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A discrete predator-prey system with time delay and feedback controls is studied. Sufficient
conditions which guarantee the predator and the prey to be permanent are obtained. Moreover,
under some suitable conditions, we show that the predator species y will be driven to extinction.
The results indicate that one can choose suitable controls to make the species coexistence in a long
term.

1. Introduction

The dynamic relationship between predator and its prey has long been and will continue
to be one of the dominant themes in both ecology and mathematical ecology due to
its universal existence and importance. The traditional predator-prey models have been
studied extensively (e.g., see [1–10] and references cited therein), but they are questioned by
several biologists. Thus, the Lotka-Volterra type predator-prey model with the Beddington-
DeAngelis functional response has been proposed and has been well studied. The model can
be expressed as follows:

x′(t) = x1(t)
(
b − a11x(t) −

a12y(t)
1 + βx(t) + γy(t)

)
,

y′(t) = y(t)
(

a21x(t)
1 + βx(t) + γy(t)

− d − a22y(t)
)
.

(1.1)

The functional response in system (1.1) was introduced by Beddington [11] and DeAngelis
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et al. [12]. It is similar to the well-known Holling type II functional response but has an
extra term γy in the denominator which models mutual interference between predators.
It can be derived mechanistically from considerations of time utilization [11] or spatial
limits on predation. But few scholars pay attention to this model. Hwang [6] showed that
the system has no periodic solutions when the positive equilibrium is locally asymptotical
stability by using the divergency criterion. Recently, Fan and Kuang [9] further considered
the nonautonomous case of system (1.1), that is, they considered the following system:

x′(t) = x1(t)
(
b(t) − a11(t)x(t) −

a12(t)y(t)
α(t) + β(t)x(t) + γ(t)y(t)

)
,

y′(t) = y(t)
(

a21(t)x(t)
α(t) + β(t)x(t) + γ(t)y(t)

− d(t)
)
.

(1.2)

For the general nonautonomous case, they addressed properties such as permanence,
extinction, and globally asymptotic stability of the system. For the periodic (almost periodic)
case, they established sufficient criteria for the existence, uniqueness, and stability of a
positive periodic solution and a boundary periodic solution. At the end of their paper,
numerical simulation results that complement their analytical findings were present.

However, we note that ecosystem in the real world is continuously disturbed by
unpredictable forces which can result in changes in the biological parameters such as survival
rates. Of practical interest in ecosystem is the question of whether an ecosystem canwithstand
those unpredictable forces which persist for a finite period of time or not. In the language of
control variables, we call the disturbance functions as control variables. In 1993, Gopalsamy
and Weng [13] introduced a control variable into the delay logistic model and discussed
the asymptotic behavior of solution in logistic models with feedback controls, in which
the control variables satisfy certain differential equation. In recent years, the population
dynamical systems with feedback controls have been studied in many papers, for example,
see [13–22] and references cited therein.

It has been found that discrete time models governed by difference equations are
more appropriate than the continuous ones when the populations have nonoverlapping
generations. Discrete time models can also provide efficient computational models of
continuous models for numerical simulations. It is reasonable to study discrete models
governed by difference equations. Motivated by the above works, we focus our attention on
the permanence and extinction of species for the following nonautonomous predator-prey
model with time delay and feedback controls:

x(n + 1) = x(n) exp
(
b(n) − a11(n)x(n) −

a12(n)y(n)
1 + β(n)x(n) + γ(n)y(n)

+ c1(n)u1(n)
)
,

y(n + 1) = y(n) exp
(

a21(n)x(n − τ)
1 + β(n)x(n − τ) + γ(n)y(n − τ)

− d(n) − a22(n)y(n) − c2(n)u2(n)
)
,

u1(n + 1) = r(n) − (e1(n) − 1)u1(n) − f1(n)x(n),

u2(n + 1) = (1 − e2(n))u2(n) + f2(n)y(n),
(1.3)
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where x(n), y(n) are the density of the prey species and the predator species at time n,
respectively. ui(n) (i = 1,2) are the feedback control variables. b(n), a11(n) represent the
intrinsic growth rate and density-dependent coefficient of the prey at time n, respectively.
d(n), a22(n) denote the death rate and density-dependent coefficient of the predator at time
n, respectively. a12(n) denotes the capturing rate of the predator; a21(n)/a12(n) represents the
rate of conversion of nutrients into the reproduction of the predator. Further, τ is a positive
integer.

For the simplicity and convenience of exposition, we introduce the following
notations. Let R+ = [0,+∞), Z+ = {1, 2, . . .} and [k1, k2] denote the set of integer k satisfying
k1 ≤ k ≤ k2. We denote DC+ : [−τ, 0] → R+ to be the space of all nonnegative and
bounded discrete time functions. In addition, for any bounded sequence g(n), we denote
gL = infn∈Z+g(n), g

M = supn∈Z+
g(n).

Given the biological sense, we only consider solutions of system (1.3) with the
following initial condition:

(
x(θ), y(θ), u1(θ), u2(θ)

)
=
(
φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)

)
, φi, ψi ∈ DC+, φi(0) > 0, ψi(0) > 0, i = 1, 2.

(1.4)

It is not difficult to see that the solutions of system (1.3)with the above initial condition
are well defined for all n ≥ 0 and satisfy

x(n) > 0, y(n) > 0, ui(n) > 0, n ∈ Z+, i = 1, 2. (1.5)

The main purpose of this paper is to establish a new general criterion for the
permanence and extinction of system (1.3), which is dependent on feedback controls. This
paper is organized as follows. In Section 2, we will give some assumptions and useful
lemmas. In Section 3, some new sufficient conditions which guarantee the permanence of
all positive solutions of system (1.3) are obtained. Moreover, under some suitable conditions,
we show that the predator species y will be driven to extinction.

2. Preliminaries

In this section, we present some useful assumptions and state several lemmas which will be
useful in the proving of the main results.

Throughout this paper, we will have both of the following assumptions:
(H1) r(n), b(n), d(n), β(n) and γ(n) are nonnegative bounded sequences of real

numbers defined on Z+ such that

rL > 0, bL ≥ 0, dL > 0, (2.1)

(H2) ci(n), ei(n), fi(n) and aij(n) are nonnegative bounded sequences of real numbers
defined on Z+ such that

0 < aL
ii < aM

ii < +∞, 0 < eLi < eMi < 1, i = 1, 2. (2.2)
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Now, we state several lemmas which will be used to prove the main results in this
paper.

First, we consider the following nonautonomous equation:

x(n + 1) = x(n) exp
(
g(n) − a(n)x(n)

)
, (2.3)

where functions a(n), g(n) are bounded and continuous defined on Z+ with aL, gL > 0. We
have the following result which is given in [23].

Lemma 2.1. Let x(n) be the positive solution of (2.3) with x(0) > 0, then

(a) there exists a positive constant M > 1 such that

M−1 < lim inf
n→∞

x(n) ≤ lim sup
n→∞

x(n) ≤ M (2.4)

for any positive solution x(n) of (2.3);

(b) limn→∞(x(1)(n)−x(2)(n)) = 0 for any two positive solutions x(1)(n) and x(2)(n) of (2.3).

Second, one considers the following nonautonomous linear equation:

Δu(n + 1) = f(n) − e(n)u(n), (2.5)

where functions f(n) and e(n) are bounded and continuous defined on Z+ with fL > 0 and
0 < eL ≤ eM < 1. The following Lemma 2.2 is a direct corollary of Theorem 6.2 of L. Wang and
M. Q. Wang [24, page 125].

Lemma 2.2. Let u(n) be the nonnegative solution of (2.5) with u(0) > 0, then

(a) fL/eM < lim infn→∞u(n) ≤ lim supn→∞u(n) ≤ fM/eL for any positive solution u(n)
of (2.5);

(b) limn→∞(u(1)(n)−u(2)(n)) = 0 for any two positive solutions u(1)(n) and u(2)(n) of (2.5).

Further, considering the following:

Δu(n + 1) = f(n) − e(n)u(n) +ω(n), (2.6)

where functions f(n) and e(n) are bounded and continuous defined on Z+ with fL > 0,
0 < eL ≤ eM < 1 and ω(n) ≥ 0. The following Lemma 2.3 is a direct corollary of Lemma 3 of
Xu and Teng [25].

Lemma 2.3. Let u(n, n0, u0) be the positive solution of (2.6) with u(0) > 0, then for any constants
ε > 0 and M > 0, there exist positive constants δ(ε) and n̂(ε,M) such that for any n0 ∈ Z+ and
|u0| < M, when |ω(n)| < δ, one has

|u(n, n0, u0) − u∗(n, n0, u0)| < ε for n > n̂ + n0, (2.7)

where u∗(n, n0, u0) is a positive solution of (2.5) with u∗(n0, n0, u0) = u0.
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Finally, one considers the following nonautonomous linear equation:

Δu(n + 1) = −e(n)u(n) +ω(n), (2.8)

where functions e(n) are bounded and continuous defined on Z+ with 0 < eL ≤ eM < 1 and
ω(n) ≥ 0. In [25], the following Lemma 2.4 has been proved.

Lemma 2.4. Let u(n) be the nonnegative solution of (2.8) with u(0) > 0, then, for any constants
ε > 0 and M > 0, there exist positive constants δ(ε) and n̂(ε,M) such that for any n0 ∈ Z and
|u0| < M, when ω(n) < δ, one has

u(n, n0, u0) < ε for n > n̂ + n0. (2.9)

3. Main Results

Theorem 3.1. Suppose that assumptions (H1) and (H2) hold, then there exists a constant M > 0
such that

lim sup
n→∞

x(n) < M, lim sup
n→∞

y(n) < M, lim sup
n→∞

u1(n) < M, lim sup
n→∞

u2(n) < M,

(3.1)

for any positive solution (x(n), y(n), u1(n), u2(n)) of system (1.3).

Proof. Given any solution (x(n), y(n), u1(n), u2(n)) of system (1.3), we have

Δu1(n + 1) ≤ r(n) − e1(n)u1(n), (3.2)

for all n ≥ n0,where n0 is the initial time.
Consider the following auxiliary equation:

Δv(n + 1) = r(n) − e1(n)v(n), (3.3)

from assumptions (H1), (H2) and Lemma 2.2, there exists a constant M1 > 0 such that

lim sup
n→∞

v(n) ≤ M1, (3.4)

where v(n) is the solution of (3.3) with initial condition v(n0) = u1(n0). By the comparison
theorem, we have

u1(n) ≤ v(n), ∀n ≥ n0. (3.5)

From this, we further have

lim sup
n→∞

u1(n) ≤ M1. (3.6)
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Then, we obtain that for any constant ε > 0, there exists a constant n1 > n0 such that

u1(n) < M1 + ε ∀n ≥ n1. (3.7)

According to the first equation of system (1.3), we have

x(n) ≤ x(n) exp{b(n) − a11(n)x(n) + c1(n)(M1 + ε)}, (3.8)

for all n ≥ n1. Considering the following auxiliary equation:

z(n + 1) = z(n) exp{b(n) − a11(n)z(n) + c1(n)(M1 + ε)}, (3.9)

thus, as a direct corollary of Lemma 2.1, we get that there exists a positive constant M2 > 0
such that

lim sup
n→∞

z(n) ≤ M2, (3.10)

where z(n) is the solution of (3.9) with initial condition z(n1) = x(n1). By the comparison
theorem, we have

x(n) ≤ z(n), ∀n ≥ n1. (3.11)

From this, we further have

lim sup
n→∞

x(n) ≤ M2. (3.12)

Then, we obtain that for any constant ε > 0, there exists a constant n2 > n1 such that

x(n) < M2 + ε, ∀n ≥ n2. (3.13)

Hence, from the second equation of system (1.3), we obtain

y(n + 1) ≤ y(n) exp
{
a21(n)(M2 + ε) − d(n) − a22(n)y(n)

}
, (3.14)

for all n ≥ n2 + τ. Following a similar argument as above, we get that there exists a positive
constant M3 such that

lim sup
n→∞

y(n) < M3. (3.15)

By a similar argument of the above proof, we further obtain

lim sup
n→∞

u2(n) < M4. (3.16)
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From (3.6) and (3.12)–(3.16), we can choose the constantM = max{M1,M2,M3,M4},
such that

lim sup
n→∞

x(n) < M, lim sup
n→∞

y(n) < M,

lim sup
n→∞

u1(n) < M, lim sup
n→∞

u2(n) < M.
(3.17)

This completes the proof of Theorem 3.1.

In order to obtain the permanence of system (1.3), we assume that
(H3) [b(n) + c1(n)u∗

10(n)]
L > 0,where u∗

10(n) is some positive solution of the following
equation:

Δu(n + 1) = r(n) − e1(n)u(n). (3.18)

Theorem 3.2. Suppose that assumptions (H1)–(H3) hold, then there exists a constant ηx > 0 such
that

lim inf
n→∞

x(n) > ηx, (3.19)

for any positive solution (x(n), y(n), u1(n), u2(n)) of system (1.3).

Proof. According to assumptions (H1) and (H3), we can choose positive constants ε0 and ε1
such that

(
b(n) − a11(n)ε0 − a12(n)ε1

1 + γ(n)ε1
+ c1(n)

(
u∗
10(n) − ε1

))L

> ε0,

(
a21(n)ε0
1 + β(n)ε0

− d(n)
)M

< −ε0.
(3.20)

Consider the following equation with parameter α0:

Δv(n + 1) = r(n) − e1(n)v(n) − f1(n)α0. (3.21)

Let u(n) be any positive solution of system (3.18) with initial value u(n0) = v0. By
assumptions (H1)–(H3) and Lemma 2.2, we obtain that u(n) is globally asymptotically stable
and converges to u∗

10(n) uniformly for n → +∞. Further, from Lemma 2.3, we obtain that,
for any given ε1 > 0 and a positive constant M > 0 (M is given in Theorem 3.1), there exist
constants δ1 = δ1(ε1) > 0 and n∗

1 = n∗
1(ε1,M) > 0, such that for any n0 ∈ Z+ and 0 ≤ v0 ≤ M,

when f1(n)α0 < δ1, we have

∣∣v(n, n0, v0) − u∗
10(n)

∣∣ < ε1, ∀n ≥ n0 + n∗
1, (3.22)

where v(n, n0, v0) is the solution of (3.21)with initial condition v(n0, n0, v0) = v0.
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Let α0 ≤ min{ε0, δ1/(fM
1 + 1)}, from (3.20), we obtain that there exist α0 and n1 such

that

b(n) − a11(n)α0 − a12(n)ε1
1 + γ(n)ε1

+ c1(n)
(
u∗
10(n) − ε1

)
> α0,

a21(n)α0

1 + β(n)α0
− d(n) < −α0, f1(n) < fM

1 + 1,

(3.23)

for all n > n1.
We first prove that

lim sup
n→∞

x(n) ≥ α0, (3.24)

for any positive solution (x(n), y(n), u1(n), u2(n)) of system (1.3). In fact, if (3.24) is not true,
then there exists a Φ(θ) = (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) such that

lim sup
n→∞

x(n,Φ) < α0, (3.25)

where (x(n,Φ), y(n,Φ), u1(n,Φ), u2(n,Φ)) is the solution of system (1.3) with initial
condition (x(θ), y(θ), u1(θ), u2(θ)) = Φ(θ), θ ∈ [−τ, 0]. So, there exists an n2 > n1 such that

x(n,Φ) < α0 ∀n > n2. (3.26)

Hence, (3.26) together with the third equation of system (1.3) lead to

Δu1(n + 1) > r(n) − e1(n)u1(n) − fM
1 α0, (3.27)

for n > n2. Let v(n) be the solution of (3.21) with initial condition v(n2) = u1(n2), by the
comparison theorem, we have

u1(n) ≥ v(n), ∀n ≥ n2. (3.28)

In (3.22), we choose n0 = n2 and v0 = u1(n2), since f1(n)α0 < δ1, then for given ε1, we have

v(n) = v(n, n2, u1(n2)) > u∗
10(n) − ε1, (3.29)

for all n ≥ n2 + n∗
1.Hence, from (3.28), we further have

u1(n) > u∗
10(n) − ε1, ∀n ≥ n2 + n∗

1. (3.30)

From the second equation of system (1.3), we have

y(n + 1) ≤ y(n) exp
{

a21(n)α0

1 + β(n)α0
− d(n)

}
, (3.31)
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for all n > n2 + τ. Obviously, we have y(n) → 0 as n → +∞. Therefore, we get that there
exists an n∗

2 such that

y(n) < ε1, (3.32)

for any n > n2 + τ + n∗
2.Hence, by (3.26), (3.30), and (3.32), it follows that

x(n + 1) ≥ x(n) exp
{
b(n) − a11(n)α0 − a12(n)ε1

1 + γ(n)ε1
+ c1(n)

(
u∗
10(n) − ε1

)}
, (3.33)

for any n > n2 + τ + n̂∗, where n̂∗ = max{n∗
1, n

∗
2}. Thus, from (3.23) and (3.33), we have

limn→+∞x(n) = +∞,which leads to a contradiction. Therefore, (3.24) holds.
Now, we prove the conclusion of Theorem 3.2. In fact, if it is not true, then there exists

a sequence {Z(m)} = {(ϕ(m)
1 , ϕ

(m)
2 , ψ

(m)
1 , ψ

(m)
2 )} of initial functions such that

lim inf
n→∞

x
(
n,Z(m)

)
<

α0

(m + 1)2
, ∀m = 1, 2, . . . . (3.34)

On the other hand, by (3.24), we have

lim sup
n→∞

x
(
n,Z(m)

)
≥ α0. (3.35)

Hence, there are two positive integer sequences {s(m)
q } and {t(m)

q } satisfying

0 < s
(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s

(m)
q < t

(m)
q < · · · (3.36)

and limq→∞s
(m)
q = ∞, such that

x
(
s
(m)
q , Z(m)

)
≥ α0

m + 1
, x

(
t
(m)
q , Z(m)

)
≤ α0

(m + 1)2
, (3.37)

α0

(m + 1)2
≤ x

(
n,Z(m)

)
≤ α0

m + 1
, ∀n ∈

[
s
(m)
q + 1, t(m)

q − 1
]
. (3.38)

By Theorem 3.1, for any given positive integerm, there exists aK(m) such that x(n,Z(m)) < M,
y(n,Z(m)) < M, u1(n,Z(m)) < M, and u2(n,Z(m)) < M for all n > K(m). Because of s(m)

q → +∞
as q → +∞, there exists a positive integer K(m)

1 such that s(m)
q > K(m) + τ and s

(m)
q > n1 as

q > K
(m)
1 . Let q ≥ K

(m)
1 , for any n ∈ [s(m)

q , t
(m)
q ], we have

x
(
n + 1, Z(m)

)
≥ x

(
n,Z(m)

)
exp

{
b(n) − a11(n)M − a12(n)M

1 + γ(n)M
− c1(n)M

}

≥ x
(
n,Z(m)

)
exp(−θ1),

(3.39)
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where θ1 = supn∈Z+
{b(n) + a11(n)M + a12(n)M/(1 + γ(n)M) + c1(n)M}. Hence,

α0

(m + 1)2
≥ x

(
t
(m)
q , Z(m)

)
≥ x

(
s
(m)
q , Z(m)

)
exp

[
−θ1

(
t
(m)
q − s

(m)
q

)]

≥ α0

m + 1
exp

[
−θ1

(
t
(m)
q − s

(m)
q

)]
.

(3.40)

The above inequality implies that

t
(m)
q − s

(m)
q ≥ ln(m + 1)

θ1
, ∀q ≥ K

(m)
1 , m = 1, 2, . . . . (3.41)

So, we can choose a large enough m̂0 such that

t
(m)
q − s

(m)
q ≥ n̂∗ + τ + 2, ∀m ≥ m̂0, q ≥ K

(m)
1 . (3.42)

From the third equation of system (1.3) and (3.38), we have

Δu1

(
n + 1, Z(m)

)
≥ r(n) − e1(n)u1

(
n,Z(m)

)
− f1(n)

α0

m + 1

≥ r(n) − e1(n)u1

(
n,Z(m)

)
− f1(n)α0,

(3.43)

for any m ≥ m̂0, q ≥ K
(m)
1 , and n ∈ [s(m)

q + 1, t(m)
q ]. Assume that v(n) is the solution of (3.21)

with the initial condition v(s(m)
q + 1) = u1(s

(m)
q + 1), then from comparison theorem and the

above inequality, we have

u1

(
n,Z(m)

)
≥ v(n), ∀n ∈

[
s
(m)
q + 1, t(m)

q

]
, m ≥ m̂0, q ≥ K

(m)
1 . (3.44)

In (3.22), we choose n0 = s
(m)
q + 1 and v0 = u1(s

(m)
q + 1), since 0 < v0 < M and f1(n)α0 < δ1,

then for all n ∈ [s(m)
q + 1, t(m)

q ], we have

v(n) = v
(
n, s

(m)
q + 1, u1

(
s
(m)
q + 1

))
> u∗

10(n) − ε1, ∀n ∈
[
s
(m)
q + 1 + n̂∗, t(m)

q

]
. (3.45)

Equation (3.44) together with (3.45) lead to

u1

(
n,Z(m)

)
> u∗

10(n) − ε1, (3.46)

for all n ∈ [s(m)
q + 1 + n̂∗, t(m)

q ], q ≥ K
(m)
1 , and m ≥ m̂0.
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From the second equation of system(1.3), we have

y(n + 1) ≤ y(n) exp
(

a21(n)α0

1 + β(n)α0
− d(n)

)
, (3.47)

for m ≥ m̂0, q ≥ K
(m)
1 , and n ∈ [s(m)

q + τ, t
(m)
q ]. Therefore, we get that

y(n) < ε1, (3.48)

for any n ∈ [s(m)
q + τ + n̂∗, t(m)

q ]. Further, from the first equation of systems (1.3), (3.46), and
(3.48), we obtain

x
(
n + 1, Z(m)

)
≥ x

(
n,Z(m)

)
exp

{
b(n) − a11(n)α0 − a12(n)ε1

1 + γ(n)ε1
+ c1(n)

(
u∗
10(n) − ε1

)}

≥ x
(
n,Z(m)

)
exp(α0),

(3.49)

for any m ≥ m̂0, q ≥ K
(m)
1 , and n ∈ [s(m)

q + 1 + τ + n̂∗, t(m)
q ].Hence,

x
(
t
(m)
q , Z(m)

)
≥ x

(
t
(m)
q − 1, Z(m)

)
exp(α0). (3.50)

In view of (3.37) and (3.38), we finally have

α0

(m + 1)2
≥ x

(
t
(m)
q , Z(m)

)
≥ x

(
t
(m)
q − 1, Z(m)

)
exp(α0)

≥ α0

(m + 1)2
exp(α0) >

α0

(m + 1)2
,

(3.51)

which is a contradiction. Therefore, the conclusion of Theorem 3.2 holds. This completes the
proof of Theorem 3.2.

In order to obtain the permanence of the component y(n) of system (1.3), we next
consider the following single-specie system with feedback control:

x(n + 1) = x(n) exp{b(n) − a11(n)x(n) + c1(n)u1(n)},
Δu1(n + 1) = r(n) − e1(n)u1(n) − f1(n)x(n).

(3.52)

For system (3.52), we further introduce the following assumption:
(H4) suppose λ = max{|1 − aM

11x|, |1 − aL
11x|} + cM1 < 1, δ = 1 − eL1 + fM

1 x < 1,where x, x
are given in the proof of Lemma 3.3.

For system(3.52), we have the following result.
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Lemma 3.3. Suppose that assumptions (H1)–(H3) hold, then

(a) there exists a constant M > 1 such that

M−1 < lim inf
n→∞

x(n) < lim sup
n→∞

x(n) < M, lim sup
n→∞

u1(n) < M, (3.53)

for any positive solution (x(n), u1(n)) of system (3.52).

(b) if assumption (H4) holds, then each fixed positive solution (x(n), u1(n)) of system (3.52)
is globally uniformly attractive on R2

+0.

Proof. Based on assumptions (H1)–(H3), conclusion (a) can be proved by a similar argument
as in Theorems 3.1 and 3.2.

Here, we prove conclusion (b). Letting (x∗
10(n), u

∗
10(n)) be some solution of system

(3.52), by conclusion (a), there exist constants x, x, and M > 1, such that

x − ε < x(n), x∗
10(n) < x + ε, u1(n), u∗

10(n) < M, (3.54)

for any solution (x(n), u1(n)) of system (3.52) and n > n∗. We make transformation x(n) =
x∗
10(n) exp(v1(n)) and u1(n) = u∗

10(n) + v2(n).Hence, system (3.52) is equivalent to

v1(n + 1) =
(
1 − a11(n)x∗

10(n) exp{θ1(n)v1(n)}
)
v1(n) + c1(n)v2(n),

Δv2(n + 1) = −e1(n)v2(n) − f1(n)x∗
10(n) exp{θ2(n)v1(n)}v1(n).

(3.55)

According to (H4), there exists a ε > 0 small enough, such that λε = max{|1 − aM
11 (x +

ε)|, |1 − aL
11(x − ε)|} + cM1 < 1, σε = 1 − eL1 + fM

1 (x + ε) < 1. Noticing that θi(n) ∈ [0, 1]
implies that x∗

10(n) exp(θi(n)v1(n)) (i = 1, 2) lie between x∗
10(n) and x(n). Therefore, x − ε <

x∗
10(n) exp(θi(n)v1(n)) < x + ε, i = 1, 2. It follows from (3.55) that

|v1(n + 1)| ≤ (
1 − a11(n)x∗

10(n) exp{θ1(n)v1(n)}
)
v1(n) + c1(n)v2(n),

|v2(n + 1)| ≤ (1 − e1(n))v2(n) − f1(n)x∗
10(n) exp{θ2(n)v1(n)}v1(n).

(3.56)

Let μ = max{λε, σε}, then 0 < μ < 1. It follows easily from (3.56) that

max{|v1(n + 1)|, |v2(n + 1)|} ≤ μmax{|v1(n)|, |v2(n)|}. (3.57)

Therefore, lim supn→∞ max{|v1(n+1)|, |v2(n+1)|} → 0 , as n → +∞, andwe can easily obtain
that lim supn→∞|v1(n + 1)| = 0 and lim supn→∞|v2(n + 1)| = 0. The proof is completed.
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Considering the following equations:

x(n + 1) = x(n) exp
{
b(n) − a11(n)x(n) − g(n) + c1(n)u1(n)

}
,

Δu1(n + 1) = r(n) − e1(n)u1(n) − f1(n)x(n),
(3.58)

then we have the following result.

Lemma 3.4. Suppose that assumptions (H1)–(H4) hold, then there exists a positive constant δ2 such
that for any positive solution (x(n), u1(n)) of system (3.58), one has

lim
n→∞

|x(n) − x̃(n)| = 0, lim
n→∞

|u1(n) − ũ(n)| = 0, g(n) ∈ [0, δ2], (3.59)

where (x̃(n), ũ(n)) is the solution of system (3.52) with x̃(n0) = x(n0) and ũ(n0) = u1(n0).

The proof of Lemma 3.4 is similar to Lemma 3.3, one omits it here.
Let (x∗(n), u∗

1(n)) be a fixed solution of system (3.52) defined on R2
+0, one assumes that

(H5) (−d(n) + (a21(n)x∗(n − τ)/(1 + β(n)x∗(n − τ)))L > 0.

Theorem 3.5. Suppose that assumptions (H1)–(H5) hold, then there exists a constant ηy > 0 such
that

lim inf
n→∞

y(n) > ηy, (3.60)

for any positive solution (x(n), y(n), u1(n), u2(n)) of system (1.3).

Proof. According to assumption (H5), we can choose positive constants ε2, ε3, and n1, such
that for all n ≥ n1, we have

−d(n) + a21(n)(x∗(n − τ) − ε3)
1 + β(n)(x∗(n − τ) − ε3) + γ(n)ε2

− a22(n)ε2 − c2(n)ε3 > ε2. (3.61)

Considering the following equation with parameter α1:

Δv(n + 1) = −e2(n)v(n) + f2(n)α1, (3.62)

by Lemma 2.4, for given ε3 > 0 andM > 0 (M is given in Theorem 3.1.), there exist constants
δ3 = δ3(ε3) > 0 and n∗

3 = n∗
3(ε3,M) > 0, such that for any n0 ∈ Z+ and 0 ≤ v0 ≤ M, when

f2(n)α0 < δ3,we have

v(n, n0, v0) < ε3, ∀n ≥ n0 + n∗
3. (3.63)
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We choose α1 < max{ε2, δ3/(1 + fM
2 )} if there exists a constant n′ such that a12(n) −

δ2γ(n) ≡ 0 for all n > n′, otherwise α1 < max{ε2, δ3/(1 + fM
2 ), δ2/(a12(n) − δ2γ(n)

M)}.
Obviously, there exists an n2 > n1, such that

a12(n)α1

1 + γ(n)α1
< δ2, f2(n)α1 < δ3, ∀n > n2. (3.64)

Now, We prove that

lim sup
n→∞

y(n) ≥ α1, (3.65)

for any positive solution (x(n), y(n), u1(n), u2(n)) of system (1.3). In fact, if (3.65) is not true,
then for α1, there exist aΦ(θ) = (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) and n3 > n2 such that for all n > n3,

y(n,Φ) < α1, (3.66)

where φi ∈ DC+ and ψi ∈ DC+ (i = 1, 2). Hence, for all n > n3, one has

0 <
a12(n)y(n)

1 + β(n)x(n) + γ(n)y(n)
<

a12(n)α1

1 + γ(n)α1
< δ2. (3.67)

Therefore, from system (1.3), Lemmas 3.3 and 3.4, it follows that

lim
n→∞

|x(n) − x∗(n)| = 0, lim
n→∞

|u1(n) − u∗(n)| = 0, (3.68)

for any solution (x(n), y(n), u1(n), u2(n)) of system (1.3). Therefore, for any small positive
constant ε3 > 0, there exists an n∗

4 such that for all n ≥ n3 + n∗
4, we have

x(n) ≥ x∗
10(n) − ε3. (3.69)

From the fourth equation of system (1.3), one has

Δu2(n + 1) ≤ −e2(n)u2(n) + fM
2 α1. (3.70)

In (3.63), we choose n0 = n3 and v0 = u(n3). Since f2(n)α1 < δ3, then for all n ≥ n3 + n∗
3, we

have

u2(n) ≤ ε3. (3.71)

Equations (3.69), (3.71) together with the second equation of system (1.3) lead to

y(n + 1) ≥ y(n) exp

(
a21(n)

(
x∗
10(n) − ε3

)
1 + β(n)

(
x∗
10(n) − ε3

)
+ γ(n)α1

− d(n) − a22(n)α1 − c2(n)ε3

)
, (3.72)
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for all n > n3 + τ + n̂∗∗,where n̂∗∗ = max{n∗
3, n

∗
4}.Obviously, we have y(n) → +∞ as n → +∞,

which is contradictory to the boundedness of solution of system (1.3). Therefore, (3.65) holds.
Now, we prove the conclusion of Theorem 3.5. In fact, if it is not true, then there exists

a sequence Z(m) = {φ(m)
1 , φ

(m)
2 , ψ

(m)
1 , ψ

(m)
2 } of initial functions, such that

lim inf
n→∞

y
(
n,Z(m)

)
<

α1

(m + 1)2
, ∀m = 1, 2, . . . , (3.73)

where (x(n,Z(m)), y(n,Z(m)), u1(n,Z(m)), u2(n,Z(m))) is the solution of system (1.3) with
initial condition (x(θ), y(θ), u1(θ), u2(θ)) = Z(m)(θ) for all θ ∈ [−τ, 0]. On the other hand,
it follows from (3.65) that

lim sup
n→∞

y
(
n,Z(m)

)
≥ α1. (3.74)

Hence, there are two positive integer sequences {s(m)
q } and {t(m)

q } satisfying

0 < s
(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s

(m)
q < t

(m)
q < · · · (3.75)

and limq→∞s
(m)
q = ∞, such that

y
(
s
(m)
q , Z(m)

)
≥ α1

m + 1
, y

(
t
(m)
q , Z(m)

)
≤ α1

(m + 1)2
, (3.76)

α1

(m + 1)2
≤ y

(
n,Z(m)

)
≤ α1

m + 1
, ∀n ∈

[
s
(m)
q + 1, t(m)

q − 1
]
. (3.77)

By Theorem 3.1, for given positive integerm, there exists aK(m) such that x(n,Z(m)) <
M, y(n,Z(m)) < M, u1(n,Z(m)) < M, and u2(n,Z(m)) < M for all n > K(m). Because that
s
(m)
q → +∞ as q → +∞, there is a positive integerK(m)

1 such that s(m)
q > K(m) +τ and s

(m)
q > n2

as q > K
(m)
1 . Let q ≥ K

(m)
1 , for any n ∈ [s(m)

q , t
(m)
q ], we have

y
(
n + 1, Z(m)

)
≥ y

(
n,Z(m)

)
exp[−d(n) − a21(n)M − a22(n)M − c2(n)M]

≥ y
(
n,Z(m)

)
exp(−θ2),

(3.78)

where θ2 = supn∈N{d(n) + a21(n)M + a22(n)M + c2(n)M}.Hence,

α1

(m + 1)2
≥ y

(
t
(m)
q , Z(m)

)
≥ y

(
s
(m)
q , Z(m)

)
exp

[
−θ2

(
t
(m)
q − s

(m)
q

)]

≥ α1

m + 1
exp

[
−θ2

(
t
(m)
q − s

(m)
q

)]
.

(3.79)
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The above inequality implies that

t
(m)
q − s

(m)
q ≥ ln(m + 1)

θ2
, ∀q ≥ K

(m)
1 , m = 1, 2, . . . . (3.80)

Choosing a large enough m̂1, such that

t
(m)
q − s

(m)
q > n̂∗∗ + τ + 2, ∀m ≥ m̂1, q ≥ K

(m)
1 , (3.81)

then for m ≥ m̂1, q ≥ K
(m)
1 ,we have

0 <
a12(n)y(n)

1 + β(n)x(n) + γ(n)y(n)
<

a12(n)α1

1 + γ(n)α1
< δ2, (3.82)

for all n ∈ [s(m)
q + 1, t(m)

q ]. Therefore, it follows from system (1.3) that

x(n + 1) ≥ x(n) exp(b(n) − a11(n)x(n) − δ2 + c1(n)u1(n)),

u1(n + 1) = r(n) − (e1(n) − 1)u1(n) − f1(n)x(n),
(3.83)

for all n ∈ [s(m)
q +1, t(m)

q ]. Further, by Lemmas 3.3 and 3.4, we obtain that for any small positive
constant ε3 > 0, we have

x(n) ≥ x∗
10(n) − ε3, (3.84)

for any m ≥ m̂1, q ≥ K
(m)
1 , and n ∈ [s(m)

q + 1 + n∗∗, t(m)
q ]. For any m ≥ m̂1, q ≥ K

(m)
1 , and

n ∈ [s(m)
q + 1, t(m)

q ], by the first equation of systems (1.3) and (3.77), it follows that

Δu2

(
n + 1, Z(m)

)
≤ −e2(n)u2

(
n,Z(m)

)
+ f2(n)

α1

m + 1

≤ −e2(n)u2

(
n,Z(m)

)
+ f2(n)α1.

(3.85)

Assume that v(n) is the solution of (3.62) with the initial condition v(s(m)
q + 1) = u2(s

(m)
q + 1),

then from comparison theorem and the above inequality, we have

u2

(
n,Z(m)

)
≤ v(n), ∀n ∈

[
s
(m)
q + 1, t(m)

q

]
, m ≥ m̂1, q ≥ K

(m)
1 . (3.86)

In (3.63), we choose n0 = s
(m)
q + 1 and v0 = u2(s

(m)
q + 1). Since 0 < v0 < M and f2(n)α1 < δ3,

then we have

v(n) ≤ ε3, ∀n ∈
[
s
(m)
q + 1 + n̂∗∗, t(m)

q

]
. (3.87)
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Equation (3.86) together with (3.87) lead to

u2

(
n, φ(m), ψ(m)

)
≤ ε3, (3.88)

for all n ∈ [s(m)
q + 1 + n̂∗∗, t(m)

q ], q ≥ K
(m)
1 , and m ≥ m̂1.

So, for anym ≥ m̂1, q ≥ K
(m)
1 , and n ∈ [s(m)

q + τ + 1+ n̂∗∗, t(m)
q ], from the second equation

of systems (1.3), (3.61), (3.77), (3.84), and (3.88), it follows that

y
(
n + 1, Z(m)

)
= y

(
n,Z(m)

)
exp

{
−d(n) + a21(n)x

(
n − τ, Z(m))

1 + β(n)x
(
n − τ, Z(m)

)
+ γ(n)y

(
n − τ, Z(m)

)

−a22(n)y
(
n,Z(m)

)
− c2(n)u2

(
n,Z(m)

)}

≥ y
(
n,Z(m)

)
exp

{
−d(n) + a21(n)

(
x∗
10(n) − ε3

)
1 + β(n)

(
x∗
10(n) − ε3

)
+ γ(n)α1

−a22(n)α1 − c2(n)ε3

}

≥ y
(
n,Z(m)

)
exp{α1}.

(3.89)

Hence,

y
(
t
(m)
q , Z(m)

)
≥ y

(
t
(m)
q − 1, Z(m)

)
exp(α1). (3.90)

In view of (3.76) and (3.77), we finally have

α1

(m + 1)2
≥ y

(
t
(m)
q , Z(m)

)
≥ y

(
t
(m)
q − 1, Z(m)

)
exp(α1)

≥ α1

(m + 1)2
exp(α1) >

α1

(m + 1)2
,

(3.91)

which is a contradiction. Therefore, the conclusion of Theorem 3.5 holds.

Remark 3.6. In Theorems 3.2 and 3.5, we note that (H1)–(H3) are decided by system(1.3),
which is dependent on the feedback control u1(n). So, the control variable u1(n) has impact
on the permanence of system (1.3). That is, there is the permanence of the species as long as
feedback controls should be kept beyond the range. If not, we have the following result.

Theorem 3.7. Suppose that assumption

(
−d(n) + a21(n)x∗(n − τ)

1 + β(n)x∗(n − τ)

)M

< 0 (3.92)
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holds, then

lim
n→∞

y(n) = 0, (3.93)

for any positive solution (x(n), y(n), u1(n), u2(n)) of system (1.3).

Proof. By the condition, for any positive constant ε (ε < α1,where α1 is given in Theorem 3.5),
there exist constants ε1 and n1, such that

−d(n) + a21(n)(x∗(n − τ) + ε1)
1 + β(n)(x∗(n − τ) + ε1)

− a22(n)ε < −ε1, (3.94)

for n > n1. First, we show that there exists an n2 > n1, such that y(n2) < ε. Otherwise, there
exists an n∗

1, such that

y(n) ≥ ε, ∀n > n1 + n∗
1. (3.95)

Hence, for all n ≥ n1 + n∗
1, one has

x(n + 1) < x(n) exp
{
b(n) − a11(n)x(n) − a12(n)ε

1 + γ(n)ε
+ c1(n)u1(n)

}
,

Δu1(n + 1) = r(n) − e1(n)u1(n) + f1(n)x(n).

(3.96)

Therefore, from Lemma 3.3 and comparison theorem, it follows that for the above ε1, there
exists an n∗

2 > 0, such that

x(n) < x∗(n) + ε1, ∀n > n1 + n∗
2. (3.97)

Hence, for n > n1 + n∗
2,we have

ε ≤ y(n + 1) < y(n) exp
{
−d(n) + a21(n)(x∗(n − τ) + ε1)

1 + β(n)(x∗(n − τ) + ε1)
− a22(n)ε

}

≤ y
(
n1 + n∗

2
)
exp

{−ε1(n − n1 − n∗
2
)} −→ 0 as n −→ +∞.

(3.98)

So, ε < 0, which is a contradiction. Therefor, there exists an n2 > n1, such that y(n2) < ε.
Second, we show that

y(n) < ε exp
{
μ
}
, ∀n > n2, (3.99)

where

μ = maxn∈Z+

{
d(n) +

a21(n)(x∗(n − τ) + ε1)
1 + β(n)(x∗(n − τ) + ε1)

+ a22(n)ε
}

(3.100)
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is bounded. Otherwise, there exists an n3 > n2, such that y(n3) ≥ ε exp{μ}.Hence, there must
exist an n4 ∈ [n2, n3 − 1] such that y(n4) < ε, y(n4 + 1) ≥ ε, and y(n) ≥ ε for n ∈ [n4 + 1, n3].
Let P1 be a nonnegative integer, such that

n3 = n4 + P1 + 1. (3.101)

It follows from (3.101) that

ε exp
{
μ
} ≤ y(n3) ≤ y(n4) exp

{
n3−1∑
s=n4

(
−d(s) + a21(s)(x∗(s − τ) + ε1)

1 + β(s)(x∗(s − τ) + ε1)
− a22(s)ε

)}

≤ y(n4) exp
{
−d(n4 + P1) +

a21(n4 + P1)(x∗(n4 + P1 − τ) + ε1)
1 + β(n4 + P1)(x∗(n4 + P1 − τ) + ε1)

− a22(n4 + P1)ε
}

< ε exp
(
μ
) −→ 0,

(3.102)

which leads to a contradiction. This shows that (3.99) holds. By the arbitrariness of ε, it
immediately follows that y(n) → 0 as n → +∞. This completes the proof of Theorem 3.7.
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