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This work presents sufficient conditions for the existence and uniqueness of positive solutions for
a discrete fourth-order beam equation under Lidstone boundary conditions with a parameter; the
iterative sequences yielding approximate solutions are also given. The main tool used is monotone
iterative technique.

1. Introduction

In this paper, we are interested in the existence, uniqueness, and iteration of positive solutions
for the following nonlinear discrete fourth-order beam equation under Lidstone boundary
conditions with explicit parameter β given by

Δ4y(t − 2) − βΔ2y(t − 1) = h(t)
[
f1
(
y(t)

)
+ f2

(
y(t)

)]
, t ∈ [a + 1, b − 1]

Z
, (1.1)

y(a) = 0 = Δ2y(a − 1), y(b) = 0 = Δ2y(b − 1), (1.2)

where Δ is the usual forward difference operator given by Δy(t) = y(t + 1) − y(t), Δny(t) =
Δn−1(Δy(t)), [c, d]

Z
:= {c, c + 1, . . . , d − 1, d}, and β > 0 is a real parameter.

In recent years, the theory of nonlinear difference equations has been widely applied
to many fields such as economics, neural network, ecology, and cybernetics, for details, see
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[1–7] and references therein. Especially, there was much attention focused on the existence
and multiplicity of positive solutions of fourth-order problem, for example, [8–10], and in
particular the discrete problem with Lidstone boundary conditions [11–17]. However, very
little work has been done on the uniqueness and iteration of positive solutions of discrete
fourth-order equation under Lidstone boundary conditions. We would like to mention some
results of Anderson andMinhós [11] and He and Su [12], which motivated us to consider the
BVP (1.1) and (1.2).

In [11], Anderson and Minhós studied the following nonlinear discrete fourth-order
equation with explicit parameters β and λ given by

Δ4y(t − 2) − βΔ2y(t − 1) = λf
(
t, y(t)

)
, t ∈ [a + 1, b − 1]

Z
, (1.3)

with Lidstone boundary conditions (1.2), where β > 0 and λ > 0 are real parameters. The
authors obtained the following result.

Theorem 1.1 (see [11]). Assume that the following condition is satisfied

(A1) f(t, y) = g(t)w(y), where g : [a + 1, b − 1]
Z

→ [0,∞) with
∑b−1

z=a+1 g(z) > 0, w :
[0,∞) → (0,∞) is continuous and nondecreasing, and there exists θ ∈ (0, 1) such that
w(κy) ≥ κθw(y) for κ ∈ (0, 1) and y ∈ [0,∞),

then, for any λ ∈ (0,+∞), the BVP (1.3) and (1.2) has a unique positive solution yλ. Furthermore,
such a solution yλ satisfies the following properties:

(i) limλ→ 0+ ‖yλ‖ = 0 and limλ→∞ ‖yλ‖ = ∞;

(ii) yλ is nondecreasing in λ;

(iii) yλ is continuous in λ, that is, if λ → λ0, then ‖yλ − yλ0‖ → 0.

Very recently, in [12], He and Su investigated the existence, multiplicity, and
nonexistence of nontrivial solutions to the following discrete nonlinear fourth-order
boundary value problem

Δ4u(t − 2) + ηΔ2u(t − 1) − ξu(t) = λf(t, u(t)), t ∈ Z[a + 1, b + 1],

u(a) = 0 = Δ2u(a − 1), u(b + 2) = 0 = Δ2u(b + 1),
(1.4)

where Δ denotes the forward difference operator defined by Δu(t) = u(t + 1) − u(t), Δnu(t) =
Δ(Δn−1u(t)), Z[a + 1, b + 1] is the discrete interval given by {a + 1, a + 2, . . . , b + 1}with a and
b (a < b) integers, η, ξ, λ are real parameters and satisfy

η < 8 sin2 π

2(b − a + 2)
, η2+4ξ ≥ 0, ξ+4η sin2 π

2(b − a + 2)
< 16 sin4 π

2(b − a + 2)
, λ > 0.

(1.5)

For the function f , the authors imposed the following assumption:

(B1) f(t, x) = g(t)h(x), where g : Z[a + 1, b + 1] → [0,∞) with
∑b+1

t=a+1 g(t) > 0, h :
R → (0,∞) is continuous and nondecreasing, and there exists θ ∈ (0, 1) such that
h(μx) ≥ μθh(x) for μ ∈ (0, 1) and x ∈ [0,∞).
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Their main result is the following theorem.

Theorem 1.2 (see [12]). Assume that (B1) holds. Then for any λ ∈ (0,+∞), the BVP (1.4) has a
unique positive solution uλ. Furthermore, such a solution uλ satisfies the properties (i)–(iii) stated in
Theorem 1.1.

The aim of this work is to relax the assumptions (A1) and (B1) on the nonlinear term,
without demanding the existence of upper and lower solutions, we present conditions for the
BVP (1.1) and (1.2) to have a unique solution and then study the convergence of the iterative
sequence. The ideas come from Zhai et al. [18, 19] and Liang [20].

Let B denote the Banach space of real-valued functions on [a − 1, b + 1]
Z
, with the

supremum norm

∥∥y
∥∥ = sup

t∈[a−1,b+1]
Z

∣∣y(t)
∣∣. (1.6)

Throughout this paper, we need the following hypotheses:

(H1) fi : [0,+∞) → [0,+∞) are continuous and fi(y) > 0 for y > 0 (i = 1, 2);

(H2) h : [a + 1, b − 1]
Z
→ [0,+∞)with

∑b−1
z=a+1 h(z) > 0;

(H3) f1 : [0,+∞) → [0,+∞) is nondecreasing, f2 : [0,+∞) → [0,+∞) is nonincreasing,
and there exist ϕ(τ), ψ(τ) on interval [a+1, b−1]

Z
with ϕ : [a+1, b−1]

Z
→ (0, 1), for

all e0 ∈ (0, 1), there exists τ0 ∈ [a+1, b−1]
Z
such that ϕ(τ0) = e0, and ψ(τ) > ϕ(τ), for

all τ ∈ [a + 1, b − 1]
Z
which satisfy

f1
(
ϕ(τ)y

) ≥ ψ(τ)f1
(
y
)
, f2

(
1

ϕ(τ)
y

)
≥ ψ(τ)f2

(
y
)
, ∀τ ∈ [a + 1, b − 1]

Z
, y ≥ 0. (1.7)

2. Two Lemmas

To prove the main results in this paper, we will employ two lemmas. These lemmas are based
on the linear discrete fourth-order equation

Δ4y(t − 2) − βΔ2y(t − 1) = u(t), t ∈ [a + 1, b − 1]
Z
, (2.1)

with Lidstone boundary conditions (1.2).

Lemma 2.1 (see [11]). Let u : [a+1, b−1]
Z
→ R be a function. Then the nonhomogeneous discrete

fourth-order Lidstone boundary value problem (2.1), (1.2) has solution

y(t) =
b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)u(z), t ∈ [a − 1, b + 1]
Z
, (2.2)
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where G2(t, s) given by

G2(t, s) =
1

�(1, 0)�(b, a)

⎧
⎨

⎩

�(t, a)�(b, s): t ≤ s,

�(s, a)�(b, t): s ≤ t,
(t, s) ∈ [a − 1, b + 1]

Z
× [a, b]

Z
(2.3)

with �(t, s) = μt−s − μs−t for μ = (β + 2 +
√
β(β + 4))/2, is the Green’s function for the second-order

discrete boundary value problem

−
(
Δ2y(t − 1) − βy(t)

)
= 0, t ∈ [a, b]

Z
,

y(a) = 0 = y(b),
(2.4)

and G1(s, z) given by

G1(s, z) =
1

b − a

⎧
⎨

⎩

(s − a)(b − z): s ≤ z,

(z − a)(b − s): z ≤ s,
(s, z) ∈ [a, b]

Z
× [a + 1, b − 1]

Z
(2.5)

is the Green’s function for the second-order discrete boundary value problem

−Δ2x(s − 1) = 0, s ∈ [a + 1, b − 1]
Z
,

x(a) = 0 = x(b).
(2.6)

Lemma 2.2 (see [11]). Let

m :=
�(1, 0)�(b, a + 1)
(b − a)�2(b, a)

, M :=
(b − a)�2(b/2, a/2)

4�(1, 0)�(b, a)
. (2.7)

Then, for (t, s, z) ∈ [a + 1, b − 1]3
Z
, one has

m ≤ G2(t, s)G1(s, z) ≤ M. (2.8)

3. Main Results

Theorem 3.1. Assume that (H1)–(H3) hold. Then, the BVP (1.1) and (1.2) has a unique solution
y∗(t) in D, where

D =
{
y ∈ B | y(a) = 0 = y(b), y(t) > 0, t ∈ [a + 1, b − 1]

Z

}
. (3.1)
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Moreover, for any x0, y0 ∈ D, constructing successively the sequences

xn+1(t) =
b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1(xn(z)) + f2

(
yn(z)

)]
,

t ∈ [a − 1, b + 1]
Z
, n = 0, 1, 2, . . . ,

yn+1(t) =
b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1
(
yn(z)

)
+ f2(xn(z))

]
,

t ∈ [a − 1, b + 1]
Z
, n = 0, 1, 2, . . . ,

(3.2)

One has xn(t), yn(t) converge uniformly to y∗(t) in [a − 1, b + 1]
Z
.

Proof. First, we show that the BVP (1.1) and (1.2) has a solution.
It is easy to see that the BVP (1.1) and (1.2) has a solution y = y(t) if and only if y is a

fixed point of the operator equation

A
(
y1, y2

)
(t) =

b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1
(
y1(z)

)
+ f2

(
y2(z)

)]
, t ∈ [a − 1, b + 1]

Z
.

(3.3)

In view of (H3) and (3.3),A(y1, y2) is nondecreasing in y1 and nonincreasing in y2. Moreover,
for any τ ∈ [a + 1, b − 1]

Z
, we have

A

(
ϕ(τ)y1,

1
ϕ(τ)

y2

)
(t) =

b−1∑

s=a+1

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1
(
ϕ(τ)y1(z)

)
+ f2

(
1

ϕ(τ)
y2(z)

)]

≥ ψ(τ)
b−1∑

s=a+1

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1
(
y1(z)

)
+ f2

(
y2(z)

)]

= ψ(τ)A
(
y1, y2

)
(t)

(3.4)

for t ∈ [a, b]
Z
and y1, y2 ∈ D.

Let

L = (b − a − 1)
b−1∑

z=a+1

h(z), (3.5)
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condition (H2) implies L > 0. Since fi(y) > 0 for y > 0 (i = 1, 2), by Lemma 2.2, we have

A(L, L) =
b−1∑

s=a+1

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1(L) + f2(L)

]

≥ m
[
f1(L) + f2(L)

] b−1∑

s=a+1

b−1∑

z=a+1

h(z)

= m
[
f1(L) + f2(L)

]
L

(3.6)

for m in (2.1) and L in (3.5).
Moreover, we obtain

A(L, L) ≤ M
[
f1(L) + f2(L)

]
L (3.7)

for M in (2.1).
Thus

m
[
f1(L) + f2(L)

]
L ≤ A(L, L) ≤ M

[
f1(L) + f2(L)

]
L. (3.8)

Therefore, we can choose a sufficiently small number e1 ∈ (0, 1) such that

e1L ≤ A(L, L) ≤ L

e1
, (3.9)

which together with (H3) implies that there exists τ1 ∈ [a + 1, b − 1]
Z
such that ϕ(τ1) = e1, so

ϕ(τ1)L ≤ A(L, L) ≤ L

ϕ(τ1)
. (3.10)

Since ψ(τ1)/ϕ(τ1) > 1, we can take a sufficiently large positive integer k such that

[
ψ(τ1)
ϕ(τ1)

]k
≥ 1

ϕ(τ1)
. (3.11)

It is clear that

[
ϕ(τ1)
ψ(τ1)

]k
≤ ϕ(τ1). (3.12)
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We define

u0(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−[ϕ(τ1)
]k
L: t = a − 1, b + 1,

0: t = a, b,
[
ϕ(τ1)

]k
L: t ∈ [a + 1, b − 1]

Z
,

v0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− L
[
ϕ(τ1)

]k : t = a − 1, b + 1,

0: t = a, b,

L
[
ϕ(τ1)

]k : t ∈ [a + 1, b − 1]
Z
.

(3.13)

Evidently, for t ∈ [a, b]
Z
, u0 ≤ v0. Take any λ ∈ (0, [ϕ(τ1)]

2k], then λ ∈ (0, 1) and u0 ≥ λv0.
By themixedmonotonicity ofA, we haveA(u0, v0) ≤ A(v0, u0). In addition, combining

(H3)with (3.10) and (3.11), we get

A(u0, v0) = A

(
[
ϕ(τ1)

]k
L,

1
[
ϕ(τ1)

]k L

)

= A

(

ϕ(τ1)
[
ϕ(τ1)

]k−1
L,

1

ϕ(τ1)
[
ϕ(τ1)

]k−1L

)

≥ ψ(τ1)A

(
[
ϕ(τ1)

]k−1
L,

1
[
ϕ(τ1)

]k−1L

)

≥ · · ·

≥ [ψ(τ1)
]k
A(L, L) ≥ [ψ(τ1)

]k
ϕ(τ1)L

≥ [ϕ(τ1)
]k
L = u0.

(3.14)

From (H3), we have

A
(
y1, y2

)
= A

(
ϕ(s)

y1

ϕ(s)
,

1
ϕ(s)

ϕ(s)y2

)

≥ ψ(s)A
(

y1

ϕ(s)
, ϕ(s)y2

)
, ∀s ∈ [a + 1, b − 1]

Z
, y1, y2 ≥ 0,

(3.15)

and hence

A

(
y1

ϕ(s)
, ϕ(s)y2

)
≤ 1

ψ(s)
A
(
y1, y2

)
, ∀s ∈ [a + 1, b − 1]

Z
, y1, y2 ≥ 0. (3.16)
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Thus, we have

A(v0, u0) = A

(
L

[
ϕ(τ1)

]k ,
[
ϕ(τ1)

]k
L

)

= A

(
L

ϕ(τ1)
[
ϕ(τ1)

]k−1 , ϕ(τ1)
[
ϕ(τ1)

]k−1
L

)

≤ 1
ψ(τ1)

A

(
L

[
ϕ(τ1)

]k−1 ,
[
ϕ(τ1)

]k−1
L

)

≤ · · ·

≤ 1
[
ψ(τ1)

]k A(L, L) ≤ 1
[
ψ(τ1)

]k
L

ϕ(τ1)
.

(3.17)

In accordance with (3.12), we can see that

A(v0, u0) ≤ L
[
ϕ(τ1)

]k = v0. (3.18)

Construct successively the sequences

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1, 2, . . . . (3.19)

By the mixed monotonicity of A, we have u1 = A(u0, v0) ≤ A(v0, u0) = v1. By induction, we
obtain un ≤ vn, n = 1, 2, . . .. It follows from (3.14), (3.18), and the mixed monotonicity of A
that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.20)

Note that u0 ≥ λv0, so we can get un(t) ≥ u0(t) ≥ λv0(t) ≥ λvn(t), t ∈ [a, b]
Z
, n = 1, 2, . . .. Let

λn = sup{λ > 0 | un(t) ≥ λvn(t), t ∈ [a, b]
Z
}, n = 1, 2, . . . . (3.21)

Thus, we have

un(t) ≥ λnvn(t), t ∈ [a, b]
Z
, n = 1, 2, . . . , (3.22)

and then

un+1(t) ≥ un(t) ≥ λnvn(t) ≥ λnvn+1(t), t ∈ [a, b]
Z
, n = 1, 2, . . . . (3.23)

Therefore, λn+1 ≥ λn, that is, {λn} is increasing with {λn} ⊂ (0, 1]. Set λ̃ = limn→∞ λn. We can
show that λ̃ = 1. In fact, if 0 < λ̃ < 1, by (H3), there exists τ2 ∈ [a+1, b−1]

Z
such that ϕ(τ2) = λ̃.

Consider the following two cases.
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(i) There exists an integer N such that λN = λ̃. In this case, we have λn = λ̃ for all
n ≥ N holds. Hence, for n ≥ N, it follows from (3.4) and the mixed monotonicity of A that

un+1 = A(un, vn) ≥ A

(
λ̃vn,

1

λ̃
un

)
= A

(
ϕ(τ2)vn,

1
ϕ(τ2)

un

)
≥ ψ(τ2)A(vn, un) = ψ(τ2)vn+1.

(3.24)

By the definition of λn, we have

λn+1 = λ̃ ≥ ψ(τ2) > ϕ(τ2) = λ̃. (3.25)

This is a contradiction.
(ii) For all integer n, λn < λ̃. In this case, we have 0 < λn/λ̃ < 1. In accordance with

(H3), there exists θn ∈ [a + 1, b − 1]
Z
such that ϕ(θn) = λn/λ̃. Hence, combining (3.4)with the

mixed monotonicity of A, we have

un+1 = A(un, vn) ≥ A

(
λnvn,

1
λn

un

)

= A

⎛

⎜
⎝

λn

λ̃
λ̃vn,

un(
λn/λ̃

)
λ̃

⎞

⎟
⎠ = A

(
ϕ(θn)ϕ(τ2)vn,

un

ϕ(θn)ϕ(τ2)

)

≥ ψ(θn)A
(
ϕ(τ2)vn,

un

ϕ(τ2)

)
≥ ψ(θn)ψ(τ2)A(vn, un)

= ψ(θn)ψ(τ2)vn+1.

(3.26)

By the definition of λn, we have

λn+1 ≥ ψ(θn)ψ(τ2) > ϕ(θn)ψ(τ2) =
λn

λ̃
ψ(τ2). (3.27)

Let n → ∞, we have λ̃ ≥ (λ̃/λ̃)ψ(τ2) > (λ̃/λ̃)ϕ(τ2) = ϕ(τ2) = λ̃, and this is also a contradiction.
Hence, limn→∞ λn = 1.

Thus, combining (3.20) with (3.22), we have

0 ≤ un+l(t) − un(t) ≤ vn(t) − un(t) ≤ vn(t) − λnvn(t) = (1 − λn)vn(t) ≤ (1 − λn)v0(t) (3.28)

for t ∈ [a, b]
Z
, where l is a nonnegative integer. Thus,

‖un+l − un‖ ≤ ‖vn − un‖ ≤ (1 − λn)v0. (3.29)

Therefore, there exists a function y∗ ∈ D such that

lim
n→∞

un(t) = lim
n→∞

vn(t) = y∗(t) for t ∈ [a − 1, b + 1]
Z
. (3.30)



10 Advances in Difference Equations

By the mixed monotonicity of A and (3.20), we have

un+1(t) = A(un(t), vn(t)) ≤ A
(
y∗(t), y∗(t)

) ≤ A(vn(t), un(t)) = vn+1(t). (3.31)

Let n → ∞ and we get A(y∗(t), y∗(t)) = y∗(t), t ∈ [a − 1, b + 1]
Z
. That is, y∗ is a nontrivial

solution of the BVP (1.1) and (1.2).
Next, we show the uniqueness of solutions of the BVP (1.1) and (1.2). Assume, to the

contrary, that there exist two nontrivial solutions y1 and y2 of the BVP (1.1) and (1.2) such
thatA(y1(t), y1(t)) = y1(t) andA(y2(t), y2(t)) = y2(t) for t ∈ [a−1, b+1]

Z
. According to (3.9),

we can know that there exists 0 < η ≤ 1 such that ηy2(t) ≤ y1(t) ≤ (1/η)y2(t) for t ∈ [a, b]
Z
.

Let

η0 = sup
{
0 < η ≤ 1 | ηy2 ≤ y1 ≤ 1

η
y2

}
. (3.32)

Then 0 < η0 ≤ 1 and η0y2(t) ≤ y1(t) ≤ (1/η0)y2(t) for t ∈ [a, b]
Z
.

We now show that η0 = 1. In fact, if 0 < η0 < 1, then, in view of (H3), there exists
τ ∈ [a + 1, b − 1]

Z
such that ϕ(τ) = η0. Furthermore, we have

y1 = A
(
y1, y1

) ≥ A

(
η0y2,

1
η0

y2

)
= A

(
ϕ(τ)y2,

1
ϕ(τ)

y2

)
≥ ψ(τ)A

(
y2, y2

)
= ψ(τ)y2, (3.33)

y1 = A
(
y1, y1

) ≤ A

(
y2

η0
, η0y2

)
= A

(
y2

ϕ(τ)
, ϕ(τ)y2

)
≤ 1

ψ(τ)
A
(
y2, y2

)
=

1
ψ(τ)

y2. (3.34)

In (3.34), we used the relation formula (3.16). Since ψ(τ) > ϕ(τ) = η0, this contradicts the
definition of η0. Hence η0 = 1. Therefore, the BVP (1.1) and (1.2) has a unique solution.

Finally, we show that “moreover” part of the theorem. For any initial x0, y0 ∈ D, in
accordance with (3.9), we can choose a sufficiently small number e2 ∈ (0, 1) such that

e2L ≤ x0 ≤ 1
e2

L, e2L ≤ y0 ≤ 1
e2

L. (3.35)

It follows from (H3) that there exists τ3 ∈ [a + 1, b − 1]
Z
such that ϕ(τ3) = e2, and hence

ϕ(τ3)L ≤ x0 ≤ L

ϕ(τ3)
, ϕ(τ3)L ≤ y0 ≤ L

ϕ(τ3)
. (3.36)

Thus, we can choose a sufficiently large positive integer k such that

[
ψ(τ3)
ϕ(τ3)

]k
≥ 1

ϕ(τ3)
. (3.37)

Define

û0 =
[
ϕ(τ3)

]k
L, v̂0 =

L
[
ϕ(τ3)

]k . (3.38)
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Obviously, û0 < x0, y0 < v̂0. Let

ûn = A(ûn−1, v̂n−1), v̂n = A(v̂n−1, ûn−1), n = 1, 2, . . . ,

xn(t) = A
(
xn−1, yn−1

)
(t) =

b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1(xn−1(z)) + f2

(
yn−1(z)

)]
,

yn(t) = A
(
yn−1, xn−1

)
(t) =

b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)
[
f1
(
yn−1(z)

)
+ f2(xn−1(z))

]

(3.39)

for t ∈ [a− 1, b + 1]
Z
, n = 1, 2, . . .. By induction, we get ûn ≤ xn ≤ v̂n, ûn ≤ yn ≤ v̂n, n = 1, 2, . . ..

Similarly to the above proof, it follows that there exists ŷ ∈ D such that

lim
n→∞

ûn = lim
n→∞

v̂n = ŷ, A
(
ŷ, ŷ

)
= ŷ. (3.40)

By the uniqueness of fixed points A in D, we get ŷ = y∗. Therefore, we have

lim
n→∞

xn = lim
n→∞

yn = y∗. (3.41)

This completes the proof of the theorem.

Remark 3.2. From the proof of Theorem 3.1, we easily know that assume y = A(y, x), x =
A(x, y), thus, let y0 = y, x0 = x, we have

yn = y, xn = x, n = 1, 2, . . . . (3.42)

Therefore y = x = y∗.

Theorem 3.3. Assume that (H2) holds, and the following conditions are satisfied:

(C1) f : [0,+∞) → [0,+∞) is continuous and f(y) > 0 for y > 0;

(C2) f : [0,+∞) → [0,+∞) is nondecreasing;

b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)f
(
ϕ(τ)y(z)

) ≥ ψ
(
τ, y

) b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)f
(
y(z)

)
,

(3.43)

for all τ ∈ [a+1, b−1]
Z
, y ∈ [0,+∞), where ϕ : [a+1, b−1]

Z
→ (0, 1), for all e0 ∈ (0, 1),

there exists τ0 ∈ [a + 1, b − 1]
Z
such that ϕ(τ0) = e0, and ψ : [a + 1, b − 1]

Z
× [0,+∞) →

(0,+∞), with ψ(τ, y) > ϕ(τ), for all τ ∈ [a + 1, b − 1]
Z
, y ∈ [0,+∞);
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(C3) for fixed τ ∈ [a + 1, b − 1]
Z
, one has

(i) ψ(τ, y) is nonincreasing with respect to y, and there exists τ4 ∈ [a + 1, b − 1]
Z
such

that

mf(L) ≥ ϕ(τ4),
ψ
(
τ4, L/ϕ(τ4)

)

ϕ(τ4)
≥ Mf(L) (3.44)

or

(ii) ψ(τ, y) is nondecreasing with respect to y, and there exists τ5 ∈ [a + 1, b − 1]
Z
such

that

mf(L) ≥ ϕ(τ5)
ψ(τ5, L)

,
1

ϕ(τ5)
≥ Mf(L), (3.45)

wherem, M are defined in (2.1), L is defined in (3.5). Then, the BVP

Δ4y(t − 2) − βΔ2y(t − 1) = h(t)f
(
y(t)

)
, t ∈ [a + 1, b − 1]

Z
,

y(a) = 0 = Δ2y(a − 1), y(b) = 0 = Δ2y(b − 1)
(3.46)

has a unique solution y∗.

Proof. For convenience, we still define the operator equation A by

Ay(t) =
b∑

s=a

b−1∑

z=a+1

G2(t, s)G1(s, z)h(z)f
(
y(z)

)
, t ∈ [a − 1, b + 1]

Z
. (3.47)

In the following, we consider the following two cases.
(i) For fixed τ ∈ [a + 1, b − 1]

Z
, ψ(τ, y) is nonincreasing with respect to y.

According to condition (C3) and Lemma 2.2, we can know that there exists τ4 ∈ [a +
1, b − 1]

Z
such that

ϕ(τ4)L ≤ A(L) ≤ ψ
(
τ4, L/ϕ(τ4)

)

ϕ(τ4)
L. (3.48)

Since ψ(τ4, L)/ϕ(τ4) > 1, we can find a sufficiently large positive integer k such that

[
ψ(τ4, L)
ϕ(τ4)

]k
≥ 1

ϕ(τ4)
. (3.49)
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For t ∈ [a + 1, b − 1]
Z
, we still define

u0(t) =
[
ϕ(τ4)

]k
L, v0(t) =

L
[
ϕ(τ4)

]k ,

un(t) = Aun−1(t), vn(t) = Avn−1(t), n = 1, 2, . . . .

(3.50)

By the proof of Theorem 3.1, it is sufficient to show that

u0 ≤ u1 ≤ v1 ≤ v0. (3.51)

Obviously, u0 ≤ v0 and u1 ≤ v1.
In this case, it follows from conditions (C2), (C3), and (3.49) that

u1 = Au0 = A
([

ϕ(τ4)
]k
L
)

= A
(
ϕ(τ4)

[
ϕ(τ4)

]k−1
L
)

≥ ψ
(
τ4,
[
ϕ(τ4)

]k−1
L
)
A
([

ϕ(τ4)
]k−1

L
)

= ψ
(
τ4,
[
ϕ(τ4)

]k−1
L
)
A
(
ϕ(τ4)

[
ϕ(τ4)

]k−2
L
)

≥ ψ
(
τ4,
[
ϕ(τ4)

]k−1
L
)
ψ
(
τ4,
[
ϕ(τ4)

]k−2
L
)
A
([

ϕ(τ4)
]k−2

L
)

≥ · · ·

≥ ψ
(
τ4,
[
ϕ(τ4)

]k−1
L
)
ψ
(
τ4,
[
ϕ(τ4)

]k−2
L
)
· · ·ψ(τ4, L)A(L)

≥ [ψ(τ4, L)
]k
ϕ(τ4)L

≥ [ϕ(τ4)
]k
L = u0.

(3.52)

In accordance with (3.16), we have

A

(
y

ϕ(s)

)
≤ 1

ψ
(
s, y/ϕ(s)

)Ay, (3.53)
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which together with condition (C2) and (3.48) implies that

v1 = Av0 = A

(
L

[
ϕ(τ4)

]k

)

= A

(
L

ϕ(τ4)
[
ϕ(τ4)

]k−1

)

≤ 1

ψ
(
τ4, L/

[
ϕ(τ4)

]k)A

(
L

[
ϕ(τ4)

]k−1

)

=
1

ψ
(
τ4, L/

[
ϕ(τ4)

]k)A

(
L

ϕ(τ4)
[
ϕ(τ4)

]k−2

)

≤ 1

ψ
(
τ4, L/

[
ϕ(τ4)

]k)
1

ψ
(
τ4, L/

[
ϕ(τ4)

]k−1)A

(
L

[
ϕ(τ4)

]k−2

)

≤ 1

ψ
(
τ4, L/

[
ϕ(τ4)

]k)
1

ψ
(
τ4, L/

[
ϕ(τ4)

]k−1) · · · 1
ψ
(
τ4, L/ϕ(τ4)

)A(L)

≤ 1
[
ϕ(τ4)

]k−1
1

ψ
(
τ4, L/ϕ(τ4)

)A(L)

≤ L
[
ϕ(τ4)

]k = v0.

(3.54)

(ii) For fixed τ ∈ [a + 1, b − 1]
Z
, ψ(τ, y) is nondecreasing with respect to y.

In this case, by condition (C3) and Lemma 2.2, we can know that there exists τ5 ∈
[a + 1, b − 1]

Z
such that

ϕ(τ5)L
ψ(τ5, L)

≤ A(L) ≤ L

ϕ(τ5)
. (3.55)

Since 0 < ϕ(τ5)/ψ(τ5, L/ϕ(τ5)) < 1, we can take a sufficiently large positive integer k such
that

[
ϕ(τ5)

ψ
(
τ5, L/ϕ(τ5)

)

]k
≤ ϕ(τ5). (3.56)
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For t ∈ [a + 1, b − 1]
Z
, we still define

u0(t) =
[
ϕ(τ5)

]k
L, v0(t) =

L
[
ϕ(τ5)

]k ,

un(t) = Aun−1(t), vn(t) = Avn−1(t), n = 1, 2, . . . .

(3.57)

We continue to prove that

u1 ≥ u0, v1 ≤ v0. (3.58)

By (3.52), combining (3.55)with the monotonicity of ψ, we have

u1 = Au0 = A
([

ϕ(τ5)
]k
L
)

≥ ψ
(
τ5,
[
ϕ(τ5)

]k−1
L
)
ψ
(
τ5,
[
ϕ(τ5)

]k−2
L
)
· · ·ψ(τ5, L)A(L)

≥ [ϕ(τ5)
]k−1

ψ(τ5, L)A(L)

≥ [ϕ(τ5)
]k
L = u0.

(3.59)

In accordance with (3.54), combining the monotonicity of ψ and (3.55), we get

v1 = Av0 = A

(
L

[
ϕ(τ5)

]k

)

≤ 1

ψ
(
τ5, L/

[
ϕ(τ5)

]k)
1

ψ
(
τ5, L/

[
ϕ(τ5)

]k−1) · · · 1
ψ
(
τ5, L/ϕ(τ5)

)A(L)

≤ 1
[
ψ
(
τ5, L/ϕ(τ5)

)]k
L

ϕ(τ5)
.

(3.60)

An application of (3.56) yields

v1 ≤ 1
[
ϕ(τ5)

]k L = v0. (3.61)

Therefore, we obtain

u0 ≤ u1 ≤ v1 ≤ v0. (3.62)

For t = a − 1, b + 1, the proof is similar and hence omitted. This completes the proof of the
theorem.
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Remark 3.4. In Theorem 3.1, the more general conditions are imposed on the nonlinear term
than Theorem 1.1. In particular, in Theorem 3.3, ψ(τ, y) contains the variable y; therefore, the
more comprehensive functions can be incorporated.

4. An Example

Example 4.1. Consider the following discrete fourth-order Lidstone problem:

Δ4y(t − 2) −Δ2y(t − 1) = t

[

1 + y1/4(t) + 2 +
1

y1/4(t)

]

, t ∈ [2 + 1, 7 − 1]
Z
,

y(2) = 0 = Δ2y(1), y(7) = 0 = Δ2y(6).

(4.1)

We claim that the BVP (4.1) and (1.2) has a unique solution y∗(t) in D, where

D =
{
y ∈ B | y(2) = 0 = y(7), y(t) > 0, t ∈ [3, 6]

Z

}
. (4.2)

Moreover, for any x0, y0 ∈ D, constructing successively the sequences

xn+1(t) =
7∑

s=2

6∑

z=3

G2(t, s)G1(s, z)z

[

1 + x1/4
n (z) + 2 +

1

y1/4
n (z)

]

, t ∈ [1, 8]
Z
, n = 0, 1, 2, . . . ,

yn+1(t) =
7∑

s=2

6∑

z=3

G2(t, s)G1(s, z)z

[

1 + y1/4
n (z) + 2 +

1

x1/4
n (z)

]

, t ∈ [2, 8]
Z
, n = 0, 1, 2, . . . ,

(4.3)

we have xn(t), yn(t) converge uniformly to y∗(t) in [2, 8]
Z
.

In fact, we choose f1(y) = 1 + y1/4, f2(y) = 2 + 1/y1/4, h(z) = z, thus fi(y) > 0 for
y > 0 (i = 1, 2),

∑6
z=3 h(z) =

∑6
z=3 z = 18 > 0. It is easy to check that f1 is nondecreasing on

[0,+∞), f2 is nonincreasing on [0,+∞). In addition, we set

τ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, ϕ(τ) ∈
(
0,

1
4

]
,

4, ϕ(τ) ∈
(
1
4
,
1
2

]
,

5, ϕ(τ) ∈
(
1
2
,
3
4

]
,

6, ϕ(τ) ∈
(
3
4
, 1
)
,

(4.4)
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ψ(τ) = [ϕ(τ)]1/2. It is easy to see that

f1
(
ϕ(τ)y

)
= 1 +

(
ϕ(τ)y

)1/4 ≥ ψ(τ)
(
1 + y1/4

)
= ψ(τ)f1

(
y
)
, ∀τ ∈ [3, 6]

Z
, y ≥ 0,

f2

(
y

ϕ(τ)

)
= 2 +

1
(
y/ϕ(τ)

)1/4 ≥ ψ(τ)

(

2 +
1

y1/4

)

, ∀τ ∈ [3, 6]
Z
, y ≥ 0.

(4.5)

The conclusion then follows from Theorem 3.1.
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