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We get an existence result for solutions to a nonlinear integral equation with contractive
perturbation by means of Krasnoselskii’s fixed point theorem and especially the theory of measure
of weak noncompactness.

1. Introduction

The integral equations have many applications in mechanics, physics, engineering, biology,
economics, and so on. It is worthwhile mentioning that some problems considered in the
theory of abstract differential equations also lead us to integral equations in Banach space,
and some foundational work has been done in [1–8].

In this paper we want to study the following integral equation:

x(t) = g(t, x(t), x(λ(t))) + f1

(
t,

∫ t

0
k(t, s)f2(s, x(s))ds

)
, t ∈ R+ (1.1)

in the Banach space X.
This equation has been studied when X = R in [9] with g ≡ 0 and [10] with

a perturbation term g. Our paper extends their work to more general spaces and some
modifications are also given on an error of [10].

Our paper is organized as follows.
In Section 2, some notations and auxiliary results will be given. We will introduce

the main tools measure of weak noncompactness and Krasnoselskii’s fixed point theorem
in Section 3 and Section 4. The main theorem in our paper will be established in Section 5.
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2. Preliminaries

First of all, we give out some notations to appear in the following.
R denotes the set of real numbers andR+ = [0,∞). Suppose thatX is a separable locally

compact Banach space with norm ‖ · ‖X in the whole paper. (Remark: the locally compactness
of X will be used in Lemma 2.2). Let A be a Lebesgue measurable subset of R and m(A)
denote the Lebesgue measure of A.

Let L1(A,X) denote the space of all real Lebesgue measurable functions defined on A
to X. L1(A,X) forms a Banach space under the norm

‖x‖L1(A,X) =
∫
A

‖x(t)‖Xdt (2.1)

for x ∈ L1(A,X).

Definition 2.1. A function f(t, x) : R+ ×X → X is said to satisfy Carathéodory conditions if

(i) f is measurable in t for any x ∈ X;

(ii) f is continuous in x for almost all t ∈ R+.

The following lemma which we will use in the proof of our main theorem explains the
structure of functions satisfying Carathéodory conditions with the assumption that the space
X is separable and locally compact (see [11]).

Lemma 2.2. Let I be a bounded interval and f(t, x) : I × X → Xbe a function satisfying
Carathéodory conditions. Then it possesses the Scorza-Dragoni property. That is each ε > 0, there
exists a closed subset Dε of I such that m(I \Dε) ≤ ε and f |Dε×X is continuous.

The operator (Fx)(t) = f(t, x(t)) is called superposition operator or Nemytskij
operator associated to f . The following lemma on superposition operator is important in
our theorem (see [12] and also in [13]).

Lemma 2.3. The superposition operator F generated by the function f(t, x) maps continuously the
space L1(I, X) into itself (I may be unbounded interval) if and only if there exist a(t) ∈ L1(I) and a
nonnegative constant b such that

∥∥f(x, t)∥∥X ≤ a(t) + b‖x‖X (2.2)

for all t ∈ I and x ∈ X.

The Volterra operator which is defined by (Kx)(t) =
∫ t
0 k(t, s)x(s)ds for x ∈ L1(R+, X)

where k(t, s) is measurable with respect to both variables. IfK transforms L1(R+, X) into itself
it is then a bounded operator with norm ‖K‖ which is majorized by the number

ess sups≥0

∫∞

s

|k(t, s)|dt < ∞. (2.3)
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3. Measure of Weak Noncompactness

In this section we will recall the concept of measure of weak noncompactness which is the
key point to complete our proof of main theorem in Section 5.

Let H be a Banach space. B(H) and W(H) denote the collections of all nonempty
bounded subsets and relatively weak compact subsets, respectively.

Definition 3.1. A function μ : B(H) → R+ is said to be a measure of weak noncompactness if
it satisfies the following conditions:

(1) the family Kerμ = {E ∈ B(H) : μ(E) = 0} is nonempty and Kerμ ⊂ W(H);

(2) if E ⊂ F, we have μ(E) ≤ μ(F);

(3) μ(Conv(E)) = μ(E), where Conv(E) denotes the convex closed hull of E;

(4) μ(λE + (1 − λ)F) ≤ λμ(E) + (1 − λ)μ(F) for λ ∈ [0, 1];

(5) If {En} ⊂ B(H) is a decreasing sequence, that is, En+1 ⊂ En, every En is weakly
closed,

and limn→∞μ(En) = 0, then E∞ =
⋂∞

n=1 En is nonempty.

From [14], we see the following measure of weak noncompact:

c(E) = inf{r > 0, ∃K ∈ W(H) : E ⊆ K + Br}, (3.1)

where Br denotes the closed ball in H centered at 0 with radius r > 0.
In [15], Appel and De Pascale gave to c the following simple form in L1(R+, X) space:

c(E) = lim sup
ε→ 0

{
supx∈E

[∫
D

‖x(t)‖Xdt : D ⊂ R+, m(D) ≤ ε

]}
(3.2)

for a nonempty and bounded subset E of space L1(R+, X).
Let

d(E) = lim sup
T →∞

{
supx∈E

∫∞

T

‖x(t)‖Xdt
}
,

μ(E) = c(E) + d(E)

(3.3)

for a nonempty and bounded subset E of space L1(R+, X).
It is easy to know that μ is a measure of weak noncompactness in space L1(R+, X)

following the verification in [16].

4. Krasnoselskii’s Fixed Point Theorem

The following is the Krasnoselskii’s fixed point theorem which will be utilized to obtain the
existence of solutions in the next section.
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Theorem 4.1. Let K be a closed convex and nonempty subset of a Banach space E. Let P , Q be two
operators such that

(i) P(K) +Q(K) ⊆ K;

(ii) P is a contraction mapping;

(iii) Q(K) is relatively compact and Q is continuous.

Then there exists z ∈ K such that Pz +Qz = z.

Remark 4.2. In [9], they proved the existence of solutions by means of Schauder fixed point
theorem. With the presence of the Perturbation term g(t, x(t)) in the integral equation,
the Schauder fixed point theorem is invalid. To overcome this difficulty we will use the
Kransnoselskii’s fixed point theorem to obtain the existence of solutions.

Remark 4.3. We will see in the following section that the important step is the construction of
K by means of measure of weak noncompactness. This is the biggest difference between our
paper from [10].

Remark 4.4. The Krasnoselskii’s fixed point theoremwas extended to general case in [17] (see
also in [13]). In [10], they used the general Krasnoselskii’s fixed point theorem to obtain the
existence result. It can be seen in the next section of our paper that the classical Krasnoselskii’s
fixed point theorem is enough unless we need more general conditions on the perturbation
term g.

5. Main Theorem and Proof

Our main theorem in this paper is stated as follows.

Theorem 5.1. Suppose that the following assumptions are satisfied.
(H1) The functions fi : R+×X → X satisfy Carathéodory conditions, and there exist constants

bi > 0 and functions ai ∈ L1(R+) such that

∥∥fi(t, x)∥∥X ≤ ai(t) + bi‖x‖X (5.1)

for t ∈ R+ and x ∈ X(i = 1, 2).
(H2) Then function k(t, s) : R+ × R → R satisfies Carathéodory conditons, and the linear

Volterra integral operator K defined by

(Kx)(t) =
∫ t

0
k(t, s)x(s)ds (5.2)

transforms the space L1(R+, X) into itself.
(H3) The function g(t, x, y) : R+ ×X ×X → X is measurable in t and continuous in x and y

for almost all t. And there exist two positive constants β1, β2 and a function α ∈ L1(R+) such that

∥∥g(t, x, y)∥∥X ≤ α(t) + β1‖x‖X + β2
∥∥y∥∥X (5.3)
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for t ∈ R+ and x, y ∈ X. Additionally, the function g satisfies the following Lipschitz condition for
almost all t:

∥∥g(t, x1, y1) − g(t, x2, y2)
∥∥
X ≤ C1‖x1 − x2‖X + C2

∥∥y1 − y2
∥∥
X. (5.4)

(H4) The function λ(t) ∈ C1(R+,R) such that λ(D) ⊂ D where D is an arbitrary subset of
R+, and 1/|λ′(t)| is bounded byM0 for all t ∈ [0,∞).

(H5) q = β1+M0β2+b1b2‖K‖ < 1, where‖K‖ denotes the norm of the linear Volterra operator
K.

(H6) p = C1 +M0C2 < 1.
Then the integral equation (1.1) has at least one solution x ∈ L1(R+, X).

Proof. Equation (1.1) may be written in the following form:

x = Px +Qx,

Px = g(t, x(t), x(λ(t))),

Qx = f1

(
t,

∫ t

0
k(t, s)f2(s, x(s))ds

)
= F1KF2x,

(5.5)

whereK is the linear Volterra integral operator and Fi is the superposition operator generated
by the function fi(t, x) (i = 1, 2).

The proof will be given in six steps.

Step 1. There exists r > 0 such that P(Br) + Q(Br) ⊆ Br , where Br is a ball centered zero
element with radius r in L1(R+, X).

Let x and y be arbitrary functions in Br ⊂ L1(R+, X) with r to be determined later. In
view of our assumptions we get

∥∥Px +Qy
∥∥
L1(R+,X)

=
∫∞

0

∥∥∥∥∥g(t, x(t), x(λ(t))) + f1

(
t,

∫ t

0
k(t, s)f2

(
s, y(s)

)
ds

)∥∥∥∥∥
X

dt

≤
∫∞

0

(
α(t) + β1‖x(t)‖X + β2‖x(λ(t))‖X + a1(t) + b1

∥∥∥∥∥
∫ t

0
k(t, s)f2

(
s, y(s)

)
ds

∥∥∥∥∥
X

)
dt

≤ ‖α‖L1(R+) + β1‖x‖L1(R+,X) + β2M0‖x‖L1(R+,X) + ‖a1‖L1(R+) + b1
∥∥KF2y

∥∥
L1(R+,X)

≤ ‖α‖L1(R+) + β1‖x‖L1(R+,X) + β2M0‖x‖L1(R+,X) + ‖a1‖L1(R+)

+ b1‖K‖
∫∞

0

∥∥f2(t, y(t))∥∥Xdt ≤ ‖α‖L1(R+) + β1‖x‖L1(R+,X) + β2M0‖x‖L1(R+,X)
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+ ‖a1‖L1(R+) + b1‖K‖
∫∞

0

(
a2(t) + b2

∥∥y(t)∥∥X

)
dt ≤ ‖α‖L1(R+)

+ β1‖x‖L1(R+,X) + β2M0‖x‖L1(R+,X) + ‖a1‖L1(R+) + b1‖K‖‖a2‖L1(R+)

+ b1b2‖K‖∥∥y∥∥L1(R+,X) ≤ ‖α‖L1(R+) + β1r + β2M0r + ‖a1‖L1(R+)

+ b1‖K‖‖a2‖L1(R+) + b1b2‖k‖r ≤ r.

(5.6)

We then derive that P(Br) +Q(Br) ⊆ Br by taking

r =
‖α‖L1(R+) + ‖α1‖L1(R+) + b1‖K‖‖a2‖L1(R+)

1 − q
> 0, (5.7)

where q = β1 + β2M0 + b1b2‖K‖ < 1 by assumption (H5).

Step 2. μ(P(M) +Q(M)) ≤ qμ(M) for all bounded subset M of L1(R+, X).
Take a arbitrary numbers ε > 0 and D ⊂ R+ such that m(D) ≤ ε.
For any x, y ∈ M, we have

∫
D

∥∥Px +Qy
∥∥
Xdt ≤

∫
D

‖Px‖Xdt +
∫
D

∥∥Qy
∥∥
Xdt

≤
∫
D

α(t)dt + β1

∫
D

‖x‖Xdt + β2

∫
D

‖x(λ(t))‖Xdt

+
∫
D

a1(t)dt + b1

∫
D

∥∥KF2y
∥∥
Xdt

≤
∫
D

α(t)dt +
∫
D

a1(t)dt + b1‖K‖
∫
D

a2(t)dt

+ β1

∫
D

‖x‖Xdt + β2M0

∫
D

‖x‖Xdt + b1b2‖K‖
∫
D

∥∥y(t)∥∥Xdt.

(5.8)

It follows that c(P(M) +Q(M)) ≤ (β1 +M0β2 + b1b2‖K‖)c(M) = qc(M) by definition (3.2).
For T > 0 and any x, y ∈ M, we have

∫∞

T

∥∥Px +Qy
∥∥
Xdt ≤

∫∞

T

α(t)dt +
∫∞

T

a1(t)dt + b1‖K‖
∫∞

T

a2dt

+ β1

∫∞

T

‖x‖Xdt + β2M0

∫∞

T

‖x‖Xdt + b1b2‖K‖
∫∞

T

∥∥y(t)∥∥Xdt,

(5.9)

and then d(P(M) +Q(M)) ≤ (β1 +M0β2 + b1b2‖K‖)d(M) = qd(M) by definition (3.3).
From above, we then obtain μ(P(M) + Q(M)) ≤ qμ(M) for all bounded subset M of

L1(R+, X).
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Step 3. We will construct a nonempty closed convex weakly compact set in on which we will
apply fixed point theorem to prove the existence of solutions.

Let B1
r = Conv(P(Br) + Q(Br)) where Br is defined in Step 1, B2

r = Conv(P(B1
r ) +

Q(B1
r )) and so on. We then get a decreasing sequence {Bn

r }, that is, Bn+1
r ⊂ Bn

r for n = 1, 2, . . ..
Obviously all sets belonging to this sequence are closed and convex, so weakly closed. By the
fact proved in Step 2 that μ(P(M) +Q(M)) ≤ qμ(M) for all bounded subset M of L1(R+, X),
we have

μ(Bn
r ) ≤ qnμ(Br), (5.10)

which yields that limn→∞μ(Bn
r ) = 0.

Denote K =
⋂∞

n=1 B
n
r , and then μ(K) = 0. By the definition of measure of weak

noncompact we know that K is nonempty. Moreover, Q(K) ⊂ K.
K is just nonempty closed convex weakly compact set which we need in the following

steps.

Step 4. Q(K) is relatively compact in L1(R+, X), where K is just the set constructed in Step 3.
Let {xn} ⊂ K be arbitrary sequence. Since μ(K) = 0, ∃T , ∀n, the following inequality is

satisfied:

∫∞

T

‖xn‖Xdt ≤
ε

4
. (5.11)

Considering the function fi(t, x) on [0, T] and k(t, s) on [0, T] × [0, T], we can find a
closed subsetDε of interval [0, T], such thatm([0, T] \Dε) ≤ ε, and such that fi|Dε×X (i = 1, 2)
and k|Dε×[0,T] is continuous. Especially k|Dε×[0,T] is uniformly continuous.

Let us take arbitrarily t1, t2 ∈ Dε and assume t1 < t2 without loss of generality. For an
arbitrary fixed n and denoting ϕn(t) = (KF2xn)(t) we obtain:

∥∥ϕn(t2) − ϕn(t1)
∥∥
X =

∥∥∥∥∥
∫ t2

0
k(t2, s)f2(s, xn(s))ds −

∫ t1

0
k(t1, s)f2(s, xn(s))ds

∥∥∥∥∥
X

≤
∥∥∥∥∥
∫ t1

0
k(t2, s)f2(s, xn(s))ds −

∫ t1

0
k(t1, s)f2(s, xn(s))ds

∥∥∥∥∥
X

+

∥∥∥∥∥
∫ t2

t1

k(t2, s)f2(s, xn(s))ds

∥∥∥∥∥
X

≤
∫ t1

0
|k(t2, s) − k(t1, s)|(a2(s) + b2‖xn(s)‖X)ds

+
∫ t2

t1

|k(t2, s)|(a2(s) + b2‖xn(s)‖X)ds
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≤ ωT (k, |t2 − t1|)
∫T

0
(a2(s) + b1‖xn(s)‖X)ds + k̃

∫ t2

t1

(a2(s) + b2‖xn(s)‖X)ds

≤ ωT (k, |t2 − t1|)
(
‖a2‖L1(R) + b2r

)
+ k̃

∫ t2

t1

a2(s)ds + b2k̃

∫ t2

t1

‖xn(s)‖Xds

(5.12)

where ωT (k, ·) denotes the modulus of continuity of the function k on the set Dε × [0, T] and
k̃ = max{|k(t, s) : (t, s) ∈ Dε × [0, T]}. The last inequality of (5.12) is obtained since K ⊂ Br ,
where r is just the one in the Step 1.

Taking into account the fact that the μ({xn}) ≤ μ(K) = 0, we infer that the terms of the
numerical sequence {∫ t2t1 ‖xn(s)‖X)ds} are arbitrarily small provided that the number t2 − t1 is
small enough.

Since
∫ t2
t1
a2(s)ds is also arbitrarily small provided that the number t2 − t1 is small

enough, the right of (5.12) then tends to zero independent of xn as t2 − t1 tends to zero. We
then have {ϕn} is equicontinuous in the space C(Dε,X).

On the other hand,

∥∥ϕn(t)
∥∥
X =

∥∥∥∥∥
∫ t

0
k(t, s)f2(s, xn)ds

∥∥∥∥∥
X

≤
∫ t

0
|k(t, s)|(a2(s) + b2‖xn(s)‖X)ds

≤ k̃

(∫ t

0
a2(s)ds + b2

∫ t

0
‖xn(s)‖Xds

)

≤ k̃
(
‖a2‖L1(R+) + b2‖xn‖L1(R+,X)

)

≤ k̃
(
‖a2‖L1(R+) + b2r

)
.

(5.13)

From above, we then obtain that {ϕn} is equibounded in the space C(Dε,X).
By assumption (H1),we have the operator F1 is continuous. So {Q(xn)} = {F1ϕn} forms

a relatively compact set in the space C(Dε,X).
Further observe that the above result does not depend on the choice of ε. Thus we can

construct a sequence Dl of closed subsets of the interval [0, T] such that m([0, T] \ Dl) → 0
as l → 0 and such that the sequence {Q(xn)} is relatively compact in every space C(Dl,X).
Passing to subsequence if necessary we can assume that {Q(xn)} is a cauchy sequence in each
space C(Dl,X).

Observe the fact Q(K) ⊂ K, then μ(Q(K)) = 0. By the definition (3.2), let us choose a
number δ > 0 such that for each closed subsetD of the interval [0, T] provided thatm([0, T]\
D) ≤ δ we have

∫
D′
‖Qx‖Xdt ≤

ε

4
(5.14)

for any x ∈ K, where D′ = [0, T] \D.
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By the fact that {Qxn} is a cauchy sequence in each space C(Dl,X), we can choose a
natural number l0 such that m([0, T] \ Dl0) ≤ δ and m(Dl0) > 0, and for arbitrary natural
number n,m ≥ l0 the following inequality holds:

‖(Qxn)(t) − (Qxm)(t)‖X ≤ ε

4m(Dl0)
(5.15)

for any t ∈ Dl0 .
Combining (5.11), (5.14) and (5.15), we get

‖Qxn −Qxm‖L1(R+,X) =
∫∞

0
‖(Qxn)(t) − (Qxm)(t)‖Xdt

=
∫∞

T

‖(Qxn)(t) − (Qxm)(t)‖Xdt +
∫
Dl0

‖(Qxn)(t) − (Qxm)(t)‖Xdt

+
∫
[0,T]\Dl0

‖(Qxn)(t) − (Qxm)(t)‖Xdt ≤ ε

(5.16)

which means that {Qxn} is a cauchy sequence in the space L1(R, X). Hence we conclude that
Q(K) is relatively compact in L1(R, X).

Step 5. The operator P is a contraction mapping:

‖Px1 − Px2‖L1(R+,X) =
∥∥g(t, x1(t), x1(λ(t))) − g(t, x2(t), x2(λ(t)))

∥∥
L1(R+,X)

≤ C1‖x1(t) − x2(t)‖L1(R+,X) + C2‖x1(λ(t)) − x2(λ(t))‖L1(R+,X)

≤ C1‖x1(t) − x2(t)‖L1(R+,X) + C2

∫∞

0
‖x1(λ(t)) − x2(λ(t))‖Xdt

≤ C1‖x1(t) − x2(t)‖L1(R+,X) + C2M0

∫∞

0
‖x1(s) − x2(s)‖Xds

= (C1 +M0C2)‖x1(t) − x2(t)‖L1(R+,X)

= p‖x1(t) − x2(t)‖L1(R+,X),

(5.17)

where we have made a transformation s = λ(t) in the above process. Since p < 1 by
assumption (H6), we then get the fact that the operator P is a contraction mapping.

Step 6. We now check out that the conditions needed in Krasnoselskii’s fixed point theorem
are fulfilled.

(1) From Step 3, we know that P(K) + Q(K) ⊆ K, where K is the set constructed in
Step 3.

(2) From Step 5, we know that P is a contraction mapping.
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(3) From the Step 4 and assumptions (H1), (H2), Q(K) is relatively compact and Q is
continuous.

We apply Theorem 4.1, and then obtain that (1.1) has at least one solution in L1(R+, X).

Remark 5.2. When X = R, in [10] they said Q is weakly sequence compact in their Step 1 of
main proof. From our proof, we know that their proof is not precise, since in Step 4, one of
the crucial conditions to prove the relatively compactness of Q(K) is that Q(K) is weakly
compact. We can only obtain that Q is weakly sequence compact as a mapping from K to K
which is the weakly compact set defined in Step 3. The construction of set K overcomes the
fault in [10], and we obtain the existence result finally.
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[9] J. Banaś and A. Chlebowicz, “On existence of integrable solutions of a functional integral equation
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