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We firstly show the permanence of hybrid prey-predator system. Then, when both white and color
noises are taken into account, we examine the asymptotic properties of stochastic prey-predator
model with Markovian switching. Finally, the optimal harvest policy of stochastic prey-predator
model perturbed by white noise is considered.

1. Introduction

Population systems have long been an important theme in mathematical biology due to
their universal existence and importance. As a result, interest in mathematical models for
populations with interaction between species has been on the increase. Generally, many
models in theoretical ecology take the classical Lotka-Volterra model of interacting species
as a starting point as follows:

dx(t)
dt

= diag(x1(t), . . . , xn(t))[b +Ax(t)], (1.1)

where x(t) = (x1(t), . . . , xn(t))
T , b = (bi)1×n and A = (aij)n×n. The Lotka-Volterra

model (1.1) has been studied extensively by many authors. Specifically, the dynamics
relationship between predators and their preys also is an important topic in both ecology
and mathematical ecology. For two-species predator-prey model, the population model has
the form

dx(t)
dt

= x(t)
[
a1 − b1x(t) − c1y(t)

]
,

dy(t)
dt

= y(t)
[
a2 − b2y(t) + c2x(t)

]
,

(1.2)
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where x(t), y(t) represent the prey and the predator populations at time t, respectively, and
ai, bi, ci, i = 1, 2 are all positive constants.

Up to now, few work has been done with the following hybrid predator-prey model:

dx(t)
dt

= x
[
a1(α(t)) − b1(α(t))x − c1(α(t))y

]
,

dy(t)
dt

= y
[
a2(α(t)) − b2(α(t))y + c2(α(t))x

]
.

(1.3)

when a population model is discussed, one of most important and interesting themes is its
permanence, which means that the population system will survive forever. In this paper, we
show that the hybrid model (1.3) is permanent.

As a matter of fact, due to environmental fluctuations, parameters involved in
population models are not absolute constants. Thus, it is important to reveal how
environmental noises affect the population systems. There are various types of environmental
noises (e.g., white noise and color noise) affect population system significantly. Recently,
many authors have considered population systems perturbed by white noise (see e.g., [1–
7]). The color noise can be illustrated as a switching between two or more regimes of
environmental, which differ by factors such as nutrition or as rain falls [8, 9]. When both
white noise and color noise are taken into account, there are many results on corresponding
population systems [10–14]. Especially, [10] investigated a Lotka-Volterra system under
regime switching, the existence of global positive solutions, stochastic permanence, and
extinction were discussed, and the limit of the average in time of the sample path
was estimated. Reference [12] considered competitive Lotka-Volterra model in random
environments and obtained nice results. Here, we consider the stochastic predator-prey
system under regime switching which reads

dx(t) = x(t)
(
a1(α(t)) − b1(α(t))x(t) − c1(α(t))y(t)

)
dt + x(t)σ1(α(t))dB1(t),

dy(t) = y(t)
(
a2(α(t)) − b2(α(t))y(t) + c2(α(t))x(t)

)
dt + y(t)σ2(α(t))dB2(t).

(1.4)

where α(t) is a Markov chain. Therefore, we aim to obtain its dynamical properties in more
detail.

As we know, the optimal management of renewable resources, which has a direct
relationship to sustainable development, is always a significant problem and focus. Many
authors have studied the optimal harvest of its corresponding population model [15–20]. To
the best of our knowledge, there is a very little amount of work has been done on the optimal
harvest of stochastic predator-prey system. When the predator-prey model (1.2) is perturbed
by white noise, we have the stochastic system as follows:

dx(t) = x(t)
[
a1 − b1x(t) − c1y(t)

]
dt + σ1x(t)dB1(t),

dy(t) = y(t)
[
a2 − b2y(t) + c2x(t)

]
dt + σ2y(t)dB2(t).

(1.5)

Suppose that the resource population described by the stochastic system (1.5) is subject to
exploitation, under the harvesting effort E1, E2 of x(t), y(t), respectively, the model of the
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harvested population has the form

dx(t) = x(t)
[
a1 − E1 − b1x(t) − c1y(t)

]
dt + σ1x(t)dB1(t),

dy(t) = y(t)
[
a2 − E2 − b2y(t) + c2x(t)

]
dt + σ2y(t)dB2(t).

(1.6)

In this paper, based on the arguments on model (1.4), we will obtain the the optimal harvest
policy of stochastic predator-prey system (1.6).

The organization of the paper is as follows: we recall the fundamental theory about
stochastic differential equation with Markovian switching in Section 2. We show that the
hybrid system (1.3) is permanent in Section 3. Since stochastic predator-prey system (1.4)
describes population dynamics, it is necessary for the solution of the system to be positive
and not to explode to infinity in a finite time. Section 4 is devoted to the existence, uniqueness
of global solution by comparison theorem, and its asymptotic properties. Based on the
arguments of Section 4, in Section 5 predator-prey model perturbed by white noise (1.5) is
considered, and the limit of the average in time of the sample path of the solution is obtain,
moreover, optimal harvest policy of population model is derived. Finally, we close the paper
with conclusions in Section 6. The important contributions of this paper are therefore clear.

2. Stochastic Differential Equation with Markovian Switching

Throughout this paper, unless otherwise specified, we let (Ω,F, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets.) Let α(t), t ≥ 0, be a right-continuous Markov
chain in the probability space tasking values in a finite state space S = {1, 2, . . . , m} with
generator Γ = (γij)m×m given by

P
{
α(t + Δt) = j | α(t) = i

}
= γijΔ + o(Δ) i /= j,

P
{
α(t + Δt) = j | α(t) = i

}
= 1 + γiiΔ + o(Δ) i = j,

(2.1)

where Δ > 0. Here, γij ≥ 0 is the transition rate from i to j if i /= j, while γii = −∑
i /= j γij . We

assume that theMarkov chain α(t) is independent of the Brownian motion. And almost every
sample path of α(t) is a right-continuous step function with a finite number of simple jumps
in any finite subinterval of R+.

We assume, as a standing hypothesis in following of the paper, that the Markov chain
is irreducible. The algebraic interpretation of irreducibility is rank(Γ) = m − 1. Under this
condition, the Markov chain has a unique stationary distribution π = (π1, π1, . . . , πm) ∈ R1×m

which can be determined by solving the following linear equation:

πΓ = 0, (2.2)

subject to

m∑

j=1

πj = 1, πj > 0, ∀j ∈ S. (2.3)
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Consider a stochastic differential equation with Markovian switching

dx(t) = f(x(t), t, α(t))dt + g(x(t), t, α(t))dB(t), (2.4)

on t ≥ 0 with initial value x(0) = x0 ∈ Rn, where

f : Rn × R+ × S −→ Rn, g : Rn × R+ × S −→ Rn×m. (2.5)

For the existence and uniqueness of the solution, we should suppose that the coefficients of
the above equation satisfy the local Lipschitz condition and the linear growth condition. That
is, for each k = 1, 2, . . ., there is an hk > 0 such that

∣∣f(x, t, α) − f
(
y, t, α

)∣∣
∨∣∣g(x, t, α) − g

(
y, t, α

)∣∣ ≤ hk

∣∣x − y
∣∣, (2.6)

for all t ≥ 0, α ∈ S and those x, y ∈ Rn with |x|∨ |y| ≤ k, and there is an h > 0 such that

∣∣f(x, t, α)
∣∣
∨∣∣g(x, t, α)

∣∣ ≤ h(1 + |x|), (2.7)

for all (x, t, α) ∈ Rn × R+ × S.
Let C2,1(Rn × R+ × S,R+) denote the family of all nonnegative functions V (x, t, α) on

Rn × R+ × S which are continuously twice differentiable in x and once differentiable in t. If
V ∈ C2,1(Rn × R+ × S,R+), define an operator LV from Rn × R+ × S to R by

LV(x, t, α) = Vt(x, t, α) + Vx(x, t, α)f(x, t, α) +
m∑

j=1

γijV
(
x, t, j

)

+
1
2
trace

[
gT (x, t, α)Vxx(x, t, α)g(x, t, α)

]
.

(2.8)

In particular, if V is independent of α, that is, V (x, t, α) = V (x, t), then

LV(x, t, α) = Vt(x, t) + Vx(x, t)f(x, t) +
1
2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
. (2.9)

For convenience and simplicity in the following discussion, for any sequence c(i), i ∈
S, we define

ĉ = min
i∈S

c(i), č = max
i∈S

c(i). (2.10)

For any sequence ci, i = 1, 2, we define

ĉ = min
i=1,2

ci, č = max
i=1,2

ci. (2.11)

And throughout the paper, we useK to denote a positive constant whose exact value may be
different in different appearances.
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3. Hybrid Predator-Prey Model

In this section, we mainly consider the permanence of the hybrid prey-predator system (1.3).

Lemma 3.1. The solution X(t) = (x(t), y(t)) of (1.3) obeys

lim sup
t→∞

x(t) ≤ ǎ

b̂
=: β, lim sup

t→+∞
y(t) ≤

ǎ
(
b̂ + č

)

b̂2
=: γ. (3.1)

Proof. It follows from the first equation that

x′(t) ≤ x(t)
(
ǎ − b̂x(t)

)
. (3.2)

Using the comparison theorem, we can derive the first inequality. Then, for any ε > 0
arbitrarily, there exists T > 0, such that for any t > T

x(t) < β + ε. (3.3)

So, for any t > T , we obtain

y′(t) ≤ y(t)
[
ǎ − b̂ + č

(
β + ε

)]
. (3.4)

By comparison theorem, then

lim sup
t→+∞

y(t) ≤ ǎ + č
(
β + ε

)

b̂
. (3.5)

For ε > 0 is arbitrary, we therefore conclude

lim sup
t→+∞

y(t) ≤
ǎ
(
b̂ + č

)

b̂2
=: γ. (3.6)

Lemma 3.2. Assume that â − čγ > 0 holds. Then, the solution X(t) = (x(t), y(t)) to (1.3) satisfies

lim inf
t→∞

x(t) ≥ â − čγ

b̂
, lim inf

t→+∞
y(t) ≥ â

b̌
. (3.7)
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Proof. By virtue of the first equation of (1.3), we can get

(
1

x(t)

)′
= −a1(α(t))

1
x(t)

+ b1(α(t)) + c1(α(t))
y(t)
x(t)

= b1(α(t)) −
[
a1(α(t)) − c1(α(t))y(t)

] 1
x(t)

.

(3.8)

Then, it follows from the assumption that there exists sufficiently small ε > 0, such that â −
č(γ + ε) > 0. From Lemma 3.1, for above ε > 0, there exists T > 0, such that y(t) < γ + ε for any
t > T . Thus,

(
1

x(t)

)′
≤ b̌ − [

â − č
(
γ + ε

)] 1
x(t)

. (3.9)

By the comparison theorem, we have

lim sup
t→+∞

1
x(t)

≤ b̌

â − č
(
γ + ε

) . (3.10)

Then,

lim inf
t→∞

x(t) ≥ â − č
(
γ + ε

)

b̌
. (3.11)

Consequently,

lim inf
t→∞

x(t) ≥ â − čγ

b̌
. (3.12)

On the other hand, the second equation of (1.3) implies that

y′(t) ≥ a2(α(t))y(t) − b2(α(t))y2(t) > ây(t) − b̌y2(t). (3.13)

Using the comparison theorem, similar to the proof of the first assertion, we directly obtain

lim inf
t→+∞

y(t) ≥ â

b̌
. (3.14)

Theorem 3.3. Suppose that ai(α) > 0, bi(α) > 0, ci(α) > 0, i = 1, 2, α = 1, 2, . . . , m and â − čγ > 0
hold. Then, the solution X(t) = (x(t), y(t)) to (1.3) is permanent.
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Proof. From Lemma 3.1 and Lemma 3.2, we immediately get

â − čγ

b̌
≤ lim inf

t→∞
x(t) ≤ lim sup

t→∞
x(t) ≤ ǎ

b̂
,

â

b̌
≤ lim inf

t→+∞
y(t) ≤ lim sup

t→+∞
y(t) ≤

ǎ
(
b̂ + č

)

b̂2
.

(3.15)

4. Stochastic Predator-Prey Model With Markovian Switching

In this section, we consider the stochastic differential equation with regime switching (1.4). If
stochastic differential equation has a unique global (i.e., no explosion in a finite time) solution
for any initial value, the coefficients of the equation are required to obey the linear growth
condition and local Lipschitz condition. It is easy to see that the coefficients of (1.4) satisfy
the local Lipschitz condition; therefore, there is a unique local solution X(t) = (x(t), y(t)) on
t ∈ [0, τe) with initial value (x0, y0) > 0, α ∈ S, where τe is the explosion time.

And since our purpose is to reveal the effect of environmental noises, we impose the
following hypothesis on intensities of environmental noises.

Assumption 4.1 (â− (1/2)σ̌2 > 0). By virtue of comparison theorem, we will demonstrate that
the local solution to (1.4) is global, which is motivated by [12]

Φ(t) =
exp

∫ t
0

(
a1(α(s)) − (1/2)σ2

1(α(s))
)
ds + σ1(α(s))dB1(s)

(1/x0) +
∫ t
0 b1(α(s)) exp

∫s
0

(
a1(α(τ)) − (1/2)σ2

1(α(τ))
)
dτ + σ1(α(τ))dB1(τ)ds

. (4.1)

Thus, Φ(t) is the unique solution of

dΦ(t) = Φ(t)[a1(α(t)) − b1(α(t))Φ(t)]dt + Φ(t)σ1(α(t))dB1(t), (4.2)

with Φ(0) = x0. By the comparison theorem, we get x(t) ≤ Φ(t) for t ∈ [0, τe) a.s. It is easy to
see that

dψ(t) = ψ(t)
(
a2(α(t)) − b2ψ(t)

)
dt + ψ(t)σ2(α(t))dB2(t), (4.3)

with ψ(0) = y0, has a unique solution

ψ(t) =
exp

∫ t
0

(
a2(α(s)) − (1/2)σ2

2(α(s))
)
ds + σ2(α(s))dB2(s)

(
1/y0

)
+
∫ t
0 b2(α(s)) exp

∫s
0

(
a2(α(τ)) − (1/2)σ2

2(α(τ))
)
dτ + σ2(α(τ))dB2(τ)ds

. (4.4)

Obviously, ϕ(t) ≤ y(t), t ∈ [0, τe) a.s.
Moreover,

dy(t) ≤ y(t)
(
a2(α(t)) − b2(α(t))y + c2Φ(t)

)
dt + y(t)σ2(α(t))dB2(t). (4.5)
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So, we get y(t) ≤ Ψ(t), t ∈ [0, τe) a.s., where

Ψ(t) =
exp

∫ t
0

(
a2(α(s)) + c2Φ(s) − (1/2)σ2

2(α(s))
)
ds + σ2(α(s))dB2(s)

(
1/y0

)
+
∫ t
0 b2(α(s))F1(s)ds

, (4.6)

F1(s) = exp
∫s

0

(
a2(α(τ)) + c2Φ(τ) − (1/2)σ2

2(α(τ))
)
dτ + σ2(α(τ))dB2(τ). (4.7)

Besides,

dx(t) ≥ x(t)(a1(α(t)) − b1(α(s))x(t) − c1Ψ(t))dt + x(t)σ1(α(t))dB1(t). (4.8)

Then,

x(t) ≥ φ(t), (4.9)

where

φ(t) =
exp

∫ t
0

(
a1(α(s)) − c1(α(s))Ψ(s) − (1/2)σ2

1(α(s))
)
ds + σ1(α(s))dB1(s)

(1/x0) +
∫ t
0 b1(α(s))F2(s)ds

,

F2(s) = exp
∫ s

0

(
a1(α(τ)) − c1(α(τ))Ψ(τ) − (1/2)σ2

1(α(τ))
)
dτ + σ1(α(τ))dB1(τ).

(4.10)

To sum up, we obtain

φ(t) ≤ x(t) ≤ Φ(t), ψ(t) ≤ y(t) ≤ Ψ(t), t ∈ [0, τe) a.s. (4.11)

It can be easily verified that φ(t), Φ(t), ψ(t), Ψ(t) all exist on t ≥ 0, hence

Theorem 4.2. There is a unique positive solution X(t) = (x(t), y(t)) of (1.4) for any initial value
(x0, y0) ∈ R2

+, α ∈ S, and the solution has the properties

φ(t) ≤ x(t) ≤ Φ(t), ψ(t) ≤ y(t) ≤ Ψ(t), t > 0 a.s. (4.12)

where φ(t), Φ(t), ψ(t), Ψ(t) are defined as (4.1),(4.4),(4.6), and (4.9).

Theorem 4.2 tells us that (1.4) has a unique global solution, which makes us to further
discuss its properties.
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Now, we will investigate certain asymptotic limits of the population model (1.4).
Referred to [12], it is not difficult to imply that

lim
t→∞

lnΦ(t)
t

= 0, lim
t→∞

lnψ(t)
t

= 0 a.s. (4.13)

Then, we give the following essential theorems which will be used.

Theorem 4.3. Let Assumption 4.1 hold. Then, the solution y(t) has the property

lim
t→∞

lny(t)
t

= 0 a.s. (4.14)

Proof. The proof is motivated by [12]. By (4.12) and (4.13), then

0 = lim inf
t→∞

lnψ(t)
t

≤ lim inf
t→∞

lny(t)
t

a.s. (4.15)

Thus, it remains to show that

lim sup
t→∞

lny(t)
t

≤ 0 a.s. (4.16)

Note the quadratic variation of
∫ t
0 σi(α(s))dBi(s) is

∫ t
0 σ

2
i (α(s))ds ≤ Kt, thus the strong law of

large numbers for local martingales yields that

∫ t
0 σi(α(s))dBi(s)

t
−→ 0 a.s. as t −→ ∞. (4.17)

Therefore, for any ε > 0, there exists some positive constant T < ∞ such that for any t ≥ T

∣∣∣∣∣

∫ t

0
σi(α(s))dBi(s)

∣∣∣∣∣
< εt a.s. (4.18)

Then, for any t > s ≥ T , we have

∣∣∣∣∣

∫ t

s

σi(α(τ))dBi(τ)

∣∣∣∣∣
≤
∣∣∣∣∣

∫ t

0
σi(α(τ))dBi(τ)

∣∣∣∣∣
+
∣∣∣∣

∫s

0
σi(α(τ))dBi(τ)

∣∣∣∣ ≤ ε(t + s) a.s. (4.19)

Moreover, it follows from (4.13) that for the above ε and T , we get

|lnΦ(t)| ≤ εt a.s. (4.20)
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By virtue of (4.6), we can derive for t > s ≥ T

1
Ψ(t)

≥
∫ t

T

b2(α(s)) exp

[∫ t

s

−
(
a2(α(τ)) − c2(α(s))Φ(τ) +

1
2
σ2
2(α(τ))

)
dτ − σ2(α(τ))dB2(τ)

]

ds.

(4.21)

Using the generalized Itô Lemma, we can conclude that

lnΦ(t) − lnΦ(s) =
∫ t

s

[
a1(α(τ)) − b1(α(τ))Φ(τ) − 1

2
σ2
1(α(τ))

]
dτ + σ1(α(τ))dB1(τ). (4.22)

Consequently,

∫ t

s

b1(α(τ))Φ(τ)dτ =
∫ t

s

[
a1(α(τ)) − 1

2
σ2
1(α(τ))

]
dτ + σ1(α(τ))dB1(τ) − lnΦ(t) + lnΦ(s).

(4.23)

Then, for t > s ≥ T

1
Ψ(t)

≥
∫ t

T

b2(α(s)) exp

[∫ t

s

−
(
a2(α(τ)) − c2(α(s))Φ(τ) +

1
2
σ2
2(α(τ))

)
dτ − σ2(α(τ))dB2(τ)

]

ds

≥ b̂

∫ t

T

exp

[

−
∫ t

s

(
a2(α(τ)) − 1

2
σ2
2(α(τ))

)
dτ − č

b̂

∫ t

s

(
a1(α(τ)) − 1

2
σ2
1(α(τ))

)
dτ

−2čε
b̂

(t + s) − ε(t + s)
]
ds

≥ b̂

∫ t

T

exp
[
−
(
1 +

č

b̂

)(
ǎ − 1

2
σ̂2

)
(t − s) − 2čε

b̂
(t + s) − ε(t + s)

]
ds.

(4.24)

Denote F = (1+(č/b̂))(ǎ−(1/2)σ̂2)+(2čε/b̂)+ε and f = (1+(č/b̂))(ǎ−(1/2)σ̂2)−(2čε/b̂)−ε.
It is obvious that F > f . Hence,

1
Ψ(t)

≥ b̂e−Ft
∫ t

T

efsds =
b̂

f
e−Ft

(
eft − efT

)
. (4.25)

So, we obtain

Ft − lnΨ(t) ≥ ln
b2
f

+ ln
(
eft − efT

)
. (4.26)
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That is,

lnΨ(t) ≤ Ft − ln
b̂

f
− ln

(
eft − efT

)
. (4.27)

Therefore,

lim sup
t→∞

lnΨ(t)
t

≤ 4čε

b̂
+ 2ε a.s. (4.28)

Note the fact that ε > 0 is arbitrary, we obtain that

lim sup
t→∞

lnΨ(t)
t

≤ 0 a.s. (4.29)

By (4.12), we have lim supt→∞(lny(t)/t) ≤ 0 a.s. Consequently,

0 = lim inf
t→∞

lnψ(t)
t

≤ lim inf
t→∞

lny(t)
t

≤ lim sup
t→∞

lny(t)
t

≤ lim sup
t→∞

lnΨ(t)
t

≤ 0 a.s. (4.30)

So, we complete the proof.

Theorem 4.4. Let Assumption 4.1 and (â − (1/2)σ̌2) − (č/b̂)(1 + (č/b̂))(ǎ − (1/2)σ̂2) > 0 hold.
Then, x(t) has the property

lim
t→∞

lnx(t)
t

= 0 a.s. (4.31)

Proof. From (4.12) and (4.13), we have

lim sup
t→∞

lnx(t)
t

≤ lim sup
t→∞

lnΦ(t)
t

= 0 a.s., (4.32)

Now, we only show that lim inft→∞(lnx(t)/t) ≥ 0. By virtue of (4.12), it remains to
demonstrate that lim inft→∞(lnφ(t)/t) ≥ 0. From the proof of Theorem 4.3, we know that
for any ε > 0, there exists some positive constant T < ∞ such that for any t > s ≥ T

∣∣∣∣∣

∫ t

s

σi(α(τ))dBi(τ)

∣∣∣∣∣
≤ ε(t + s), |lnΦ(t)| ≤ εt a.s. (4.33)

0 = lim
t→∞

lnψ(t)
t

≤ lim inf
t→∞

lnΨ(t)
t

≤ lim sup
t→∞

lnΨ(t)
t

≤ 0 a.s. (4.34)
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It follows from (4.34) that

lim
t→∞

lnΨ(t)
t

= 0 a.s. (4.35)

For above ε and T , we get for t ≥ T | lnΨ(t)| ≤ εt a.s. By the generalized Itô Lemma, then

∫ t

s

b1(α(τ))Φ(τ)dτ =
∫ t

s

[
a1(α(τ)) − 1

2
σ2
1(α(τ))

]
dτ + σ1(α(τ))dB1(τ)

− lnΦ(t) + lnΦ(s),

∫ t

s

b2(α(τ))Ψ(τ)dτ =
∫ t

s

[
a2(α(τ)) + c2Φ(τ) − 1

2
σ2
2(α(τ))

]
dτ + σ2(α(τ))dB2(τ)

− lnΨ(t) + lnΨ(s).

(4.36)

Therefore,

∫ t

s

Ψ(τ)dτ ≤ 1

b̂

[∫ t

T

(
a2(α(τ)) − 1

2
σ2
2(α(τ))

)
dτ + 2ε

(
1 +

č

b̂

)
(t + s)

+
č

b̂

∫ t

T

(
a1(α(τ)) − 1

2
σ2
1(α(τ))

)
dτ

]

≤ 1

b̂

(
1 +

č

b̂

)[
2ε(t + s) +

(
ǎ − 1

2
σ̂2

)
(t − s)

]
.

(4.37)

Thus, it is easy to imply that

−
∫ t

T

(
a1(α(τ)) − c1Ψ(τ) − 1

2
σ2
1(α(τ))

)
dτ + σ1(α(τ))dB1(τ) ≤ −H(t − T) + hε(t + T), (4.38)

where H = (â − (1/2)σ̌2) − (č/b̂)(1 + (č/b̂))(ǎ − (1/2)σ̂2) and h = (2č/b̂)(1 + (č/b̂)) + 1. By
(4.9), we imply for t > T

1
φ(t)

= e−
∫ t
T (a1(α(τ))−c1(α(τ))Ψ(τ)−(1/2)σ2

1 (α(τ)))dτ+σ1(α(τ))dB1(τ)

×
[

1
x(T)

+
∫ t

T

b1(α(τ))e
∫s
T (a1(α(τ))−c1(α(τ))Ψ(τ)−(1/2)σ2

1 (α(τ)))dτ+σ1(α(τ))dB1(τ)ds

]

≤ 1
x(T)

e−H(t−T)+hε(t+T) + b̌

∫ t

T

e−H(t−s)+hε(t+s)ds

≤ 1
x(T)

ehε(t+T) +
b̌

H + hε
e2hεt.

(4.39)
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Consequently,

[
e−2hε(t+T)

] 1
φ(t)

≤ 1
x(T)

e−hε(t+T) +
b̌

H + hε
e−2hεT ≤ K a.s. (4.40)

It follows from (4.40) that

lim sup
t→∞

ln
(
1/φ(t)

)

t
≤ lim sup

t→∞

(
lnK
t

+
2hε(t + T)

t

)
= 2hε a.s. (4.41)

Then,

lim inf
t→∞

lnφ(t)
t

≥ −2hε a.s. (4.42)

For ε > 0 is arbitrary, we imply

lim inf
t→∞

lnφ(t)
t

≥ 0 a.s. (4.43)

Finally, we obtain

0 ≤ lim inf
t→∞

lnφ(t)
t

≤ lim inf
t→∞

lnx(t)
t

≤ lim sup
t→∞

lnx(t)
t

≤ lim sup
t→∞

lnΦ(t)
t

= 0 a.s. (4.44)

Theorem 4.5. Let Assumption 4.1 and (â − (1/2)σ̌2) − (č/b̂)(1 + (č/b̂))(ǎ − (1/2)σ̂2) > 0 hold.
Then, the solution X(t) = (x(t), y(t)) to (1.4) obeys

lim
t→∞

1
t

∫ t

0
b1(α(s))x(s) + c1(α(s))y(s)ds =

m∑

α=1

πα

(

a1(α) −
σ2
1(α)
2

)

a.s.,

lim
t→∞

1
t

∫ t

0
c2(α(s))x(s) − b2(α(s))y(s)ds =

m∑

α=1

πα

(

a2(α) −
σ2
2(α)
2

)

a.s.

(4.45)
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Proof. Using the generalized Itô Lemma, we have

lnx(t) = lnx0 +
∫ t

0

(

a1(α(s)) −
σ2
1(α(s))

2

)

ds

−
[∫ t

0
b1(α(s))x(s) + c1(α(s))y(s)ds

]

+
∫ t

0
σ1(α(s))dB1(s),

lny(t) = lny0 +
∫ t

0

(

a2(α(s)) −
σ2
2(α(s))

2

)

ds

+

[∫ t

0
c2(α(s))x(s) − b2(α(s))y(s)ds

]

+
∫ t

0
σ2(α(s))dB2(s).

(4.46)

Therefore,

1
t
lnx(t) =

1
t
lnx0 +

1
t

∫ t

0

(

a1(α(s)) −
σ2
1(α(s))

2

)

ds +
1
t

∫ t

0
σ1(α(s))dB1(s)

− 1
t

∫ t

0
b1(α(s))x(s) + c1(α(s))y(s)ds,

1
t
lny(t) =

1
t
lny0 +

1
t

∫ t

0

(

a2(α(s)) −
σ2
2(α(s))

2

)

ds +
1
t

∫ t

0
σ2(α(s))dB2(s)

+
1
t

∫ t

0
c2(α(s))x(s) − b2(α(s))y(s)ds.

(4.47)

Thus, let t → ∞, by the ergodic properties of Markov chains, we have

lim
t→∞

∫ t
0

(
a1(α(s)) −

(
σ2
1(α)/2

))
ds

t
=

m∑

α=1

πα

(

a1(α) −
σ2
1(α)
2

)

a.s.,

lim
t→∞

∫ t
0

(
a2(α(s)) −

(
σ2
2(α)/2

))
ds

t
=

m∑

α=1

πα

(

a2(α) −
σ2
2(α)
2

)

a.s.

(4.48)

Hence, by virtue of the strong law of large numbers of local martingales, we get

lim
t→∞

1
t

∫ t

0
b1(α(s))x(s) + c1(α(s))y(s)ds =

m∑

α=1

πα

(

a1(α) −
σ2
1(α)
2

)

a.s.,

lim
t→∞

1
t

∫ t

0
c2(α(s))x(s) − b2(α(s))y(s)ds =

m∑

α=1

πα

(

a2(α) −
σ2
2(α)
2

)

a.s.

(4.49)

The proof is complete.
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5. Optimal Harvest Policy

When the harvesting problems of population resources is discussed, we aim to obtain the
optimal harvesting effort and the corresponding maximum sustainable yield.

In the same way of Theorems 4.2–4.5, we can conclude the following results. Here, we
do not list the corresponding proofs in detail, only show the main results.

Theorem 5.1. Assume â−Ě−(1/2)σ̌2 > 0 and (â−Ě−(1/2)σ̌2)−(č/b̂)(1+(č/b̂))(ǎ−Ě−(1/2)σ̂2) >
0 hold. Then, (1.6) has a unique global solutionX(t) = (x(t), y(t)) for any initial value (x0, y0) ∈ R2

+.
In addition, the solution has the properties

lim
t→∞

lnx(t)
t

= 0, lim
t→∞

lny(t)
t

= 0 a.s. (5.1)

When the harvesting problems are considered, the corresponding average population
level is derived below.

Theorem 5.2. Suppose that the conditions of Theorem 5.1 hold. If

lim
t→∞

∫ t
0 x(s)ds

t
, lim

t→∞

∫ t
0 y(s)ds

t
exist a.s., (5.2)

then the solution X(t) = (x(t), y(t)) to (1.6) obeys

lim
t→∞

∫ t
0 x(s)ds

t
=

b2
(
a1 − E1 −

(
σ2
1/2

)) − c1
(
a2 − E2 −

(
σ2
2/2

))

b1b2 + c1c2
a.s.,

lim
t→∞

∫ t
0 y(s)ds

t
=

c2
(
a1 − E1 −

(
σ2
1/2

))
+ b1

(
a2 − E2 −

(
σ2
2/2

))

b1b2 + c1c2
a.s.

(5.3)

When the two species are both subjected to exploitation, it is important and necessary
to discuss the corresponding maximum sustainable revenue.

Theorem 5.3. Let the conditions of Theorem 5.1 hold. Then, if 4pqb1b2−(pc1 − qc2)
2
/= 0, the optimal

harvesting efforts of x(t) and y(t), respectively, are

E∗
1 =

qb1
(
a2 −

(
σ2
2/2

))(
pc1 + qc2

)
+
(
a1 −

(
σ2
1/2

))[
2pqb1b2 + qc2

(
pc1 − qc2

)]

(
pc1 − qc2

)2 − 4pqb1b2
, (5.4)

E∗
2 =

(
a2 −

(
σ2
2/2

))[
pc1

(
pc1 − qc2

) − 2pqb1b2
] − pb2

(
a1 −

(
σ2
1/2

))(
pc1 + qc2

)

(
pc1 − qc2

)2 − 4pqb1b2
. (5.5)

The optimal sustainable harvesting yield is

F
(
E∗
1, E

∗
2
)
=

(
pb2E

∗
1 + qc2E

∗
2

)(
a1 − E∗

1 −
(
σ2
1/2

))
+
(
qb1E

∗
2 − pc1E

∗
1

)(
a2 − E∗

2 −
(
σ2
2/2

))

b1b2 + c1c2
, (5.6)

where p, q are the price of x(t) and y(t).
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Proof. Assume that p, q are the price of resources of x(t) and y(t). Then, the maximum
sustainable yield reads

F(E1, E2) = pE1 lim
t→∞

∫ t
0 x(s)ds

t
+ qE2 lim

t→∞

∫ t
0 y(s)ds

t

= p lim
t→∞

∫ t
0 E1x(s)ds

t
+ q lim

t→∞

∫ t
0 E2y(s)ds

t

=

(
pb2E1 + qc2E2

)(
a1 −

(
σ2
1/2

) − E1
)

b1b2 + c1c2

+

(
qb1E2 − pc1E1

)(
a2 −

(
σ2
2/2

) − E2
)

b1b2 + c1c2
.

(5.7)

Let

∂F(E1, E2)
∂E1

= 0,
∂F(E1, E2)

∂E2
= 0. (5.8)

Then, we can have

(
pc1 − qc2

)
E2 − 2pb2E1 + pb2

(
a1 −

(
σ2
1/2

))
− pc1

(
a2 −

(
σ2
2/2

))
= 0,

(
pc1 − qc2

)
E1 − 2qb1E2 + qc2

(
a1 −

(
σ2
1/2

))
+ qb1

(
a2 −

(
σ2
2/2

))
= 0.

(5.9)

Therefore, there exists a unique extreme value point (E∗
1, E

∗
2), where

E∗
1 =

qb1
(
a2 −

(
σ2
2/2

))(
pc1 + qc2

)
+
(
a1 −

(
σ2
1/2

))[
2pqb1b2 + qc2

(
pc1 − qc2

)]

(
pc1 − qc2

)2 − 4pqb1b2
,

E∗
2 =

(
a2 −

(
σ2
2/2

))[
pc1

(
pc1 − qc2

) − 2pqb1b2
] − pb2

(
a1 −

(
σ2
1/2

))(
pc1 + qc2

)

(
pc1 − qc2

)2 − 4pqb1b2
.

(5.10)

That is, under the condition 4pqb1b2 − (pc1 − qc2)
2
/= 0, we obtain (5.4) and (5.5). So, we obtain

the optimal harvesting efforts of x(t) and y(t).
Substituting (5.4) and (5.5) into the representation of F(E1, E2) (5.7), we have the

optimal sustainable yield

F
(
E∗
1, E

∗
2
)
=

(
pb2E

∗
1 + qc2E

∗
2

)(
a1 − E∗

1 −
(
σ2
1/2

))
+
(
qb1E

∗
2 − pc1E

∗
1

)(
a2 − E∗

2 −
(
σ2
2/2

))

b1b2 + c1c2
,

(5.11)

as desired. Therefore, we complete the proof.
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6. Conclusions

The optimal management of renewable resources has a direct relationship to sustainable
development. When population system is subject to exploitation, it is important and
necessary to discuss the optimal harvesting effort and the corresponding maximum
sustainable yield. Meanwhile, population systems are often subject to environmental noise.
It is also necessary to reveal how the noise affects the population systems. Our work is an
attempt to carry out the study of optimal harvest policy of population system in a stochastic
setting.When bothwhite noise and color noise are taken into account, we consider the limit of
the average in time of the sample path of the stochastic model (1.4). Based on the arguments
of (1.4), we discuss the corresponding stochastic system perturbed by white noise (1.5). We
obtain the the optimal harvesting effort and the corresponding maximum sustainable yield.
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