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We study strong stability and asymptotical almost periodicity of solutions to abstract Volterra
equations in Banach spaces. Relevant criteria are established, and examples are given to illustrate
our results.

1. Introduction

Owing to the memory behavior (cf., e.g., [1, 2]) of materials, many practical problems in
engineering related to viscoelasticity or thermoviscoelasticity can be reduced to the following
Volterra equation:

u′(t) = Au(t) +
∫ t

0
a(t − s)Au(s)ds, t ≥ 0,

u(0) = x

(1.1)

in a Banach space X, withA being the infinitesimal generator of a C0-semigroup T(t) defined
on X, and a(·) ∈ Lp(R+,C) a scalar function (R+ := [0,∞) and 1 ≤ p < ∞), which is often
called kernel function or memory kernel (cf., e.g., [1]). It is known that the above equation is
well-posed. This implies the existence of the resolvent operator S(t), and the mild solution is
then given by

u(t) = S(t)x, t ≥ 0, (1.2)
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which is actually a classical solution if x ∈ D(A). In the present paper, we investigate strong
stability and asymptotical almost periodicity of the solutions. For more information and
related topics about the two concepts, we refer to the monographs [3, 4]. In particular, their
connections with the vector-valued Laplace transform and theorems of Widder type can be
found in [4–6]. Recall the following.

Definition 1.1. Let X be a Banach space and f :R+ → X a bounded uniformly continuous
function.

(i) f is called almost periodic if it can be uniformly approximated by linear combinations
of eibtx (b ∈ R, x ∈ X). Denote by AP(R+, X) the space of all almost periodic
functions on R+.

(ii) f is called asymptotically almost periodic if f = f1 + f2 with limt→∞f1(t) = 0 and f2 ∈
AP(R+, X). Denote by APP(R+, X) the space of all asymptotically almost periodic
functions on R+.

(iii) We call (1.1) or S(t) strongly stable if, for each x ∈ D(A), limt→∞S(t)x = 0. We
call (1.1) or S(t) asymptotically almost periodic if for each x ∈ D(A), S(·)x ∈
APP(R+, X).

The following two results on C0-semigroup will be used in our investigation, among
which the first is due to Ingham (see, e.g., [7, Section 1] and the second is known as Countable
Spectrum Theorem [3, Theorem 5.5.6]. As usual, the letter i denotes the imaginary unit and iR
the imaginary axis.

Lemma 1.2. Suppose thatA generates a bounded C0-semigroup T(t) on a Banach spaceX. If σ(A)∩
iR = ∅, then

∥∥∥T(t)A−1
∥∥∥ −→ 0, t −→ 0. (1.3)

Lemma 1.3. Let T(t) be a bounded C0-semigroup on a reflexive Banach space X with generator A. If
σ(A) ∩ iR is countable, then T(t) is asymptotically almost periodic.

2. Results and Proofs

Asymptotic behaviors of solutions to the special case of a(t) ≡ 0 have been studied
systematically, see, for example, [3, Chapter 4] and [8, Chapter V]. The following example
shows that asymptotic behaviors of solutions to (1.1) are more complicated even in the finite-
dimensional case.

Example 2.1. Let X = C, A = −2I, a(t) = −e−t in (1.1). Then taking Laplace transform we can
calculate

u(t) =
1
3

(
1 + 2e−3t

)
x. (2.1)
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It is clear that the following assertions hold.

(a) The corresponding semigroup T(t) = e−2t is exponentially stable.
(b) Each solution with initial value x ∈ D(A), x /= 0 is not strongly stable and hence not

exponentially stable.

(c) Each solution with x ∈ D(A) is asymptotically almost periodic.

It is well known that the semigroup approach is useful in the study of (1.1). More
information can be found in the book [8, Chapter VI.7] or the papers [9–11].

Let X := X × Lp(R+, X) be the product Banach space with the norm

∥∥∥∥∥
(
x

f

)∥∥∥∥∥
2

:= ‖x‖2 + ∥∥f∥∥2
Lp(R+,X)

(2.2)

for each x ∈ X and f ∈ Lp(R+, X). Then the operator matrix

A :=

⎛
⎜⎝

A δ0

B
d
ds

⎞
⎟⎠, D(A) := D(A) ×W1,p(R+, X) (2.3)

generates a C0-semigroup onX.Here,W1,p(R+, X) is the vector-valued Sobolev space and δ0
the Dirac distribution, that is, δ0(f) = f(0) for each f ∈ W1,p(R+, X); the operator B is given
by

Bx := a(·)Ax for each x ∈ D(A). (2.4)

Denote by S(t) the C0-semigroup generated byA. It follows that, for each x ∈ D(A), the first
coordinate of

(
u(t)

F(t, ·)

)
:= S(t)

(
x

0

)
(2.5)

is the unique solution of (1.1).

Theorem 2.2. Let A be the generator of a C0-semigroup T(t) on the Banach space X and a(·) ∈
Lp(R+,C) with 1 ≤ p < ∞. Assume that

(i) M is a left-shift invariant closed subspace of Lp(R+, X) such that a(·)Ax ∈ M for all
x ∈ D(A);

(ii) C+ ⊂ ρ(A|D) and

‖R(λ,A|D)‖ ≤ K

|λ| , λ ∈ C+ (2.6)
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for some constant K > 0. Here, D := D(A) × {f ∈ W1,p(R+, X) ∩ M : f ′ ∈ M} :=
D(A) ×M1.

Then

(a) (1.1) is strongly stable if iR ⊂ ρ(A|D);
(b) if X is reflexive and 1 < p < ∞, then every solution to (1.1) is asymptotically almost

periodic provided σ(A|D) ∩ iR is countable.

Proof. Since the first coordinate of (2.5) is the unique solution of (1.1), it is easy to see that the
strong stability and asymptotic almost periodicity of (1.1) follows from the strong stability
and asymptotic almost periodicity of S(t), respectively.

Moreover, from [9, Proposition 2.8]) we know that if M is a closed subspace of
Lp(R+, X) such that M is Sl(t)-invariant and a(·)Ax ∈ M for all x ∈ D(A), then A|D (the
restriction of A to D) generates the C0-semigroup

S̃(t) := S(t)|M, (2.7)

which is defined on the Banach space

M := X ×M. (2.8)

Thus, by assumptions (i), (ii) and the well-known Hille-Yosida theorem for C0-semigroups,
we know that S̃(t) is bounded. Hence, in view of Lemma 1.2, we get

∥∥∥S̃(t)A|−1D
∥∥∥ −→ 0, t −→ ∞. (2.9)

Clearly

A|−1D
(

Ax

a(·)Ax

)
=

(
x

0

)
(2.10)

for each x ∈ D(A). So, combining (2.5) with (2.9), we have

‖u(t)‖2 ≤
∥∥∥∥∥
(

u(t)
F(t, ·)

)∥∥∥∥∥
2

=

∥∥∥∥∥S̃(t)
(
x

0

)∥∥∥∥∥
2

=

∥∥∥∥∥S̃(t)A|−1D
(

Ax

a(·)Ax

)∥∥∥∥∥
2

≤
∥∥∥S̃(t)A|−1D

∥∥∥2 ·
[
1 + ‖a(·)‖2Lp

]
· ‖Ax‖2

−→ 0, t −→ ∞.

(2.11)

This means that (a) holds.
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On the other hand, we note that, to get (b), it is sufficient to show that S̃(t) is
asymptotically almost periodic. Actually, if X is reflexive and 1 < p < ∞, then it is not hard
to verify that Lp(R+, X) is reflexive. Hence, X × Lp(R+, X) is reflexive. By assumption (i), M
is a closed subspace of X × Lp(R+, X). Thus, Pettis’s theorem shows that M is also reflexive.
Hence, in view of Lemma 1.3, we get (b). This completes the proof.

Corollary 2.3. Let A be the generator of a C0-semigroup T(t) on the Banach space X and a(t) =
αe−βt (β > 0, α /= 0). Assume that

(i) for each λ ∈ C+, λ, λ(λ + β)/(λ + α + β) ∈ ρ(A),

(ii) there exists a constant C > 0 satisfying

‖H(λ)‖2 + |α|2

β · ∣∣λ + α + β
∣∣2 · ‖I − λH(λ)‖2 ≤ C

|λ|2
, λ ∈ C+ (2.12)

with

H(λ) :=
λ + β

λ + α + β

[
λ
(
λ + β

)
λ + α + β

−A

]−1
. (2.13)

Then

(a) if Re(α + β)/= 0 and

λ
(−1 + iβ

)
α + β + iλ

∈ ρ(A) (2.14)

for each λ ∈ R, then (1.1) is strongly stable;

(b) if X is reflexive and 1 < p < ∞, then (1.1) is asymptotically almost periodic provided

{
λ ∈ R : iλ

(
iλ + β

)(
iλ + α + β

)−1 ∈ σ(A)
}

(2.15)

is countable.

Proof. As in [9, Section 3], we take

M :=
{
e−βsx : x ∈ X

}
⊂ Lp(R+, X). (2.16)

In view of the discussion in [8, Lemma VI.7.23], we can infer that

C+ ⊂ ρ(A|D), if C+ ⊂ ρ(A),

λ
(
λ + β

)
λ + α + β

∈ ρ(A), for each λ ∈ C+.
(2.17)
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Moreover, we have

R(λ,A) =

⎛
⎜⎝

[I − â(λ)R(λ,A)A]−1 0

R

(
λ,

d
ds

)
B[I − â(λ)R(λ,A)A]−1 I

⎞
⎟⎠

⎛
⎜⎜⎜⎝

R(λ,A) R(λ,A)δ0R
(
λ,

d
ds

)

0 R

(
λ,

d
ds

)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

H(λ) H(λ)δ0R
(
λ,

d
ds

)

R

(
λ,

d
ds

)
BH(λ) R

(
λ,

d
ds

)
BH(λ)δ0R

(
λ,

d
ds

)
+ R

(
λ,

d
ds

)

⎞
⎟⎟⎟⎠.

(2.18)

Hence,

‖R(λ,A|D)‖2 ≤
[
‖H(λ)‖2 + |α|2

β · ∣∣λ + α + β
∣∣2 · ‖I − λH(λ)‖2

]

×
(

2β∣∣λ + β
∣∣2 + 1

)
+

1∣∣λ + β
∣∣2

(2.19)

withH(λ) being defined as in (2.13). Thus, it is clear that S̃(t) is bounded if (2.12) is satisfied.
Next, for λ ∈ R, we consider the eigenequation

(iλ −A|D)
(
x

f

)
=

(
y

g

)
. (2.20)

Writing f = e−βsf0 and g = e−βsg0, we see easily that (2.20) is equivalent to

(iλ −A)x − f0 = y,

−αAx +
(
iλ + β

)
f0 = g0.

(2.21)

Thus, if Re(α + β)/= 0 and

λ
(−1 + iβ

)
α + β + iλ

∈ ρ(A), (2.22)
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then by (2.21) we obtain

x =
(
α + β + iλ

)−1[λ(−1 + iβ
)

α + β + iλ
−A

]−1[(
iλ + β

)
y + g0

]
,

f0 =
(
α + β + iλ

)−1(iλ −A)

[
λ
(−1 + iβ

)
α + β + iλ

−A

]−1[(
iλ + β

)
y + g0

] − y.

(2.23)

By the closed graph theorem, the operator

(iλ −A)

[
λ
(−1 + iβ

)
α + β + iλ

−A

]−1
(2.24)

in the second equality of (2.23) is bounded. Hence, noting that

∥∥(iλ + β
)
y + g0

∥∥2 ≤ 2
[∥∥(iλ + β

)
y
∥∥2 +

∥∥g0∥∥2
]

= 2
[∣∣iλ + β

∣∣2 · ∥∥y∥∥2 + 2β
∥∥g∥∥2

]
,

(2.25)

we have

iλ ∈ ρ(A|D) for each λ ∈ R. (2.26)

Consequently, in view of (a) of Theorem 2.2, we know that (1.1) is strongly stable if (2.14)
holds.

Furthermore, by [9, Lemma 3.3], we have

σ(A|D) ⊂
{
λ ∈ C : λ

(
λ + β

)(
λ + α + β

)−1 ∈ σ(A)
}
∪ {−(α + β

)}
. (2.27)

Combining this with (b) of Theorem 2.2, we conclude that (1.1) is asymptotically almost
periodic if X is reflexive, 1 < p < ∞, and the set in (2.15) is countable.

Theorem 2.4. Let A be the generator of a C0-semigroup T(t) on the Banach space X and a(·) ∈
Lp(R+,C) with 1 ≤ p < ∞. Assume that

(i) for all λ ∈ C+,

â(λ)/= − 1, λ[1 + â(λ)]−1 ∈ ρ(A),

sup
λ>0, n=0,1,2,...

∥∥∥∥∥
λn+1[λH(λ) − 1](n)(λ)

n!

∥∥∥∥∥ < ∞,
(2.28)

‖λH(λ)‖, ‖λ2H ′(λ)‖ is bounded on C+, whereH(λ) := [λ − (1 + â(λ))A]−1,
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(ii) q(λ) is analytic on C+ and ‖λq(λ)‖, ‖λ2q′(λ)‖ are bounded on C+, where

q(λ) :=
H(λ)

λ − α − iη
, (2.29)

for each iη ∈ iE (iE is the set of half-line spectrum ofH(λ)) and α > 0,

(iii) for each x ∈ X and iη ∈ iE, the limit

lim
α→ 0+

αe(α+iη)tH
(
α + iη

)
x (2.30)

exists uniformly for t ≥ 0.

Then every solution to (1.1) is asymptotically almost periodic. Moreover, if for each x ∈ X and
iη ∈ iE the limit in (2.30) equals 0 uniformly for t ≥ 0, then (1.1) is strongly stable.

Proof. Take x ∈ D(A). Then the solution S(t)x to (1.1) is Lipschitz continuous and hence
uniformly continuous. Actually, by assumption (i), we know that

∫∞

0
e−λtS(t)xdt = [λ − (1 + â(λ))A]−1x, Reλ > 0, (2.31)

and that

r(λ) := [λH(λ) − 1]x (2.32)

is analytic on C+. Thus, r ∈ C∞((0,∞), X) and

H(λ)x − 1
λ
x =

r(λ)
λ

=
∫∞

0
e−λt[S(t)x − x]dt, λ > 0. (2.33)

On the other hand, if (2.28) holds, then there exists K > 0 such that

sup
λ>0

∥∥∥∥∥
λn+1r(n)(λ)

n!

∥∥∥∥∥ ≤ sup
λ>0

∥∥∥∥∥
λn+1[λH(λ) − 1](n)(λ)

n!

∥∥∥∥∥‖x‖

≤ K‖x‖, n = 0, 1, 2, . . . .

(2.34)

Hence, from [4, Chapter 1] (or [5]) and the uniqueness of the Laplace transform, it follows
that

F(t) := S(t)x − x (2.35)

satisfies

r(λ)
λ

=
∫∞

0
e−λtF(t)dt, λ > 0, (2.36)
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and that

‖F(t + h) − F(t)‖ = ‖S(t + h)x − S(t)x‖ ≤ Kh‖x‖, t ≥ 0, h ≥ 0. (2.37)

Moreover, by [3, Corollary 2.5.2], the assumption (i) implies the boundedness of S(t).
Therefore,

f(t) := S(t)x (2.38)

is bounded and uniformly continuous on [0,∞). In addition, the half-line spectrum set of f(t)
is just the following set:

{
iη ∈ iR : H(λ) cannot be analytically extened to an eighborhood of iη

}
. (2.39)

Write τ = α + iη. Then

∫∞

0
e−τsf(t + s)ds = eτt

∫∞

t

e−τsf(s)ds

= eτt
[
f̂(τ) −

∫ t

0
e−τsf(s)ds

]

= eτtH(τ)x − (
eτ · ∗ f)(t),

(2.40)

q(λ) =
H(λ)x

λ − α − iη
= êτ · ∗ f(λ). (2.41)

From assumption (ii) and [3, Corollary 2.5.2], it follows that (eτ · ∗ f)(t) is bounded, which
implies

lim
α→ 0+

α
(
eτ · ∗ f)(t) = 0 (2.42)

uniformly for t ≥ 0. Finally, combining (2.40) with Theorem [7, Theorem 4.1], we complete
the proof.

3. Applications

In this section, we give some examples to illustrate our results.
First, we apply Corollary 2.3 to Example 2.1. As one will see, the previous result will

be obtained by a different point of view.

Example 3.1. We reconsider Example 2.1. First, we note that

α + β = 0. (3.1)
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This implies that condition Re(α + β)/= 0 is not satisfied. Therefore, part (a) of Corollary 2.3
is not applicable, and this explains partially why the corresponding Volterra equation is not
strongly stable. However, it is easy to check that conditions (i) and (ii) in Corollary 2.3 are
satisfied. In particular, we have accordingly

H(λ) =
λ + 1

λ(λ + 3)
, (3.2)

and hence the estimate

‖H(λ)‖2 + |α|2

β · ∣∣λ + α + β
∣∣2 · ‖I − λH(λ)‖2 = |λ + 1|2 + 4

|λ(λ + 3)|2
≤ 13/9

|λ|2
, λ ∈ C+. (3.3)

Note σ(A) = {−2} and
{
λ ∈ R : iλ

(
iλ + β

)(
iλ + α + β

)−1 ∈ σ(A)
}
= {λ ∈ R : iλ + 1 = −2} = ∅. (3.4)

Applying part (b) of Corollary 2.3, we know that the corresponding Volterra equation is
asymptotically almost periodic.

Example 3.2. Consider the Volterra equation

∂u

∂t
(t, x) =

∂2u

∂x2 (t, x) + α

∫ t

0
e−β(t−s)

∂2u

∂x2 (s, x)ds, t > 0, 0 ≤ x ≤ π,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(0, x) = u0(x), 0 ≤ x ≤ π,

(3.5)

where the constants satisfy

β > 0, α + β = 0. (3.6)

Let H = L2[0, π], and define

A :=
d2

dx2
, D(A) =

{
f ∈ H2[0, π] : f(0) = f(π) = 0

}
. (3.7)

Then (3.5) can be formulated into the abstract form (1.1). It is well known thatA is self-adjoint
(see, e.g., [12, page 280, (b) of Example 3]) and that A generates an analytic C0-semigroup.
The self-adjointness of A implies

∥∥∥(λ −A)−1
∥∥∥ =

1
dist(λ, σ(A))

, λ ∈ ρ(A). (3.8)
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On the other hand, we can compute

σ(A) = σp(A) =
{
−n2 : n = 1, 2, . . .

}
. (3.9)

It follows immediately that condition (i) in Corollary 2.3 holds. Moreover, corresponding to
(2.13), we have

H(λ) =
λ + β

λ

(
λ + β −A

)−1
. (3.10)

Combining this with (3.6), (3.8), and (3.9), we estimate

‖H(λ)‖2 + |α|2

β · ∣∣λ + α + β
∣∣2 · ‖I − λH(λ)‖2

=
1

|λ|2
[∣∣λ + β

∣∣2 · ∥∥∥(λ + β −A
)−1∥∥∥2

+ β
∥∥∥I − (

λ + β
)(
λ + β −A

)−1∥∥∥2
]

≤ 1

|λ|2
[ ∣∣λ + β

∣∣2
∣∣λ + β + 1

∣∣2 + β

(
1 +

∣∣λ + β
∣∣2

∣∣λ + β + 1
∣∣2
)]

≤ 1 + 2β

|λ|2
, λ ∈ C+.

(3.11)

Note that (2.15) becomes

{
λ ∈ R : iλ + β = −n2 for some n ∈ N

}
= ∅. (3.12)

Applying part (b) of Corollary 2.3, by (3.11), we conclude that (3.5) is asymptotically almost
periodic (cf. [9, Remark 3.6]).
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