ)f(τ, x(τ), xτ)dτ ds, t ∈ J.

(3.1)

It follows from (H1), (H3), and (H4) that Φ is well defined.
It will be shown thatΦ has a fixed point, and this fixed point is then a mild solution of

(1.1).
Let y(·) : (−∞, T] → X be the function defined by

y(t) =

⎧⎨
⎩
φ(t), t ∈ (−∞, 0],

0, t ∈ J.
(3.2)

Set x(t) = y(t) + z(t), t ∈ (−∞, T].
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It is clear to see that x satisfies (2.9) if and only if z satisfies z0 = 0 and for t ∈ J ,

z(t) = −Q(t)h
(
0, φ

)
+ h
(
t, yt + zt

)
+
∫ t

0

∫ s

0
R(t − s)β(s, τ)f

(
τ, y(τ) + z(τ), yτ + zτ

)
dτ ds.

(3.3)

Let Z0 = {z ∈ Ω : z0 = 0}. For any z ∈ Z0,

‖z‖Z0
= sup

t∈J
‖z(t)‖ + ‖z0‖P = sup

t∈J
‖z(t)‖. (3.4)

Thus, (Z0, ‖ · ‖Z0) is a Banach space. Set

Br =
{
z ∈ Z0 : ‖z‖Z0

≤ r
}
, for some r > 0. (3.5)

Then, for z ∈ Br , from(2.6), we have

‖yt + zt‖P ≤ ‖yt‖P + ‖zt‖P
≤ C1(t)sup

0≤τ≤t
‖y(τ)‖ + C2(t)‖y0‖P +C1(t)sup

0≤τ≤t
‖z(τ)‖ + C2(t)‖z0‖P

= C2(t)‖φ‖P + C1(t)sup
0≤τ≤t

‖z(τ)‖

≤ C∗
2 · ‖φ‖P + C∗

1r := r∗,

(3.6)

where C∗
2 = sup0≤η≤TC2(η).

In order to apply Lemma 2.7 to show that Φ has a fixed point, we let Φ̃ : Z0 → Z0 be
an operator defined by (Φ̃z)(t) = 0, t ∈ (−∞, 0] and for t ∈ J ,

(
Φ̃z
)
(t) = −Q(t)h

(
0, φ

)
+ h
(
t, yt + zt

)

+
∫ t

0

∫ s

0
R(t − s)β(s, τ)f

(
τ, y(τ) + z(τ), yτ + zτ

)
dτ ds.

(3.7)

Clearly, the operator Φ has a fixed point is equivalent to Φ̃ has one. So, it turns out to
prove that Φ̃ has a fixed point.

Now, we present and prove our main result.

Theorem 3.1. Assume that (H1)–(H5) are satisfied, then there exists a mild solution of (1.1) on
(−∞, T] provided that L + 16βη∗ < 1.

Proof. For z ∈ Br , t ∈ J , from (3.6), we have

‖f(t, y(t) + z(t), yt + zt
)‖ ≤ μ1(t)‖y(t) + z(t)‖ + μ2(t)‖yt + zt‖P

≤ μ1(t)r + μ2(t)r∗.
(3.8)
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In view of (H3),

‖h(t, yt + zt
)‖ ≤ ‖h(t, yt + zt

) − h(t, 0)‖ + ‖h(t, 0)‖
≤ L‖yt + zt‖P +M1

≤ Lr∗ +M1,

(3.9)

where M1 = supt∈J‖h(t, 0)‖.
Next, we show that there exists some r > 0 such that Φ̃(Br) ⊂ Br . If this is not true,

then for each positive number r, there exist a function zr(·) ∈ Br and some t ∈ J such that
‖(Φ̃zr)(t)‖ > r. However, on the other hand, we have from (3.8), (3.9), and (H4)

r < ‖
(
Φ̃zr

)
(t)‖

≤ ‖ −Q(t)h
(
0, φ

)‖ + ‖h(t, yt + zrt
)‖

+
∫ t

0

∫ s

0
‖R(t − s)β(s, τ)f

(
τ, y(τ) + zr(τ), yτ + zrτ

)‖dτ ds

≤ LM‖φ‖P +MM1 + Lr∗ +M1 + βCq,M

∫ t

0

∫ s

0
(t − s)q−1

[
μ1(τ)r + μ2(τ)r∗

]
dτ ds

≤ LM‖φ‖P +MM1 + Lr∗ +M1 + βrCq,M

∫ t

0

∫ s

0
(t − s)q−1μ1(τ)dτ ds

+ βr∗Cq,M

∫ t

0

∫ s

0
(t − s)q−1μ2(τ)dτ ds

≤ L
(
M‖φ‖P + r∗

)
+M1(M + 1) +

TqβCq,M

q

[
r‖μ1‖L1(J,R+) + r∗‖μ2‖L1(J,R+)

]
.

(3.10)

Dividing both sides of (3.10) by r, and taking r → ∞, we have

LC∗
1 +

TqβCq,M

q

(
‖μ1‖L1(J,R+) + C∗

1‖μ2‖L1(J,R+)

)
≥ 1. (3.11)

This contradicts (2.17). Hence, for some positive number r, Φ̃(Br) ⊂ Br .
Let {zk}k∈N ⊂ Br with zk → z in Br as k → ∞. Since f satisfies (H1), for almost every

t ∈ J , we get

f
(
t, y(t) + zk(t), yt + zkt

)
−→ f

(
t, y(t) + z(t), yt + zt

)
, as k → ∞. (3.12)
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In view of (3.6), we have

∥∥∥yt + zkt

∥∥∥
P
≤ r∗. (3.13)

Noting that

∥∥∥f(t, y(t) + zk(t), yt + zkt

)
− f
(
t, y(t) + z(t), yt + zt

)∥∥∥ ≤ 2μ1(t)r + 2μ2(t)r∗, (3.14)

we have by the Lebesgue Dominated Convergence Theorem that

∥∥∥(Φ̃zk
)
(t) −

(
Φ̃z
)
(t)
∥∥∥

≤
∥∥∥h(t, yt + zkt

)
− h
(
t, yt + zt

)∥∥∥

+
∫ t

0

∫ s

0

∥∥∥R(t − s)β(s, τ)
[
f
(
τ, y(τ) + zk(τ), yτ + zkτ

)
− f
(
τ, y(τ) + z(τ), yτ + zτ

)]∥∥∥dτ ds

≤ L
∥∥∥zkt − zt

∥∥∥
P

+ βCq,M

∫ t

0

∫ s

0
(t − s)q−1

∥∥∥f(τ, y(τ) + zk(τ), yτ + zkτ

)
− f
(
τ, y(τ) + z(τ), yτ + zτ

)∥∥∥dτ ds
−→ 0, k −→ ∞.

(3.15)

Therefore, we obtain

lim
k→∞

∥∥∥Φ̃zk − Φ̃z
∥∥∥
Z0

= 0. (3.16)

This shows that Φ̃ is continuous.
Set

G
(
·, y(·) + z(·), y(·) + z(·)

)
:=
∫ ·

0
β(·, τ)f(τ, y(τ) + z(τ), yτ + zτ

)
dτ. (3.17)

Let 0 < t2 < t1 < T and z ∈ Br , then we can see

∥∥∥(Φ̃z
)
(t1) −

(
Φ̃z
)
(t2)

∥∥∥ ≤ I1 + I2 + I3 + I4, (3.18)
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where

I1 = ‖Q(t1) −Q(t2)‖ ·
∥∥h(0, φ)∥∥,

I2 =
∥∥∥h(t1, yt1

+ zt1

)
− h
(
t2, yt2

+ zt2

)∥∥∥,

I3 =

∥∥∥∥∥
∫ t2

0
[R(t1 − s) − R(t2 − s)]G

(
s, y(s) + z(s), ys + zs

)
ds

∥∥∥∥∥,

I4 =
∫ t1

t2

‖R(t1 − s)‖∥∥G(s, y(s) + z(s), ys + zs
)∥∥ds.

(3.19)

It follows the continuity of S(t) in the uniform operator topology for t > 0 that I1 tends
to 0, as t2 → t1. The continuity of h ensures that I2 tends to 0, as t2 → t1.

For I3, we have

I3 ≤ q

∫ t2

0

∫∞

0
σ
∥∥∥[(t1 − s)q−1 − (t2 − s)q−1

]
ξq(σ)S

(
(t1 − s)qσ

)
G
(
s, y(s) + z(s), ys + zs

)∥∥∥dσds

+ q

∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

∥∥S((t1 − s)qσ
) − S

(
(t2 − s)qσ

)∥∥

× ∥∥G(s, y(s) + z(s), ys + zs
)∥∥dσ ds

≤ Cq,M

∫ t2

0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣∥∥G(s, y(s) + z(s), ys + zs

)∥∥ds

+ q

∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

∥∥S((t1 − s)qσ
) − S

(
(t2 − s)qσ

)∥∥

× ∥∥G(s, y(s) + z(s), ys + zs
)∥∥dσ ds,

≤ β
[
r‖μ1‖L1(J,R+) + r∗‖μ2‖L1(J,R+)

]

×
[
Cq,M

∫ t2

0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣ds

+q
∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

∥∥S((t1 − s)qσ
) − S

(
(t2 − s)qσ

)∥∥dσ ds

]
.

(3.20)
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Clearly, the first term on the right-hand side of (3.20) tends to 0 as t2 → t1. The second term
on the right-hand side of (3.20) tends to 0 as t2 → t1 as a consequence of the continuity of
S(t) in the uniform operator topology for t > 0.

In view of the assumption of μi(s) (i = 1, 2) and (3.8), we see that

I4 ≤ Cq,M

∫ t1

t2

(t1 − s)q−1‖G(s, y(s) + z(s), ys + zs
)‖ds

≤ βCq,M

[
r‖μ1‖L1(J,R+) + r∗‖μ2‖L1(J,R+)

] ∫ t1

t2

(t1 − s)q−1ds

−→ 0, as t2 −→ t1.

(3.21)

Thus, Φ̃(Br) is equicontinuous.

Now, let V be an arbitrary subset of Br such that V ⊂ conv(Φ̃(V ) ∪ {0}).
Set (Φ̃1z)(t) = h(t, yt + zt),

(
Φ̃2z

)
(t) = −Q(t)h

(
0, φ

)
+
∫ t

0

∫ s

0
R(t − s)β(s, τ)f

(
τ, y(τ) + z(τ), yτ + zτ

)
dτ ds. (3.22)

Noting that for z, z̃ ∈ V , we have

‖h(t, yt + z̃t
) − h

(
t, yt + zt

)‖ ≤ L‖z̃t − zt‖P. (3.23)

Thus,

α
(
h
(
t, yt + Vt

)) ≤ Lα(Vt) ≤ L sup
−∞<θ≤0

α(V (t + θ)) = Lsup
0≤τ≤t

α(V (τ)) ≤ Lα(V ), (3.24)

where Vt = {zt : z ∈ V }. Therefore, α(Φ̃1V ) = supt∈Jα((Φ̃1V )(t)) ≤ Lα(V ).
Moreover, for any ε > 0 and bounded set D, we can take a sequence {vn}∞n=1 ⊂ D such

that α(D) ≤ 2α({vn}) + ε (see [23], P125). Thus, for {vn}∞n=1 ⊂ V , noting that the choice of V ,
and from Lemmas 2.2–2.4 and (H2), we have
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α
(
Φ̃2V

)
≤ 2α

({
Φ̃2vn

})
+ ε = 2 sup

t∈J
α
({

Φ̃2vn(t)
})

+ ε

= 2 sup
t∈J

α

({∫ t

0
R(t − s)

∫ s

0
β(s, τ)f

(
τ, y(τ) + vn(τ), yτ + vnτ

)
dτds

})
+ ε

≤ 4 sup
t∈J

∫ t

0
α

({
R(t − s)

∫ s

0
β(s, τ)f

(
τ, y(τ) + vn(τ), yτ + vnτ

)
dτ

})
ds + ε

≤ 8 sup
t∈J

∫ t

0

∫ s

0
α
({

R(t − s)β(s, τ)f
(
τ, y(τ) + vn(τ), yτ + vnτ

)})
dτ ds + ε

≤ 8β sup
t∈J

∫ t

0

∫ s

0
α
({
R(t − s)f

(
τ, y(τ) + vn(τ), yτ + vnτ

)})
dτ ds + ε

≤ 8β sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ)

[
α({vn(τ)}) + sup

−∞<θ≤0
α({vn(θ + τ)})

]
dτ ds + ε

≤ 8β sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ)

[
α({vn}) + sup

0≤μ≤τ
α
({
vn

(
μ
)})]

dτ ds + ε

≤ 16βα({vn})sup
t∈J

∫ t

0

∫ s

0
ηt(s, τ)dτ ds + ε ≤ 16βη∗α(V ) + ε.

(3.25)

It follows from Lemma 2.2 that

α(V ) ≤ α
(
Φ̃V

)
≤ α
(
Φ̃1V

)
+ α
(
Φ̃2V

)
≤ (L + 16βη∗)α(V ) + ε, (3.26)

since ε is arbitrary, we can obtain

α(V ) ≤ (L + 16βη∗)α(V ). (3.27)

Hence, α(V ) = 0. Applying now Lemma 2.7, we conclude that Φ̃ has a fixed point z∗ in Br .
Let x(t) = y(t) +z∗(t), t ∈ (−∞, T], then x(t) is a fixed point of the operatorΦwhich is a mild
solution of (1.1).
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4. Application

In this section, we consider the following integrodifferential model:

∂q

∂tq

[
v(t, ξ) − t

∫0

−∞
γ1(θ)

|v(t + θ, ξ)|
1 + |v(t + θ, ξ)|dθ

]

=
∂2

∂ξ2

[
v(t, ξ) − t

∫0

−∞
γ1(θ)

|v(t + θ, ξ)|
1 + |v(t + θ, ξ)|dθ

]

+
∫ t

0
(t − s)

sk

k
sin|v(s, ξ)| ·

∫ s

0
cos v(τ, ξ)dτds

+
∫ t

0
(t − s)

∫0

−∞
γ2(θ) sin

(
s2|v(s + θ, ξ)|

)
dθds,

v(t, 0) − t

∫0

−∞
γ1(θ)

|v(t + θ, 0)|
1 + |v(t + θ, 0)|dθ = 0,

v(t, 1) − t

∫0

−∞
γ1(θ)

|v(t + θ, 1)|
1 + |v(t + θ, 1)|dθ = 0,

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0,

(4.1)

where 0 ≤ t ≤ 1, ξ ∈ [0, 1], k ∈ N, γ1, γ2 : (−∞, 0] → R, v0 : (−∞, 0]×[0, 1] → R are continuous
functions, and

∫0
−∞ |γi(θ)|dθ < ∞(i = 1, 2).

Set X = L2([0, 1],R) and define A by

D(A) = H2(0, 1) ∩H1
0(0, 1),

Au = u′′.
(4.2)

Then, A generates a compact, analytic semigroup S(·) of uniformly bounded, linear
operators, and ‖S(t)‖ ≤ 1.

Let the phase space P be BUC(R− , X), the space of bounded uniformly continuous
functions endowed with the following norm:

‖ϕ‖P = sup
−∞<θ≤0

∣∣ϕ(θ)∣∣, ∀ϕ ∈ P, (4.3)

then we can see that C1(t) = 1 in (2.6).
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For t ∈ [0, 1], ξ ∈ [0, 1] and ϕ ∈ BUC(R−, X), we set

x(t)(ξ) = v(t, ξ),

φ(θ)(ξ) = v0(θ, ξ), θ ∈ (−∞, 0],

h
(
t, ϕ
)
(ξ) = t

∫0

−∞
γ1(θ)

∣∣ϕ(θ)(ξ)∣∣
1 +

∣∣ϕ(θ)(ξ)∣∣dθ,

β(t, s) = t − s,

f
(
t, x(t), ϕ

)
(ξ) =

tk

k
sin|x(t)(ξ)| ·

∫ t

0
cosx(s)(ξ)ds +

∫0

−∞
γ2(θ) sin

(
t2
∣∣ϕ(θ)(ξ)∣∣)dθ.

(4.4)

Then (4.1) can be reformulated as the abstract (1.1).
Moreover, for t ∈ [0, 1], we can see

‖f(t, x(t), ϕ)(ξ)‖ ≤ tk+1

k
‖x(t)‖ + t2‖ϕ‖P

∫0

−∞

∣∣γ2(θ)∣∣dθ
= μ1(t)‖x(t)‖ + μ2(t)‖ϕ‖P,

(4.5)

where μ1(t) := tk+1/k, μ2(t) := t2
∫0
−∞ |γ2(θ)|dθ.

For t1, t2 ∈ [0, 1], ϕ, ϕ̃ ∈ P, we have

‖h(t1, ϕ) − h
(
t2, ϕ̃

)‖ ≤ |t1 − t2|
∫0

−∞

∥∥∥∥∥γ1(θ)
∣∣ϕ(θ)(ξ)∣∣

1 +
∣∣ϕ(θ)(ξ)∣∣

∥∥∥∥∥dθ

+ t2

∫0

−∞

∥∥∥∥∥γ1(θ)
( ∣∣ϕ(θ)(ξ)∣∣

1 +
∣∣ϕ(θ)(ξ)∣∣ −

∣∣ϕ̃(θ)(ξ)∣∣
1 +

∣∣ϕ̃(θ)(ξ)∣∣
)∥∥∥∥∥dθ

≤ |t1 − t2|
∫0

−∞

∣∣γ1(θ)∣∣dθ +
∫0

−∞

∣∣γ1(θ)∣∣dθ · ‖ϕ − ϕ̃‖P

= L
(
|t1 − t2| + ‖ϕ − ϕ̃‖P

)
,

(4.6)

where L =
∫0
−∞ |γ1(θ)|dθ.

Suppose further that there exists a constant M∗ ∈ (0, 1) such that

L +
Cq,M

q

(
‖μ1‖L1([0,1],R+) + ‖μ2‖L1([0,1],R+)

)
< M∗, (4.7)

then (4.1) has a mild solution by Theorem 3.1.
For example, if we put

γ1(θ) = γ2(θ) = ekθ, q = 0.5, k = 2, (4.8)
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then L = 1/2, Cq,M = 1/Γ(0.5) = 1/
√
π , ‖μ1‖L1([0,1],R+) = 1/8, ‖μ2‖L1([0,1],R+) = 1/6. Thus, we

see

L +
Cq,M

q

(
‖μ1‖L1([0,1],R+) + ‖μ2‖L1([0,1],R+)

)
=
1
2
+

2√
π

(
1
8
+
1
6

)
< 0.9 < 1. (4.9)
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Seminario Matematico della Università di Padova, vol. 75, pp. 1–14, 1986.

[21] Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,”Nonlinear Analysis:
Real World Applications, vol. 11, no. 5, pp. 4465–4475, 2010.

[22] F. Mainardi, P. Paradisi, and R. Gorenflo, “Probability distributions generated by fractional diffusion
equations,” in Econophysics: An Emerging Science, J. Kertesz and I. Kondor, Eds., Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000.

[23] D. Bothe, “Multivalued perturbations of m-accretive differential inclusions,” Israel Journal of
Mathematics, vol. 108, pp. 109–138, 1998.


	1. Introduction
	2. Preliminaries
	3. Main Result
	4. Application
	Acknowledgments
	References

