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By defining a new terminology, scatter degree, as the supremum of graininess functional value,
this paper studies the existence of solutions for a nonlinear two-point dynamic boundary value
problem on time scales. We do not need any growth restrictions on nonlinear term of dynamic
equation besides a barrier strips condition. The main tool in this paper is the induction principle
on time scales.

1. Introduction

Calculus on time scales, which unify continuous and discrete analysis, is now still an active
area of research. We refer the reader to [1–5] and the references therein for introduction
on this theory. In recent years, there has been much attention focused on the existence and
multiplicity of solutions or positive solutions for dynamic boundary value problems on time
scales. See [6–17] for some of them. Under various growth restrictions on nonlinear term of
dynamic equation, many authors have obtainedmany excellent results for the above problem
by using Topological degree theory, fixed-point theorems on cone, bifurcation theory, and so
on.

In 2004, Ma and Luo [18] firstly obtained the existence of solutions for the dynamic
boundary value problems on time scales

xΔΔ(t) = f
(
t, x(t), xΔ(t)

)
, t ∈ [0, 1]�,

x(0) = 0, xΔ(σ(1)) = 0
(1.1)
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under a barrier strips condition. A barrier strip P is defined as follows. There are pairs (two
or four) of suitable constants such that nonlinear term f(t, u, p) does not change its sign on
sets of the form [0, 1]

�
× [−L, L] × P , where L is a nonnegative constant, and P is a closed

interval bounded by some pairs of constants, mentioned above.
The idea in [18] was from Kelevedjiev [19], in which discussions were for boundary

value problems of ordinary differential equation. This paper studies the existence of solutions
for the nonlinear two-point dynamic boundary value problem on time scales

xΔΔ(t) = f
(
t, xσ(t), xΔ(t)

)
, t ∈ [

a, ρ2(b)
]
�
,

xΔ(a) = 0, x(b) = 0,
(1.2)

where � is a bounded time scale with a = inf�, b = sup�, and a < ρ2(b). We obtain the
existence of at least one solution to problem (1.2) without any growth restrictions on f but
an existence assumption of barrier strips. Our proof is based upon the well-known Leray-
Schauder principle and the induction principle on time scales.

The time scale-related notations adopted in this paper can be found, if not explained
specifically, in almost all literature related to time scales. Here, in order to make this paper
read easily, we recall some necessary definitions here.

A time scale � is a nonempty closed subset of �; assume that � has the topology that it
inherits from the standard topology on �. Define the forward and backward jump operators
σ, ρ : � → � by

σ(t) = inf{τ > t | τ ∈ �}, ρ(t) = sup{τ < t | τ ∈ �}. (1.3)

In this definition we put inf ∅ = sup�, sup ∅ = inf�. Set σ2(t) = σ(σ(t)), ρ2(t) = ρ(ρ(t)). The
sets �k and �k which are derived from the time scale � are as follows:

�
k :=

{
t ∈ � : t is not maximal or ρ(t) = t

}
,

�k := {t ∈ � : t is not minimal or σ(t) = t}.
(1.4)

Denote interval I on � by I� = I ∩ �.

Definition 1.1. If f : � → � is a function and t ∈ �k, then the delta derivative of f at the point
t is defined to be the number fΔ(t) (provided it exists) with the property that, for each ε > 0,
there is a neighborhood U of t such that

∣∣
∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣∣
∣ � ε|σ(t) − s| (1.5)

for all s ∈ U. The function f is called Δ-differentiable on �k if fΔ(t) exists for all t ∈ �k.

Definition 1.2. If FΔ = f holds on �k, then we define the Cauchy Δ-integral by

∫ t

s

f(τ)Δτ = F(t) − F(s), s, t ∈ �k. (1.6)
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Lemma 1.3 (see [2, Theorem 1.16 (SUF)]). If f is Δ-differentiable at t ∈ �k, then

f(σ(t)) = f(t) + (σ(t) − t)fΔ(t). (1.7)

Lemma 1.4 (see [18, Lemma 3.2]). Suppose that f : [a, b]
�
→ � is Δ-differentiable on [a, b]k

�
,

then

(i) f is nondecreasing on [a, b]
�
if and only if fΔ(t) ≥ 0, t ∈ [a, b]k

�
,

(ii) f is nonincreasing on [a, b]
�
if and only if fΔ(t) ≤ 0, t ∈ [a, b]k

�
.

Lemma 1.5 (see [4, Theorem 1.4]). Let � be a time scale with τ ∈ �. Then the induction principle
holds.

Assume that, for a family of statements A(t), t ∈ [τ,+∞)�, the following conditions are
satisfied.

(1) A(τ) holds true.

(2) For each t ∈ [τ,+∞)
�
with σ(t) > t, one hasA(t) ⇒ A(σ(t)).

(3) For each t ∈ [τ,+∞)
�
with σ(t) = t, there is a neighborhoodU of t such thatA(t) ⇒ A(s)

for all s ∈ U, s > t.

(4) For each t ∈ (τ,+∞)
�
with ρ(t) = t, one has A(s) for all s ∈ [τ, t)

�
⇒ A(t).

Then A(t) is true for all t ∈ [τ,+∞)
�
.

Remark 1.6. For t ∈ (−∞, τ]
�
, we replace σ(t) with ρ(t) and ρ(t) with σ(t), substitute < for >,

then the dual version of the above induction principle is also true.

By C2([a, b]), we mean the Banach space of second-order continuous Δ-differentiable
functions x : [a, b]

�
→ � equipped with the norm

‖x‖ = max
{
|x|0,

∣∣∣xΔ
∣∣∣
0
,
∣∣∣xΔΔ

∣∣∣
0

}
, (1.8)

where |x|0 = maxt∈[a,b]
�
|x(t)|, |xΔ|0 = maxt∈[a,ρ(b)]

�
|xΔ(t)|, |xΔΔ|0 = maxt∈[a,ρ2(b)]

�
|xΔΔ(t)|.

According to the well-known Leray-Schauder degree theory, we can get the following
theorem.

Lemma 1.7. Suppose that f is continuous, and there is a constant C > 0, independent of λ ∈ (0, 1),
such that ‖x‖ < C for each solution x(t) to the boundary value problem

xΔΔ(t) = λf
(
t, xσ(t), xΔ(t)

)
, t ∈ [

a, ρ2(b)
]
�
,

xΔ(a) = 0, x(b) = 0.
(1.9)

Then the boundary value problem (1.2) has at least one solution in C2([a, b]).

Proof. The proof is the same as [18, Theorem 4.1].
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2. Existence Theorem

To state our main result, we introduce the definition of scatter degree.

Definition 2.1. For a time scale �, define the right direction scatter degree (RSD) and the left
direction scatter degree (LSD) on � by

r(�) = sup
{
σ(t) − t : t ∈ �k

}
,

l(�) = sup
{
t − ρ(t) : t ∈ �k

}
,

(2.1)

respectively. If r(�) = l(�), then we call r(�) (or l(�)) the scatter degree on �.

Remark 2.2. (1) If � = �, then r(�) = l(�) = 0. If � = h� := {hk : k ∈ �, h > 0}, then
r(�) = l(�) = h. If � = q� := {qk : k ∈ �} and q > 1, then r(�) = l(�) = +∞. (2) If � is
bounded, then both r(�) and l(�) are finite numbers.

Theorem 2.3. Let f : [a, ρ(b)]
�
× �2 → � be continuous. Suppose that there are constants Li, i =

1, 2, 3, 4, with L2 > L1 ≥ 0, L3 < L4 ≤ 0 satisfying

(H1) L2 > L1 +Mr(�), L3 < L4 −Mr(�),

(H2) f(t, u, p) ≤ 0 for (t, u, p) ∈ [a, ρ(b)]
�
× [−L2(b−a),−L3(b−a)]× [L1, L2], f(t, u, p) ≥ 0

for (t, u, p) ∈ [a, ρ(b)]
�
× [−L2(b − a),−L3(b − a)] × [L3, L4],

where

M = sup
{∣∣f

(
t, u, p

)∣∣ :
(
t, u, p

) ∈ [
a, ρ(b)

]
�
× [−L2(b − a),−L3(b − a)] × [L3, L2]

}
. (2.2)

Then problem (1.2) has at least one solution in C2([a, b]).

Remark 2.4. Theorem 2.3 extends [19, Theorem 3.2] even in the special case � = �. Moreover,
our method to prove Theorem 2.3 is different from that of [19].

Remark 2.5. We can find some elementary functions which satisfy the conditions in
Theorem 2.3. Consider the dynamic boundary value problem

xΔΔ(t) = −(xΔ(t)
)3 + h

(
t, xσ(t), xΔ(t)

)
, t ∈ [

a, ρ2(b)
]
�
,

xΔ(a) = 0, x(b) = 0,
(2.3)

where h(t, u, p) : [a, ρ(b)]
�
× �2 → � is bounded everywhere and continuous.

Suppose that f(t, u, p) = −p3 + h(t, u, p), then for t ∈ [a, ρ(b)]
�

f
(
t, u, p

) −→ −∞, if p −→ +∞,
f
(
t, u, p

) −→ +∞, if p −→ −∞.
(2.4)

It implies that there exist constants Li, i = 1, 2, 3, 4, satisfying (H1) and (H2) in Theorem 2.3.
Thus, problem (2.3) has at least one solution in C2([a, b]).
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Proof of Theorem 2.3. Define Φ : � → � as follows:

Φ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−L2(b − a), u ≤ −L2(b − a),

u, −L2(b − a) < u < −L3(b − a),

−L3(b − a), u ≥ −L3(b − a).

(2.5)

For all λ ∈ (0, 1), suppose that x(t) is an arbitrary solution of problem

xΔΔ(t) = λf
(
t,Φ(xσ(t)), xΔ(t)

)
, t ∈ [

a, ρ2(b)
]
�
,

xΔ(a) = 0, x(b) = 0.
(2.6)

We firstly prove that there exists C > 0, independent of λ and x, such that ‖x‖ < C.
We show at first that

L3 < xΔ(t) < L2, t ∈ [
a, ρ(b)

]
�
. (2.7)

Let A(t) : L3 < xΔ(t) < L2, t ∈ [a, ρ(b)]
�
. We employ the induction principle on time

scales (Lemma 1.5) to show that A(t) holds step by step.

(1) From the boundary condition xΔ(a) = 0 and the assumption of L3 < 0 < L2, A(a)
holds.

(2) For each t ∈ [a, ρ(b))
�
with σ(t) > t, suppose that A(t) holds, that is, L3 < xΔ(t) <

L2. Note that −L2(b − a) ≤ Φ(xσ(t)) ≤ −L3(b − a); we divide this discussion into
three cases to prove that A(σ(t)) holds.

Case 1. If L4 < xΔ(t) < L1, then from Lemma 1.3, Definition 2.1, and (H1) there is

xΔ(σ(t)) = xΔ(t) + xΔΔ(t)(σ(t) − t)

< L1 +Mr(�)

< L2.

(2.8)

Similarly, xΔ(σ(t)) > L4 −Mr(�) > L3.

Case 2. If L1 ≤ xΔ(t) < L2, then similar to Case 1 we have

xΔ(σ(t)) = xΔ(t) + xΔΔ(t)(σ(t) − t)

> L4 −Mr(�)

> L3.

(2.9)
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Suppose to the contrary that xΔ(σ(t)) ≥ L2, then

λf
(
t,Φ(xσ(t)), xΔ(t)

)
= xΔΔ(t) =

xΔ(σ(t)) − xΔ(t)
σ(t) − t

> 0, (2.10)

which contradicts (H2). So xΔ(σ(t)) < L2.

Case 3. If L3 < xΔ(t) ≤ L4, similar to Case 2, then L3 < xΔ(σ(t)) < L2 holds.
Therefore,A(σ(t)) is true.

(3) For each t ∈ [a, ρ(b))
�
, with σ(t) = t, and A(t) holds, then there is a neighborhood

U of t such that A(s) holds for all s ∈ U, s > t by virtue of the continuity of xΔ.

(4) For each t ∈ (a, ρ(b)]
�
, with ρ(t) = t, and A(s) is true for all s ∈ [a, t)

�
, since

xΔ(t) = lims→ t,s<txΔ(s) implies that

L3 ≤ xΔ(t) ≤ L2, (2.11)

we only show that xΔ(t)/=L2 and xΔ(t)/=L3.

Suppose to the contrary that xΔ(t) = L2. From

xΔ(s) < L2, s ∈ [a, t)
�
, (2.12)

ρ(t) = t, and the continuity of xΔ, there is a neighborhood V of t such that

L1 < xΔ(s) < L2, s ∈ [a, t)�∩ V. (2.13)

So L1 < xΔ(s) ≤ L2, s ∈ [a, t]
�
∩ V . Combining with −L2(b − a) ≤ Φ(xσ(s)) ≤ −L3(b − a), s ∈

[a, t]
�
∩ V , we have from (H2), xΔΔ(s) = λf(s,Φ(xσ(s)), xΔ(s)) ≤ 0, s ∈ [a, t]

�
∩ V . So from

Lemma 1.4

xΔ(s) ≥ xΔ(t) = L2, s ∈ [a, t]�∩ V. (2.14)

This contradiction shows that xΔ(t)/=L2. In the same way, we claim that xΔ(t)/=L3.
Hence, A(t) : L3 < xΔ(t) < L2, t ∈ [a, ρ(b)]

�
, holds. So

∣∣
∣xΔ

∣∣
∣
0
< C1 := max{−L3, L2}. (2.15)

From Definition 1.2 and Lemma 1.3, we have for t ∈ [a, ρ(b)]�

x(t) = x
(
ρ(b)

) −
∫ρ(b)

t

xΔ(s)Δs

= x(b) − xΔ(ρ(b)
)(
b − ρ(b)

) −
∫ρ(b)

t

xΔ(s)Δs.

(2.16)
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There are, from x(b) = 0 and (2.7),

x(t) < −L3
(
b − ρ(b)

) − L3
(
ρ(b) − t

) ≤ −L3(b − a),

x(t) > −L2
(
b − ρ(b)

) − L2
(
ρ(b) − t

) ≥ −L2(b − a)
(2.17)

for t ∈ [a, ρ(b)]
�
. In addition,

−L2(b − a) < x(b) = 0 < −L3(b − a). (2.18)

Thus,

−L2(b − a) < x(t) < −L3(b − a), t ∈ [a, b]�, (2.19)

that is,

|x|0 < C1(b − a). (2.20)

Moreover, by the continuity of f , the equation in (2.6), (2.7) and the definition of Φ

∣∣
∣xΔΔ

∣∣
∣
0
< M, (2.21)

where M is defined in (2.2). Now let C = max{C1, C1(b − a),M}. Then, from (2.15), (2.20),
and (2.21),

‖x‖ < C. (2.22)

Note that from (2.19) we have

−L2(b − a) < xσ(t) < −L3(b − a), t ∈ [
a, ρ(b)

]
�
, (2.23)

that is, Φ(xσ(t)) = xσ(t), t ∈ [a, ρ(b)]
�
. So x is also an arbitrary solution of problem

xΔΔ(t) = λf
(
t, xσ(t), xΔ(t)

)
, t ∈ [

a, ρ2(b)
]
�
,

xΔ(a) = 0, x(b) = 0.
(2.24)

According to (2.22) and Lemma 1.7, the dynamic boundary value problem (1.2) has at least
one solution in C2([a, b]).

3. An Additional Result

Parallel to the definition of delta derivative, the notion of nabla derivative was introduced,
and the main relations between the two operations were studied in [7]. Applying to the dual
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version of the induction principle on time scales (Remark 1.6), we can obtain the following
result.

Theorem 3.1. Let g : [σ(a), b]
�
× �2 → � be continuous. Suppose that there are constants Ii, i =

1, 2, 3, 4, with I2 > I1 ≥ 0, I3 < I4 ≤ 0 satisfying

(S1) I2 > I1 +Nl(�), I3 < I4 −Nl(�),

(S2) g(t, u, p) ≥ 0 for (t, u, p) ∈ [σ(a), b]
�
× [I3(b − a), I2(b − a)] × [I1, I2], g(t, u, p) ≤ 0 for

(t, u, p) ∈ [σ(a), b]
�
× [I3(b − a), I2(b − a)] × [I3, I4],

where

N = sup
{∣∣g

(
t, u, p

)∣∣ :
(
t, u, p

) ∈ [σ(a), b]�× [I3(b − a), I2(b − a)] × [I3, I2]
}
. (3.1)

Then dynamic boundary value problem

x∇∇(t) = g
(
t, xρ(t), x∇(t)

)
, t ∈ [

σ2(a), b
]
�
,

x(a) = 0, x∇(b) = 0
(3.2)

has at least one solution.

Remark 3.2. According to Theorem 3.1, the dynamic boundary value problem related to the
nabla derivative

x∇∇(t) =
(
x∇(t)

)3 + k
(
t, xρ(t), x∇(t)

)
, t ∈ [

σ2(a), b
]
�
,

x(a) = 0, x∇(b) = 0
(3.3)

has at least one solution. Here k(t, u, p) : [σ(a), b]
�
× �2 → � is bounded everywhere and

continuous.
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Mass, USA, 2003.



Advances in Difference Equations 9

[4] S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,”
Results in Mathematics, vol. 18, no. 1-2, pp. 18–56, 1990.

[5] B. Kaymakcalan, V. Lakshmikantham, and S. Sivasundaram, Dynamic Systems on Measure Chains, vol.
370 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1996.

[6] R. P. Agarwal and D. O’Regan, “Triple solutions to boundary value problems on time scales,” Applied
Mathematics Letters, vol. 13, no. 4, pp. 7–11, 2000.

[7] F. M. Atici and G. S. Guseinov, “On Green’s functions and positive solutions for boundary value
problems on time scales,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 75–99,
2002, Special issue on “Dynamic equations on time scales”, edited by R. P. Agarwal, M. Bohner and
D. O’Regan.

[8] M. Bohner and H. Luo, “Singular second-order multipoint dynamic boundary value problems with
mixed derivatives,” Advances in Difference Equations, vol. 2006, Article ID 54989, 15 pages, 2006.

[9] C. J. Chyan and J. Henderson, “Twin solutions of boundary value problems for differential equations
on measure chains,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 123–131,
2002, Special issue on “Dynamic equations on time scales”, edited by R. P. Agarwal, M. Bohner and
D. O’Regan.

[10] L. Erbe, A. Peterson, and R. Mathsen, “Existence, multiplicity, and nonexistence of positive solutions
to a differential equation on a measure chain,” Journal of Computational and Applied Mathematics, vol.
113, no. 1-2, pp. 365–380, 2000.

[11] C. Gao and H. Luo, “Positive solutions to nonlinear first-order nonlocal BVPs with parameter on time
scales,” Boundary Value Problems, vol. 2011, Article ID 198598, 15 pages, 2011.

[12] J. Henderson, “Multiple solutions for 2m order Sturm-Liouville boundary value problems on a
measure chain,” Journal of Difference Equations and Applications, vol. 6, no. 4, pp. 417–429, 2000.

[13] W.-T. Li and H.-R. Sun, “Multiple positive solutions for nonlinear dynamical systems on a measure
chain,” Journal of Computational and Applied Mathematics, vol. 162, no. 2, pp. 421–430, 2004.

[14] H. Luo and R. Ma, “Nodal solutions to nonlinear eigenvalue problems on time scales,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 65, no. 4, pp. 773–784, 2006.

[15] H.-R. Sun, “Triple positive solutions for p-Laplacianm-point boundary value problemon time scales,”
Computers & Mathematics with Applications, vol. 58, no. 9, pp. 1736–1741, 2009.

[16] J.-P. Sun and W.-T. Li, “Existence and nonexistence of positive solutions for second-order time scale
systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 10, pp. 3107–3114, 2008.

[17] D.-B. Wang, J.-P. Sun, andW. Guan, “Multiple positive solutions for functional dynamic equations on
time scales,” Computers & Mathematics with Applications, vol. 59, no. 4, pp. 1433–1440, 2010.

[18] R. Ma and H. Luo, “Existence of solutions for a two-point boundary value problem on time scales,”
Applied Mathematics and Computation, vol. 150, no. 1, pp. 139–147, 2004.

[19] P. Kelevedjiev, “Existence of solutions for two-point boundary value problems,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 22, no. 2, pp. 217–224, 1994.


	1. Introduction
	2. Existence Theorem
	3. An Additional Result
	Acknowledgments
	References

